# Statistical NLP Spring 2009



#### Lecture 15: PCFGs

Dan Klein - UC Berkeley



## Treebank PCFGs

[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):



| Model    | F1   |
|----------|------|
| Baseline | 72.0 |



# **Conditional Independence?**



- Not every NP expansion can fill every NP slot
  - A grammar with symbols like "NP" won't be context-free
  - Statistically, conditional independence too strong

## Non-Independence

Independence assumptions are often too strong.



- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!



#### **Grammar Refinement**

Example: PP attachment





#### **Grammar Refinement**



- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

## The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
  - Structural annotation

# Typical Experimental Setup

Corpus: Penn Treebank, WSJ



- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.
  - Passive / complete symbols: NP, NP^S
  - Active / incomplete symbols: NP → NP CC •







## **Unary Splits**

- Problem: unary rewrites used to transmute categories so a high-probability rule can be used.
- Solution: Mark unary rewrite sites with -U



| Annotation | F1   | Size |
|------------|------|------|
| Base       | 77.8 | 7.5K |
| UNARY      | 78.3 | 8.0K |

## Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.



- Partial Solution:
  - Subdivide the IN tag.

| Annotation | F1   | Size |
|------------|------|------|
| Previous   | 78.3 | 8.0K |
| SPLIT-IN   | 80.3 | 8.1K |

## Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "&" from other conjunctions
- SPLIT-%: "%" gets its own tag.

| F1   | Size |
|------|------|
| 80.4 | 8.1K |
| 80.5 | 8.1K |
| 81.2 | 8.5K |
| 81.6 | 9.0K |
| 81.7 | 9.1K |
| 81.8 | 9.3K |
|      |      |

# A Fully Annotated (Unlex) Tree



#### Some Test Set Results

| Parser        | LP   | LR   | F1   | СВ   | 0 CB |
|---------------|------|------|------|------|------|
| Magerman 95   | 84.9 | 84.6 | 84.7 | 1.26 | 56.6 |
| Collins 96    | 86.3 | 85.8 | 86.0 | 1.14 | 59.9 |
| Unlexicalized | 86.9 | 85.7 | 86.3 | 1.10 | 60.3 |
| Charniak 97   | 87.4 | 87.5 | 87.4 | 1.00 | 62.1 |
| Collins 99    | 88.7 | 88.6 | 88.6 | 0.90 | 67.1 |

- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.

## The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
  - Structural annotation [Johnson '98, Klein and Manning 03]
  - Head lexicalization [Collins '99, Charniak '00]

#### Problems with PCFGs





- If we do no annotation, these trees differ only in one rule:
  - $\bullet \quad \mathsf{VP} \to \mathsf{VP} \; \mathsf{PP}$
  - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

## Problems with PCFGs



- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

#### Problems with PCFGs



president of a company in Africa

- Another example of PCFG indifference
  - Left structure far more common
  - How to model this?
  - Really structural: "chicken with potatoes with gravy"
  - Lexical parsers model this effect, but not by virtue of being lexical

#### **Lexicalized Trees**

- Add "headwords" to each phrasal node
  - Syntactic vs. semantic heads
  - Headship not in (most) treebanks
  - Usually use head rules, e.g.:
    - NP:
      - Take leftmost NP
      - Take rightmost N\*
      - Take rightmost JJ
      - Take right child
    - VP
      - Take leftmost VB\*
      - Take leftmost VP
      - Take left child



#### Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps



# **Lexical Derivation Steps**

Derivation of a local tree [simplified Charniak 97]



## **Lexical Derivation Steps**

Another derivation of a local tree [Collins 99]



## Naïve Lexicalized Parsing

- Can, in principle, use CKY on lexicalized PCFGs
  - O(Rn³) time and O(Sn²) memory
  - But R = rV<sup>2</sup> and S = sV
  - Result is completely impractical (why?)
  - Memory: 10K rules \* 50K words \* (40 words)<sup>2</sup> \* 8 bytes ≈ 6TB
- Can modify CKY to exploit lexical sparsity
  - Lexicalized symbols are a base grammar symbol and a pointer into the input sentence, not any arbitrary word
  - Result: O(rn<sup>5</sup>) time, O(sn<sup>3</sup>)
  - Memory: 10K rules \* (40 words)<sup>3</sup> \* 8 bytes ≈ 5GB

#### Lexicalized CKY

```
(VP->VBD...NP •) [saw]
                                                            X[h]
                (VP->VBD •)[saw] NP[her]
                                                           /[h] Z[h
bestScore(X,i,j,h)
  if (j = i+1)
                                                      h
                                                             k
                                                                    h'
     return tagScore(X,s[i])
  else
     return
       \max \max_{X \in \mathcal{X}(X)} \operatorname{score}(X[h] -> Y[h] Z[h']) *
                 bestScore(Y,i,k,h) *
                 bestScore(Z,k,j,h')
            max score(X[h]->Y[h'] Z[h]) *
                 bestScore(Y,i,k,h') *
                 bestScore(Z,k,j,h)
```

## **Quartic Parsing**

Turns out, you can do (a little) better [Eisner 99]





- Gives an O(n<sup>4</sup>) algorithm
- Still prohibitive in practice if not pruned

## Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
  - Essentially, run the O(n<sup>5</sup>) CKY
  - Remember only a few hypotheses for each span <i,j>.
  - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
  - Keeps things more or less cubic



 Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

#### Pruning with a PCFG

- The Charniak parser prunes using a two-pass approach [Charniak 97+]
  - First, parse with the base grammar
  - For each X:[i,j] calculate P(X|i,j,s)
    - This isn't trivial, and there are clever speed ups
  - Second, do the full O(n<sup>5</sup>) CKY
    - Skip any X :[i,j] which had low (say, < 0.0001) posterior</li>
  - Avoids almost all work in the second phase!
- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes

## Pruning with A\*

- You can also speed up the search without sacrificing optimality
- For agenda-based parsers:
  - Can select which items to process first
  - Can do with any "figure of merit" [Charniak 98]
  - If your figure-of-merit is a valid A\* heuristic, no loss of optimiality [Klein and Manning 03]







#### Results

- Some results
  - Collins 99 88.6 F1 (generative lexical)
  - Charniak and Johnson 05 89.7 / 91.3 F1 (generative lexical / reranked)
  - Petrov et al 06 90.7 F1 (generative unlexical)
  - McClosky et al 06 92.1 F1 (gen + rerank + self-train)
- However
  - Bilexical counts rarely make a difference (why?)
  - Gildea 01 Removing bilexical counts costs < 0.5 F1</li>
- Bilexical vs. monolexical vs. smart smoothing

## The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
  - Structural annotation
  - Head lexicalization
  - Automatic clustering?













## Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful









# **Learned Splits**

Proper Nouns (NNP):

| NNP-14 | Oct. | Nov.      | Sept.  |
|--------|------|-----------|--------|
| NNP-12 | John | Robert    | James  |
| NNP-2  | J.   | E.        | L.     |
| NNP-1  | Bush | Noriega   | Peters |
| NNP-15 | New  | San       | Wall   |
| NNP-3  | York | Francisco | Street |

Personal pronouns (PRP):

| PRP-0 | It | He   |      |
|-------|----|------|------|
| PRP-1 | it | he   | they |
| PRP-2 | it | them | him  |

# **Learned Splits**

Relative adverbs (RBR):

| RBR-0 | further | lower   | higher |
|-------|---------|---------|--------|
| RBR-1 | more    | less    | More   |
| RBR-2 | earlier | Earlier | later  |

Cardinal Numbers (CD):

| CD-7  | one     | two     | Three    |
|-------|---------|---------|----------|
| CD-4  | 1989    | 1990    | 1988     |
| CD-11 | million | billion | trillion |
| CD-0  | 1       | 50      | 100      |
| CD-3  | 1       | 30      | 31       |
| CD-9  | 78      | 58      | 34       |

## Coarse-to-Fine Inference

Example: PP attachment



## Prune?

For each chart item X[i,j], compute posterior probability:

$$\frac{\mathbf{P}_{\text{IN}}(X,i,j) \cdot \mathbf{P}_{\text{OUT}}(X,i,j)}{\mathbf{P}_{\text{IN}}(root,0,n)} \quad \textit{< threshold}$$

E.g. consider the span 5 to 12:







# Final Results (Accuracy)

|          |                                   | ≤ 40 words<br>F1 | all<br>F1 |
|----------|-----------------------------------|------------------|-----------|
| □□       | Charniak&Johnson '05 (generative) | 90.1             | 89.6      |
| ENG      | Split / Merge                     | 90.6             | 90.1      |
| ଦ୍ର      | Dubey '05                         | 76.3             | -         |
| GER      | Split / Merge                     | 80.8             | 80.1      |
| <u>Ω</u> | Chiang et al. '02                 | 80.0             | 76.6      |
| CHN      | Split / Merge                     | 86.3             | 83.4      |

Still higher numbers from reranking / self-training methods