
1

Statistical NLP
Spring 2009

Lecture 21: Compositional Semantics

Dan Klein – UC Berkeley

Includes examples from Johnson, Jurafsky and Gildea, Luo, Palmer

Semantic Role Labeling (SRL)

� Characterize clauses as relations with roles:

� Want to more than which NP is the subject (but not much more):

� Relations like subject are syntactic, relations like agent or message
are semantic

� Typical pipeline:
� Parse, then label roles

� Almost all errors locked in by parser

� Really, SRL is quite a lot easier than parsing

SRL Example PropBank / FrameNet

� FrameNet: roles shared between verbs

� PropBank: each verb has it’s own roles

� PropBank more used, because it’s layered over the treebank (and
so has greater coverage, plus parses)

� Note: some linguistic theories postulate even fewer roles than
FrameNet (e.g. 5-20 total: agent, patient, instrument, etc.)

PropBank Example PropBank Example

2

PropBank Example Shared Arguments

Path Features Results

� Features:
� Path from target to filler

� Filler’s syntactic type, headword, case

� Target’s identity

� Sentence voice, etc.

� Lots of other second-order features

� Gold vs parsed source trees

� SRL is fairly easy on gold trees

� Harder on automatic parses

Interaction with Empty Elements Empty Elements

� In the PTB, three kinds of empty elements:

� Null items (usually complementizers)

� Dislocation (WH-traces, topicalization, relative
clause and heavy NP extraposition)

� Control (raising, passives, control, shared
argumentation)

� Need to reconstruct these (and resolve
any indexation)

3

Example: English Example: German

Types of Empties A Pattern-Matching Approach

� [Johnson 02]

Pattern-Matching Details

� Something like transformation-based learning

� Extract patterns

� Details: transitive verb marking, auxiliaries

� Details: legal subtrees

� Rank patterns

� Pruning ranking: by correct / match rate

� Application priority: by depth

� Pre-order traversal

� Greedy match

Top Patterns Extracted

4

Results A Machine-Learning Approach

� [Levy and Manning 04]

� Build two classifiers:

� First one predicts where empties go

� Second one predicts if/where they are bound

� Use syntactic features similar to SRL (paths,

categories, heads, etc)

Semantic Interpretation

� Back to meaning!
� A very basic approach to computational semantics

� Truth-theoretic notion of semantics (Tarskian)

� Assign a “meaning” to each word

� Word meanings combine according to the parse structure

� People can and do spend entire courses on this topic

� We’ll spend about an hour!

� What’s NLP and what isn’t?
� Designing meaning representations?

� Computing those representations?

� Reasoning with them?

� Supplemental reading will be on the web page.

Meaning

� “Meaning”
� What is meaning?

� “The computer in the corner.”

� “Bob likes Alice.”

� “I think I am a gummi bear.”

� Knowing whether a statement is true?

� Knowing the conditions under which it’s true?

� Being able to react appropriately to it?
� “Who does Bob like?”

� “Close the door.”

� A distinction:
� Linguistic (semantic) meaning

� “The door is open.”

� Speaker (pragmatic) meaning

� Today: assembling the semantic meaning of sentence from its parts

Entailment and Presupposition

� Some notions worth knowing:

� Entailment:

� A entails B if A being true necessarily implies B is true

� ? “Twitchy is a big mouse” → “Twitchy is a mouse”

� ? “Twitchy is a big mouse” → “Twitchy is big”

� ? “Twitchy is a big mouse” → “Twitchy is furry”

� Presupposition:

� A presupposes B if A is only well-defined if B is true

� “The computer in the corner is broken” presupposes that

there is a (salient) computer in the corner

Truth-Conditional Semantics

� Linguistic expressions:
� “Bob sings”

� Logical translations:
� sings(bob)

� Could be p_1218(e_397)

� Denotation:
� [[bob]] = some specific person (in some context)

� [[sings(bob)]] = ???

� Types on translations:
� bob : e (for entity)

� sings(bob) : t (for truth-value)

S

NP

Bob

bob

VP

sings

λy.sings(y)

sings(bob)

5

Truth-Conditional Semantics

� Proper names:
� Refer directly to some entity in the world

� Bob : bob [[bob]]W � ???

� Sentences:
� Are either true or false (given

how the world actually is)

� Bob sings : sings(bob)

� So what about verbs (and verb phrases)?
� sings must combine with bob to produce sings(bob)

� The λ-calculus is a notation for functions whose arguments are
not yet filled.

� sings : λx.sings(x)

� This is predicate – a function which takes an entity (type e) and
produces a truth value (type t). We can write its type as e→t.

� Adjectives?

S

NP

Bob

bob

VP

sings

λy.sings(y)

sings(bob)

Compositional Semantics

� So now we have meanings for the words

� How do we know how to combine words?

� Associate a combination rule with each grammar rule:

� S : β(α) → NP : α VP : β (function application)

� VP : λx . α(x) ∧ β(x)→ VP : α and : ∅ VP : β (intersection)

� Example:

S

NP VP

Bob VP and

sings

VP

dances
bob

λy.sings(y) λz.dances(z)

λx.sings(x) ∧ dances(x)

[λx.sings(x) ∧ dances(x)](bob)

sings(bob) ∧ dances(bob)

Denotation

� What do we do with logical translations?

� Translation language (logical form) has fewer

ambiguities

� Can check truth value against a database

� Denotation (“evaluation”) calculated using the database

� More usefully: assert truth and modify a database

� Questions: check whether a statement in a corpus

entails the (question, answer) pair:

� “Bob sings and dances” → “Who sings?” + “Bob”

� Chain together facts and use them for comprehension

Other Cases

� Transitive verbs:

� likes : λx.λy.likes(y,x)

� Two-place predicates of type e→(e→t).

� likes Amy : λy.likes(y,Amy) is just like a one-place predicate.

� Quantifiers:

� What does “Everyone” mean here?

� Everyone : λf.∀x.f(x)

� Mostly works, but some problems

� Have to change our NP/VP rule.

� Won’t work for “Amy likes everyone.”

� “Everyone likes someone.”

� This gets tricky quickly!

S

NP VP

Everyone VBP NP

Amylikes

λx.λy.likes(y,x)

λy.likes(y,amy)

amy

λf.∀x.f(x)

[λf.∀x.f(x)](λy.likes(y,amy))

∀x.likes(x,amy)

Indefinites

� First try

� “Bob ate a waffle” : ate(bob,waffle)

� “Amy ate a waffle” : ate(amy,waffle)

� Can’t be right!
� ∃ x : waffle(x) ∧ ate(bob,x)

� What does the translation

of “a” have to be?

� What about “the”?

� What about “every”?

S

NP VP

Bob VBD NP

a waffleate

Grounding

� Grounding
� So why does the translation likes : λx.λy.likes(y,x) have anything

to do with actual liking?

� It doesn’t (unless the denotation model says so)

� Sometimes that’s enough: wire up bought to the appropriate
entry in a database

� Meaning postulates
� Insist, e.g ∀x,y.likes(y,x) → knows(y,x)

� This gets into lexical semantics issues

� Statistical version?

6

Tense and Events

� In general, you don’t get far with verbs as predicates

� Better to have event variables e

� “Alice danced” : danced(alice)

� ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)

� Event variables let you talk about non-trivial tense /

aspect structures

� “Alice had been dancing when Bob sneezed”

� ∃ e, e’ : dance(e) ∧ agent(e,alice) ∧

sneeze(e’) ∧ agent(e’,bob) ∧

(start(e) < start(e’) ∧ end(e) = end(e’)) ∧

(time(e’) < now)

Adverbs

� What about adverbs?

� “Bob sings terribly”

� terribly(sings(bob))?

� (terribly(sings))(bob)?

� ∃e present(e) ∧

type(e, singing) ∧
agent(e,bob) ∧
manner(e, terrible) ?

� It’s really not this
simple..

S

NP VP

Bob VBP ADVP

terriblysings

Propositional Attitudes

� “Bob thinks that I am a gummi bear”
� thinks(bob, gummi(me)) ?

� thinks(bob, “I am a gummi bear”) ?

� thinks(bob, ^gummi(me)) ?

� Usual solution involves intensions (^X) which are,
roughly, the set of possible worlds (or conditions) in
which X is true

� Hard to deal with computationally
� Modeling other agents models, etc

� Can come up in simple dialog scenarios, e.g., if you want to talk
about what your bill claims you bought vs. what you actually
bought

Trickier Stuff

� Non-Intersective Adjectives
� green ball : λx.[green(x) ∧ ball(x)]

� fake diamond : λx.[fake(x) ∧ diamond(x)] ?

� Generalized Quantifiers
� the : λf.[unique-member(f)]

� all : λf. λg [∀x.f(x) → g(x)]

� most?

� Could do with more general second order predicates, too (why worse?)
� the(cat, meows), all(cat, meows)

� Generics
� “Cats like naps”

� “The players scored a goal”

� Pronouns (and bound anaphora)
� “If you have a dime, put it in the meter.”

� … the list goes on and on!

λx.[fake(diamond(x))

Multiple Quantifiers

� Quantifier scope
� Groucho Marx celebrates quantifier order ambiguity:

“In this country a woman gives birth every 15 min.

Our job is to find that woman and stop her.”

� Deciding between readings
� “Bob bought a pumpkin every Halloween”

� “Bob put a warning in every window”

� Multiple ways to work this out
� Make it syntactic (movement)

� Make it lexical (type-shifting)

� Add a “sem” feature to each context-free rule

� S → NP loves NP

� S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

� Meaning of S depends on meaning of NPs

� TAG version:

Implementation, TAG, Idioms

NPV

loves

VP

S

NP
x

y

loves(x,y)

NP

the bucket
V

kicked

VP

S

NP
x

died(x)

� Template filling: S[sem=showflights(x,y)] →
I want a flight from NP[sem=x] to NP[sem=y]

7

Modeling Uncertainty

� Gaping hole warning!

� Big difference between statistical disambiguation and statistical
reasoning.

� With probabilistic parsers, can say things like “72% belief that the PP
attaches to the NP.”

� That means that probably the enemy has night vision goggles.

� However, you can’t throw a logical assertion into a theorem prover
with 72% confidence.

� Not clear humans really extract and process logical statements
symbolically anyway.

� Use this to decide the expected utility of calling reinforcements?

� In short, we need probabilistic reasoning, not just probabilistic
disambiguation followed by symbolic reasoning!

The scout saw the enemy soldiers with night goggles.

CCG Parsing

� Combinatory
Categorial
Grammar
� Fully (mono-)

lexicalized
grammar

� Categories encode
argument
sequences

� Very closely
related to the
lambda calculus

� Can have spurious
ambiguities (why?)

