

Manner of Articulation

- Stop: complete closure of articulators, so no air escapes through mouth
- Oral stop: palate is raised, no air escapes through nose. Air pressure builds up behind closure, explodes when released
- p, t, k, b, d, g
- Nasal stop: oral closure, but palate is lowered, air escapes through nose.
- m, n, ng

Examples from Ladefoged

- Y axis: Amplitude = amount of air pressure at that point in time - Zero is normal air pressure, negative is rarefaction
- X axis: time. Frequency = number of cycles per second
- Frequency $=1 /$ Period
- 20 cycles in .02 seconds $=1000$ cycles/second $=1000 \mathrm{~Hz}$

Part of [ae] waveform from "had"

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in . 036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at $930 \mathrm{~Hz}, 1860 \mathrm{~Hz}$, and 3020 Hz .

Computing the 3 Formants of Schwa

- Let the length of the tube be L
- $\mathrm{F}_{1}=\mathrm{c} / \lambda_{1}=\mathrm{c} /(4 \mathrm{~L})=35,000 / 4^{*} 17.5=500 \mathrm{~Hz}$
- $F_{2}=c / \lambda_{2}=c /(4 / 3 \mathrm{~L})=3 \mathrm{c} / 4 \mathrm{~L}=3^{*} 35,000 / 4^{*} 17.5=1500 \mathrm{~Hz}$
- $\mathrm{F}_{3}=\mathrm{c} / \lambda_{3}=\mathrm{c} /(4 / 5 \mathrm{~L})=5 \mathrm{c} / 4 \mathrm{~L}=5 * 35,000 / 4^{*} 17.5=2500 \mathrm{~Hz}$
- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz
- These vowel resonances are called formants

Seeing formants: the spectrogram

How to read spectrograms

