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Statistical NLP
Spring 2010

Lecture 13: Parsing II

Dan Klein – UC Berkeley

Classical NLP: Parsing

� Write symbolic or logical rules:

� Use deduction systems to prove parses from words
� Minimal grammar on “Fed raises” sentence: 36 parses

� Simple 10-rule grammar: 592 parses

� Real-size grammar: many millions of parses

� This scaled very badly, didn’t yield broad-coverage tools

Grammar (CFG) Lexicon

ROOT → S

S → NP VP

NP → DT NN

NP → NN NNS

NN → interest

NNS → raises

VBP → interest

VBZ → raises

…

NP → NP PP

VP → VBP NP

VP → VBP NP PP

PP → IN NP
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Probabilistic Context-Free Grammars

� A context-free grammar is a tuple <N, T, S, R>
� N : the set of non-terminals

� Phrasal categories: S, NP, VP, ADJP, etc.

� Parts-of-speech (pre-terminals): NN, JJ, DT, VB

� T : the set of terminals (the words)

� S : the start symbol

� Often written as ROOT or TOP

� Not usually the sentence non-terminal S

� R : the set of rules

� Of the form X → Y1 Y2… Yk, with X, Yi ∈ N

� Examples: S → NP VP,   VP → VP CC VP

� Also called rewrites, productions, or local trees

� A PCFG adds:
� A top-down production probability per rule P(Y1 Y2… Yk | X)

Treebank Sentences
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Treebank Grammars

� Need a PCFG for broad coverage parsing.

� Can take a grammar right off the trees (doesn’t work well):

� Better results by enriching the grammar (e.g., lexicalization).

� Can also get reasonable parsers without lexicalization.

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

Treebank Grammar Scale

� Treebank grammars can be enormous
� As FSAs, the raw grammar has ~10K states, excluding the lexicon

� Better parsers usually make the grammars larger, not smaller

NP

PLURAL NOUN

NOUNDET

DET

ADJ

NOUN

NP NP

CONJ

NP PP
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Chomsky Normal Form

� Chomsky normal form:
� All rules of the form X → Y Z or X → w

� In principle, this is no limitation on the space of (P)CFGs
� N-ary rules introduce new non-terminals

� Unaries / empties are “promoted”

� In practice it’s kind of a pain:
� Reconstructing n-aries is easy

� Reconstructing unaries is trickier

� The straightforward transformations don’t preserve tree scores

� Makes parsing algorithms simpler!

VP

[VP → VBD NP •]

VBD            NP PP PP

[VP → VBD NP PP •]

VBD   NP   PP   PP

VP

A Recursive Parser

� Will this parser work?

� Why or why not?

� Memory requirements?

bestScore(X,i,j,s)

if (j = i+1)

return tagScore(X,s[i])

else

return max score(X->YZ) *

bestScore(Y,i,k) *

bestScore(Z,k,j)
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A Memoized Parser

� One small change:

bestScore(X,i,j,s)

if (scores[X][i][j] == null)

if (j = i+1)

score = tagScore(X,s[i])

else

score = max score(X->YZ) *

bestScore(Y,i,k) *

bestScore(Z,k,j)

scores[X][i][j] = score

return scores[X][i][j]

� Can also organize things bottom-up

A Bottom-Up Parser (CKY)

bestScore(s)

for (i : [0,n-1])

for (X : tags[s[i]])

score[X][i][i+1] = 

tagScore(X,s[i])

for (diff : [2,n])

for (i : [0,n-diff])

j = i + diff

for (X->YZ : rule)

for (k : [i+1, j-1])

score[X][i][j] = max score[X][i][j],

score(X->YZ) *

score[Y][i][k] *

score[Z][k][j]

Y Z

X

i                       k                      j
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Unary Rules

� Unary rules?

bestScore(X,i,j,s)

if (j = i+1)

return tagScore(X,s[i])

else

return max max score(X->YZ) *

bestScore(Y,i,k) *

bestScore(Z,k,j)

max score(X->Y) *

bestScore(Y,i,j) 

CNF + Unary Closure

� We need unaries to be non-cyclic

� Can address by pre-calculating the unary closure

� Rather than having zero or more unaries, always 

have exactly one

� Alternate unary and binary layers

� Reconstruct unary chains afterwards

NP

DT NN

VP

VBD

NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR
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Alternating Layers

bestScoreU(X,i,j,s)

if (j = i+1)

return tagScore(X,s[i])

else

return max max score(X->Y) *

bestScoreB(Y,i,j)

bestScoreB(X,i,j,s)

return max max score(X->YZ) *

bestScoreU(Y,i,k) *

bestScoreU(Z,k,j)

Memory

� How much memory does this require?

� Have to store the score cache

� Cache size: |symbols|*n2 doubles

� For the plain treebank grammar:

� X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB

� Big, but workable.

� Pruning: Beams

� score[X][i][j] can get too large (when?)

� Can keep beams (truncated maps score[i][j]) which only store the best 

few scores for the span [i,j]

� Pruning: Coarse-to-Fine

� Use a smaller grammar to rule out most X[i,j]

� Much more on this later…
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Time: Theory

� How much time will it take to parse?

� For each diff (<= n)
� For each i (<= n)

� For each rule X → Y Z 

� For each split point k

Do constant work

� Total time: |rules|*n3

� Something like 5 sec for an unoptimized 
parse of a 20-word sentences

Y Z

X

i                       k                      j

Time: Practice

� Parsing with the vanilla treebank grammar:

� Why’s it worse in practice?
� Longer sentences “unlock” more of the grammar

� All kinds of systems issues don’t scale

~ 20K Rules

(not an 

optimized 

parser!)

Observed 

exponent: 

3.6
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Same-Span Reachability

ADJP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP

WHNP

TOP

LST

CONJP

WHADJP

WHADVP

WHPP

NX

NAC

SBARQ

SINV

RRCSQ X

PRT

Rule State Reachability

� Many states are more likely to match larger spans!

Example: NP CC •

NP CC

0 nn-1

1 Alignment

Example: NP CC NP •

NP CC

0 nn-k-1

n AlignmentsNP

n-k



10

Agenda-Based Parsing

� Agenda-based parsing is like graph search (but over a 
hypergraph)

� Concepts:
� Numbering: we number fenceposts between words

� “Edges” or items: spans with labels, e.g. PP[3,5], represent the 
sets of trees over those words rooted at that label (cf. search 
states)

� A chart: records edges we’ve expanded (cf. closed set)

� An agenda: a queue which holds edges (cf. a fringe or open set)

0 1 2 3 4 5
critics write reviews with computers

PP

Word Items

� Building an item for the first time is called discovery.  

Items go into the agenda on discovery.

� To initialize, we discover all word items (with score 1.0).

critics         write         reviews         with         computers

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

0 1 2 3 4 5

AGENDA

CHART [EMPTY]
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Unary Projection

� When we pop a word item, the lexicon tells us the tag 

item successors (and scores) which go on the agenda

critics         write         reviews         with         computers

0 1 2 3 4 5
critics write reviews with computers

critics[0,1] write[1,2]

NNS[0,1]

reviews[2,3] with[3,4] computers[4,5]

VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]

Item Successors

� When we pop items off of the agenda:
� Graph successors: unary projections (NNS → critics, NP → NNS)

� Hypergraph successors: combine with items already in our chart

� Enqueue / promote resulting items (if not in chart already)

� Record backtraces as appropriate

� Stick the popped edge in the chart (closed set)

� Queries a chart must support:
� Is edge X:[i,j] in the chart?  (What score?)

� What edges with label Y end at position j?

� What edges with label Z start at position i? 

Y[i,j] with X → Y forms  X[i,j]

Y[i,j] and Z[j,k] with X → Y Z form  X[i,k]

Y Z

X
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An Example

0 1 2 3 4 5
critics write reviews with computers

NNS VBP NNS IN NNS

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] NP[2,3] NP[4,5]

NP NP NP

VP[1,2] S[0,2]

VP

PP[3,5]

PP

VP[1,3]

VP

ROOT[0,2]

S

ROOT

S
ROOT

S[0,3] VP[1,5]

VP

NP[2,5]

NP

ROOT[0,3] S[0,5] ROOT[0,5]

S

ROOT

Empty Elements

� Sometimes we want to posit nodes in a parse tree that 
don’t contain any pronounced words:

� These are easy to add to a chart parser!
� For each position i, add the “word” edge ε:[i,i]

� Add rules like NP → ε to the grammar

� That’s it!

0 1 2 3 4 5
I like to parse empties

ε ε ε ε ε ε

NP VP

I want you to parse this sentence

I want [    ] to parse this sentence
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UCS / A*

� With weighted edges, order matters
� Must expand optimal parse from 
bottom up (subparses first)

� CKY does this by processing 
smaller spans before larger ones

� UCS pops items off the agenda in 
order of decreasing Viterbi score

� A* search also well defined

� You can also speed up the search 
without sacrificing optimality
� Can select which items to process 
first

� Can do with any “figure of merit” 
[Charniak 98]

� If your figure-of-merit is a valid A* 
heuristic, no loss of optimiality 
[Klein and Manning 03]

X

n0 i j

(Speech) Lattices

� There was nothing magical about words spanning 

exactly one position.

� When working with speech, we generally don’t know 

how many words there are, or where they break.

� We can represent the possibilities as a lattice and 

parse these just as easily.

I

awe

of

van

eyes

saw

a

‘ve

an

Ivan
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Treebank PCFGs

� Use PCFGs for broad coverage parsing

� Can take a grammar right off the trees (doesn’t work well):

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

Model F1

Baseline 72.0

[Charniak 96]

Conditional Independence?

� Not every NP expansion can fill every NP slot

� A grammar with symbols like “NP” won’t be context-free

� Statistically, conditional independence too strong
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Non-Independence

� Independence assumptions are often too strong.

� Example: the expansion of an NP is highly dependent 
on the parent of the NP (i.e., subjects vs. objects).

� Also: the subject and object expansions are correlated!

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Grammar Refinement

� Example: PP attachment
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Grammar Refinement

� Structure Annotation [Johnson ’98, Klein&Manning ’03]

� Lexicalization [Collins ’99, Charniak ’00]

� Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]

The Game of Designing a Grammar

� Annotation refines base treebank symbols to 

improve statistical fit of the grammar

� Structural annotation



17

Typical Experimental Setup

� Corpus: Penn Treebank, WSJ

� Accuracy – F1: harmonic mean of per-node labeled 

precision and recall.

� Here: also size – number of symbols in grammar.

� Passive / complete symbols: NP, NP^S

� Active / incomplete symbols: NP → NP CC •

Training: sections 02-21

Development: section 22 (here, first 20 files)

Test: section 23

Vertical Markovization

� Vertical Markov 
order: rewrites 

depend on past k
ancestor nodes.

(cf. parent 
annotation)

Order 1 Order 2

72%

73%
74%

75%
76%

77%
78%

79%

1 2v 2 3v 3

Vertical Markov Order

0

5000

10000

15000

20000

25000

1 2v 2 3v 3

Vertical Markov Order

S
y
m
b
o
ls



18

Horizontal Markovization

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

S
y
m
b
o
ls

Order 1 Order ∞∞∞∞

Vertical and Horizontal

� Examples:
� Raw treebank: v=1, h=∞

� Johnson 98: v=2, h=∞

� Collins 99: v=2, h=2

� Best F1: v=3, h=2v

0 1 2v 2 inf
1

2

3

66%

68%
70%

72%
74%

76%
78%

80%

Horizontal Order

Vertical 

Order 0 1 2v 2 inf
1

2

3

0

5000

10000

15000

20000

25000

S
y
m
b
o
ls

Horizontal Order

Vertical 

Order

Model F1 Size

Base: v=h=2v 77.8 7.5K
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Unary Splits

� Problem: unary 

rewrites used to 

transmute 

categories so a 

high-probability 

rule can be 

used.

Annotation F1 Size

Base 77.8 7.5K

UNARY 78.3 8.0K

� Solution: Mark 

unary rewrite 

sites with -U

Tag Splits

� Problem: Treebank 

tags are too coarse.

� Example: Sentential, 

PP, and other 

prepositions are all 

marked IN.

� Partial Solution:

� Subdivide the IN tag.

Annotation F1 Size

Previous 78.3 8.0K

SPLIT-IN 80.3 8.1K
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Other Tag Splits

� UNARY-DT: mark demonstratives as DT^U
(“the X” vs. “those”)

� UNARY-RB: mark phrasal adverbs as RB^U
(“quickly” vs. “very”)

� TAG-PA: mark tags with non-canonical 
parents (“not” is an RB^VP)

� SPLIT-AUX: mark auxiliary verbs with –AUX 
[cf. Charniak 97]

� SPLIT-CC: separate “but” and “&” from other 
conjunctions

� SPLIT-%: “%” gets its own tag.

F1 Size

80.4 8.1K

80.5 8.1K

81.2 8.5K

81.6 9.0K

81.7 9.1K

81.8 9.3K

A Fully Annotated (Unlex) Tree
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Some Test Set Results

� Beats “first generation” lexicalized parsers.

� Lots of room to improve – more complex models next.

Parser LP LR F1 CB 0 CB

Magerman 95 84.9 84.6 84.7 1.26 56.6

Collins 96 86.3 85.8 86.0 1.14 59.9

Unlexicalized 86.9 85.7 86.3 1.10 60.3

Charniak 97 87.4 87.5 87.4 1.00 62.1

Collins 99 88.7 88.6 88.6 0.90 67.1


