
1

Statistical NLP
Spring 2010

Lecture 14: PCFGs

Dan Klein – UC Berkeley

Treebank PCFGs

� Use PCFGs for broad coverage parsing

� Can take a grammar right off the trees (doesn’t work well):

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

Model F1

Baseline 72.0

[Charniak 96]

Conditional Independence?

� Not every NP expansion can fill every NP slot

� A grammar with symbols like “NP” won’t be context-free

� Statistically, conditional independence too strong

Non-Independence

� Independence assumptions are often too strong.

� Example: the expansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects).

� Also: the subject and object expansions are correlated!

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Grammar Refinement

� Example: PP attachment

Grammar Refinement

� Structure Annotation [Johnson ’98, Klein&Manning ’03]

� Lexicalization [Collins ’99, Charniak ’00]

� Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]

2

The Game of Designing a Grammar

� Annotation refines base treebank symbols to
improve statistical fit of the grammar

� Structural annotation

Typical Experimental Setup

� Corpus: Penn Treebank, WSJ

� Accuracy – F1: harmonic mean of per-node labeled
precision and recall.

� Here: also size – number of symbols in grammar.

� Passive / complete symbols: NP, NP^S

� Active / incomplete symbols: NP → NP CC •

Training: sections 02-21

Development: section 22 (here, first 20 files)
Test: section 23

Vertical Markovization

� Vertical Markov
order: rewrites
depend on past k
ancestor nodes.

(cf. parent
annotation)

Order 1 Order 2

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0

5000

10000

15000

20000

25000

1 2v 2 3v 3

Vertical Markov Order

S
y
m

b
o
ls

Horizontal Markovization

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

S
y
m

b
o
ls

Order 1 Order ∞∞∞∞

Unary Splits

� Problem: unary
rewrites used to
transmute
categories so a
high-probability
rule can be
used.

Annotation F1 Size

Base 77.8 7.5K

UNARY 78.3 8.0K

� Solution: Mark
unary rewrite

sites with -U

Tag Splits

� Problem: Treebank
tags are too coarse.

� Example: Sentential,
PP, and other
prepositions are all
marked IN.

� Partial Solution:

� Subdivide the IN tag.

Annotation F1 Size

Previous 78.3 8.0K

SPLIT-IN 80.3 8.1K

3

Other Tag Splits

� UNARY-DT: mark demonstratives as DT^U
(“the X” vs. “those”)

� UNARY-RB: mark phrasal adverbs as RB^U
(“quickly” vs. “very”)

� TAG-PA: mark tags with non-canonical
parents (“not” is an RB^VP)

� SPLIT-AUX: mark auxiliary verbs with –AUX
[cf. Charniak 97]

� SPLIT-CC: separate “but” and “&” from other
conjunctions

� SPLIT-%: “%” gets its own tag.

F1 Size

80.4 8.1K

80.5 8.1K

81.2 8.5K

81.6 9.0K

81.7 9.1K

81.8 9.3K

A Fully Annotated (Unlex) Tree

Some Test Set Results

� Beats “first generation” lexicalized parsers.
� Lots of room to improve – more complex models next.

Parser LP LR F1 CB 0 CB

Magerman 95 84.9 84.6 84.7 1.26 56.6

Collins 96 86.3 85.8 86.0 1.14 59.9

Unlexicalized 86.9 85.7 86.3 1.10 60.3

Charniak 97 87.4 87.5 87.4 1.00 62.1

Collins 99 88.7 88.6 88.6 0.90 67.1
� Annotation refines base treebank symbols to
improve statistical fit of the grammar

� Structural annotation [Johnson ’98, Klein and
Manning 03]

� Head lexicalization [Collins ’99, Charniak ’00]

The Game of Designing a Grammar

Problems with PCFGs

� What’s different between basic PCFG scores here?

� What (lexical) correlations need to be scored?

Lexicalized Trees

� Add “headwords” to
each phrasal node
� Syntactic vs. semantic

heads
� Headship not in (most)

treebanks
� Usually use head rules,

e.g.:
� NP:

� Take leftmost NP
� Take rightmost N*
� Take rightmost JJ
� Take right child

� VP:
� Take leftmost VB*
� Take leftmost VP
� Take left child

4

Lexicalized PCFGs?

� Problem: we now have to estimate probabilities like

� Never going to get these atomically off of a treebank

� Solution: break up derivation into smaller steps

Lexical Derivation Steps

� A derivation of a local tree [Collins 99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized CKY

bestScore(X,i,j,h)

if (j = i+1)

return tagScore(X,s[i])

else

return

max max score(X[h]->Y[h] Z[h’]) *

bestScore(Y,i,k,h) *

bestScore(Z,k,j,h’)

max score(X[h]->Y[h’] Z[h]) *

bestScore(Y,i,k,h’) *

bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i h k h’ j

k,h’,X->YZ

(VP->VBD ••••)[saw] NP[her]

(VP->VBD...NP ••••)[saw]

k,h’,X->YZ

Pruning with Beams

� The Collins parser prunes with
per-cell beams [Collins 99]
� Essentially, run the O(n5) CKY

� Remember only a few hypotheses for
each span <i,j>.

� If we keep K hypotheses at each
span, then we do at most O(nK2)
work per span (why?)

� Keeps things more or less cubic

� Also: certain spans are forbidden
entirely on the basis of
punctuation (crucial for speed)

Y[h] Z[h’]

X[h]

i h k h’ j

Pruning with a PCFG

� The Charniak parser prunes using a two-pass
approach [Charniak 97+]
� First, parse with the base grammar

� For each X:[i,j] calculate P(X|i,j,s)
� This isn’t trivial, and there are clever speed ups

� Second, do the full O(n5) CKY
� Skip any X :[i,j] which had low (say, < 0.0001) posterior

� Avoids almost all work in the second phase!

� Charniak et al 06: can use more passes

� Petrov et al 07: can use many more passes

Pruning with A*

� You can also speed up
the search without
sacrificing optimality

� For agenda-based
parsers:
� Can select which items to
process first

� Can do with any “figure of
merit” [Charniak 98]

� If your figure-of-merit is a
valid A* heuristic, no loss
of optimiality [Klein and
Manning 03]

X

n0 i j

5

Projection-Based A*

Factory payrolls fell in Sept.

NP PP

VP

S

Factory payrolls fell in Sept.

payrolls in

fell

fellFactory payrolls fell in Sept.

NP:payrolls PP:in

VP:fell

S:fellSYNTACTICπ SEMANTICπ

A* Speedup

� Total time dominated by calculation of A* tables in each
projection… O(n3)

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

Length

T
im

e
 (
s
e
c
) Combined Phase

Dependency Phase

PCFG Phase

Results

� Some results
� Collins 99 – 88.6 F1 (generative lexical)
� Charniak and Johnson 05 – 89.7 / 91.3 F1
(generative lexical / reranked)

� Petrov et al 06 – 90.7 F1 (generative unlexical)
� McClosky et al 06 – 92.1 F1 (gen + rerank + self-train)

� However
� Bilexical counts rarely make a difference (why?)
� Gildea 01 – Removing bilexical counts costs < 0.5 F1 � Annotation refines base treebank symbols to

improve statistical fit of the grammar

� Structural annotation

� Head lexicalization

� Automatic clustering?

The Game of Designing a Grammar

Latent Variable Grammars

Parse Tree

Sentence Parameters

...

Derivations

Forward

Learning Latent Annotations

EM algorithm:

X1

X2 X7X4

X5 X6X3

He was right

.

� Brackets are known

� Base categories are known

� Only induce subcategories

Just like Forward-Backward
for HMMs. Backward

6

Refinement of the DT tag

DT

DT-1 DT-2 DT-3 DT-4

Hierarchical refinement

Hierarchical Estimation Results

74

76

78

80

82

84

86

88

90

100 300 500 700 900 1100 1300 1500 1700

Total Number of grammar symbols

P
a
rs
in
g
 a
c
c
u
ra
c
y
 (
F
1
)

Model F1

Flat Training 87.3

Hierarchical Training 88.4

Refinement of the , tag

� Splitting all categories equally is wasteful:

Adaptive Splitting

� Want to split complex categories more

� Idea: split everything, roll back splits which
were least useful

Adaptive Splitting Results

Model F1

Previous 88.4

With 50% Merging 89.5

7

0

5

10

15

20

25

30

35

40

N
P

V
P P
P

A
D
V
P S

A
D
J
P

S
B
A
R

Q
P

W
H
N
P

P
R
N

N
X

S
IN
V

P
R
T

W
H
P
P

S
Q

C
O
N
J
P

F
R
A
G

N
A
C

U
C
P

W
H
A
D
V
P

IN
T
J

S
B
A
R
Q

R
R
C

W
H
A
D
J
P X

R
O
O
T

L
S
T

Number of Phrasal Subcategories Number of Lexical Subcategories

0

10

20

30

40

50

60

70

N
N
P J
J

N
N
S

N
N

V
B
N

R
B

V
B
G

V
B

V
B
D

C
D IN

V
B
Z

V
B
P

D
T

N
N
P
S

C
C

J
J
R

J
J
S :

P
R
P

P
R
P
$

M
D

R
B
R

W
P

P
O
S

P
D
T

W
R
B

-L
R
B
- .

E
X

W
P
$

W
D
T

-R
R
B
- ''

F
W

R
B
S

T
O $

U
H , `̀

S
Y
M

R
P

L
S #

Learned Splits

� Proper Nouns (NNP):

� Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.

NNP-12 John Robert James

NNP-2 J. E. L.

NNP-1 Bush Noriega Peters

NNP-15 New San Wall

NNP-3 York Francisco Street

PRP-0 It He I

PRP-1 it he they

PRP-2 it them him

� Relative adverbs (RBR):

� Cardinal Numbers (CD):

RBR-0 further lower higher

RBR-1 more less More

RBR-2 earlier Earlier later

CD-7 one two Three

CD-4 1989 1990 1988

CD-11 million billion trillion

CD-0 1 50 100

CD-3 1 30 31

CD-9 78 58 34

Learned Splits

Coarse-to-Fine Inference

� Example: PP attachment

?????????

Prune?

For each chart item X[i,j], compute posterior probability:

… QP NP VP …coarse:

refined:

E.g. consider the span 5 to 12:

< threshold

8

Bracket Posteriors Hierarchical Pruning

… QP NP VP …coarse:

split in two: … QP1 QP2 NP1 NP2 VP1 VP2 …

… QP1 QP1 QP3 QP4 NP1 NP2 NP3 NP4 VP1 VP2 VP3 VP4 …split in four:

split in eight: … … … … … … … … … … … … … … … … …

Final Results (Accuracy)

≤ 40 words

F1

all

F1

E
N

G

Charniak&Johnson ‘05 (generative) 90.1 89.6

Split / Merge 90.6 90.1

G
E

R

Dubey ‘05 76.3 -

Split / Merge 80.8 80.1

C
H

N

Chiang et al. ‘02 80.0 76.6

Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

