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Statistical NLP
Spring 2010

Lecture 14: PCFGs

Dan Klein – UC Berkeley

Treebank PCFGs

� Use PCFGs for broad coverage parsing

� Can take a grammar right off the trees (doesn’t work well):

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

Model F1

Baseline 72.0

[Charniak 96]

Conditional Independence?

� Not every NP expansion can fill every NP slot

� A grammar with symbols like “NP” won’t be context-free

� Statistically, conditional independence too strong

Non-Independence

� Independence assumptions are often too strong.

� Example: the expansion of an NP is highly dependent 
on the parent of the NP (i.e., subjects vs. objects).

� Also: the subject and object expansions are correlated!
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Grammar Refinement

� Example: PP attachment

Grammar Refinement

� Structure Annotation [Johnson ’98, Klein&Manning ’03]

� Lexicalization [Collins ’99, Charniak ’00]

� Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]
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The Game of Designing a Grammar

� Annotation refines base treebank symbols to 
improve statistical fit of the grammar

� Structural annotation

Typical Experimental Setup

� Corpus: Penn Treebank, WSJ

� Accuracy – F1: harmonic mean of per-node labeled 
precision and recall.

� Here: also size – number of symbols in grammar.

� Passive / complete symbols: NP, NP^S

� Active / incomplete symbols: NP → NP CC •

Training: sections 02-21

Development: section 22 (here, first 20 files)
Test: section 23

Vertical Markovization

� Vertical Markov 
order: rewrites 
depend on past k
ancestor nodes.

(cf. parent 
annotation)
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Horizontal Markovization

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

S
y
m

b
o
ls

Order 1 Order ∞∞∞∞

Unary Splits

� Problem: unary 
rewrites used to 
transmute 
categories so a 
high-probability 
rule can be 
used.

Annotation F1 Size

Base 77.8 7.5K

UNARY 78.3 8.0K

� Solution: Mark 
unary rewrite 

sites with -U

Tag Splits

� Problem: Treebank 
tags are too coarse.

� Example: Sentential, 
PP, and other 
prepositions are all 
marked IN.

� Partial Solution:

� Subdivide the IN tag.

Annotation F1 Size

Previous 78.3 8.0K

SPLIT-IN 80.3 8.1K
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Other Tag Splits

� UNARY-DT: mark demonstratives as DT^U
(“the X” vs. “those”)

� UNARY-RB: mark phrasal adverbs as RB^U
(“quickly” vs. “very”)

� TAG-PA: mark tags with non-canonical 
parents (“not” is an RB^VP)

� SPLIT-AUX: mark auxiliary verbs with –AUX 
[cf. Charniak 97]

� SPLIT-CC: separate “but” and “&” from other 
conjunctions

� SPLIT-%: “%” gets its own tag.

F1 Size

80.4 8.1K

80.5 8.1K

81.2 8.5K

81.6 9.0K

81.7 9.1K

81.8 9.3K

A Fully Annotated (Unlex) Tree

Some Test Set Results

� Beats “first generation” lexicalized parsers.
� Lots of room to improve – more complex models next.

Parser LP LR F1 CB 0 CB

Magerman 95 84.9 84.6 84.7 1.26 56.6

Collins 96 86.3 85.8 86.0 1.14 59.9

Unlexicalized 86.9 85.7 86.3 1.10 60.3

Charniak 97 87.4 87.5 87.4 1.00 62.1

Collins 99 88.7 88.6 88.6 0.90 67.1
� Annotation refines base treebank symbols to 
improve statistical fit of the grammar

� Structural annotation [Johnson ’98, Klein and 
Manning 03]

� Head lexicalization [Collins ’99, Charniak ’00]

The Game of Designing a Grammar

Problems with PCFGs

� What’s different between basic PCFG scores here?

� What (lexical) correlations need to be scored?

Lexicalized Trees

� Add “headwords” to 
each phrasal node
� Syntactic vs. semantic 

heads
� Headship not in (most) 

treebanks
� Usually use head rules, 

e.g.:
� NP:

� Take leftmost NP
� Take rightmost N*
� Take rightmost JJ
� Take right child

� VP:
� Take leftmost VB*
� Take leftmost VP
� Take left child
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Lexicalized PCFGs?

� Problem: we now have to estimate probabilities like

� Never going to get these atomically off of a treebank

� Solution: break up derivation into smaller steps

Lexical Derivation Steps

� A derivation of a local tree [Collins 99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized CKY

bestScore(X,i,j,h)

if (j = i+1)

return tagScore(X,s[i])

else

return 

max max score(X[h]->Y[h] Z[h’]) *

bestScore(Y,i,k,h) *

bestScore(Z,k,j,h’)

max score(X[h]->Y[h’] Z[h]) *

bestScore(Y,i,k,h’) *

bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i           h          k         h’          j

k,h’,X->YZ

(VP->VBD ••••)[saw] NP[her]

(VP->VBD...NP ••••)[saw]

k,h’,X->YZ

Pruning with Beams

� The Collins parser prunes with 
per-cell beams [Collins 99]
� Essentially, run the O(n5) CKY

� Remember only a few hypotheses for 
each span <i,j>.

� If we keep K hypotheses at each 
span, then we do at most O(nK2) 
work per span (why?)

� Keeps things more or less cubic

� Also: certain spans are forbidden 
entirely on the basis of 
punctuation (crucial for speed)

Y[h] Z[h’]

X[h]

i           h          k         h’          j

Pruning with a PCFG

� The Charniak parser prunes using a two-pass 
approach [Charniak 97+]
� First, parse with the base grammar

� For each X:[i,j] calculate P(X|i,j,s)
� This isn’t trivial, and there are clever speed ups

� Second, do the full O(n5) CKY
� Skip any X :[i,j] which had low (say, < 0.0001) posterior

� Avoids almost all work in the second phase!

� Charniak et al 06: can use more passes

� Petrov et al 07: can use many more passes

Pruning with A*

� You can also speed up 
the search without 
sacrificing optimality

� For agenda-based 
parsers:
� Can select which items to 
process first

� Can do with any “figure of 
merit” [Charniak 98]

� If your figure-of-merit is a 
valid A* heuristic, no loss 
of optimiality [Klein and 
Manning 03]

X

n0 i j
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Projection-Based A*

Factory  payrolls   fell    in    Sept.

NP PP

VP

S

Factory  payrolls   fell    in    Sept.

payrolls in

fell

fellFactory  payrolls   fell    in    Sept.

NP:payrolls PP:in

VP:fell

S:fellSYNTACTICπ SEMANTICπ

A* Speedup

� Total time dominated by calculation of A* tables in each 
projection… O(n3)
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Results

� Some results
� Collins 99 – 88.6 F1 (generative lexical)
� Charniak and Johnson 05 – 89.7 / 91.3 F1 
(generative lexical / reranked)

� Petrov et al 06 – 90.7 F1 (generative unlexical)
� McClosky et al 06 – 92.1 F1 (gen + rerank + self-train)

� However
� Bilexical counts rarely make a difference (why?)
� Gildea 01 – Removing bilexical counts costs < 0.5 F1 � Annotation refines base treebank symbols to 

improve statistical fit of the grammar

� Structural annotation

� Head lexicalization

� Automatic clustering?

The Game of Designing a Grammar

Latent Variable Grammars

Parse Tree 

Sentence Parameters 

...

Derivations

Forward

Learning Latent Annotations

EM algorithm:

X1

X2 X7X4

X5 X6X3

He was right

.

� Brackets are known

� Base categories are known

� Only induce subcategories

Just like Forward-Backward 
for HMMs. Backward
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Refinement of the DT tag

DT

DT-1 DT-2 DT-3 DT-4

Hierarchical refinement

Hierarchical Estimation Results
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Model F1

Flat Training 87.3

Hierarchical Training 88.4

Refinement of the , tag

� Splitting all categories equally is wasteful:

Adaptive Splitting

� Want to split complex categories more

� Idea: split everything, roll back splits which 
were least useful

Adaptive Splitting Results

Model F1

Previous 88.4

With 50% Merging 89.5
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Number of Phrasal Subcategories Number of Lexical Subcategories
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Learned Splits

� Proper Nouns (NNP):

� Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.

NNP-12 John Robert James

NNP-2 J. E. L.

NNP-1 Bush Noriega Peters

NNP-15 New San Wall

NNP-3 York Francisco Street

PRP-0 It He I

PRP-1 it he they

PRP-2 it them him

� Relative adverbs (RBR):

� Cardinal Numbers (CD):

RBR-0 further lower higher

RBR-1 more less More

RBR-2 earlier Earlier later

CD-7 one two Three

CD-4 1989 1990 1988

CD-11 million billion trillion

CD-0 1 50 100

CD-3 1 30 31

CD-9 78 58 34

Learned Splits

Coarse-to-Fine Inference

� Example: PP attachment

?????????

Prune?

For each chart item X[i,j], compute posterior probability:

… QP NP VP …coarse:

refined:

E.g. consider the span 5 to 12:

<   threshold
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Bracket Posteriors Hierarchical Pruning

… QP NP VP …coarse:

split in two: … QP1 QP2 NP1 NP2 VP1 VP2 …

… QP1 QP1 QP3 QP4 NP1 NP2 NP3 NP4 VP1 VP2 VP3 VP4 …split in four:

split in eight: … … … … … … … … … … … … … … … … …

Final Results (Accuracy)

≤ 40 words

F1

all 

F1

E
N

G

Charniak&Johnson ‘05 (generative) 90.1 89.6

Split / Merge 90.6 90.1

G
E

R

Dubey ‘05 76.3 -

Split / Merge 80.8 80.1

C
H

N

Chiang et al. ‘02 80.0 76.6

Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods


