

Learnability: [Gold 67]

- Criterion: identification in the limit
- A presentation of L is an infinite sequence of x 's from L in which each x occurs at least once
- A learner H identifies L in the limit if for any presentation of L , from some point n onward, H always outputs L
- A class \mathscr{L} is identifiable in the limit if there is some single H which correctly identifies in the limit any L in \mathscr{L}
- Example: $L=\{\{a\},\{a, b\}\}$ is learnable in the limit
- Theorem [Gold 67]: Any \mathscr{L} which contains all finite languages and at least one infinite language (i.e. is superfinite) is unlearnable in this sense

Learnability: [Gold 67]

- Proof sketch

- Assume \mathscr{L} is superfinite
- There exists a chain $L_{1} \subset L_{2} \subset \ldots L_{\infty}$
- Take any learner H assumed to identify \mathscr{L}
- Construct the following misleading sequence
- Present strings from L_{1} until it outputs L_{1}
- Present strings from L_{2} until it outputs L_{2}
- ..
- This is a presentation of L_{∞}, but H won't identify L_{∞}

Learnability: [Horning 69]

- Proof sketch
- Assume s is a recursively enumerable set of recursive languages (e.g. the set of PCFGs)
- Assume an ordering on all strings $x_{1}<x_{2}<$.
- Define: two sequences A and B agree through n if for all $x<x_{n}, x$ in $A \Leftrightarrow x$ in B
- Define the error set $E(L, n, m)$:
- All sequences such that the first m elements do not agree with L through n
- These are the sequences which contain early strings outside of L (can't happen)
or fail to contain all the early strings in L (happens less as m increases) or fail to contain all the early strings in L (happens less as m increases)
- Claim: $P(E(L, n, m))$ goes to 0 as m goes to ∞
- Let $d_{L}(n)$ be the smallest m such that $P(E)<2^{-n}$
- Let $d(n)$ be the largest $d_{L}(n)$ in first n languages
- Learner: after $d(n)$ pick first L that agrees with evidence through n
- Can only fail for sequence X if X keeps showing up in $E(L, n, d(n))$, which happens infinitely often with probability zero (we skipped some details)

Learnability: [Horning 69]

- Problem: IIL requires that H succeed on each presentation, even the weird ones
- Another criterion: measure one identification
- Assume a distribution $P_{L}(x)$ for each L
- Assume $P_{L}(x)$ puts non-zero mass on all and only x in L

Assume infinite presentation X drawn i.i.d. from $P_{L}(x)$

- H measure-one identifies L if probability of drawing an X from which H identifies L is 1
- [Horning 69]: PCFGs can be identified in this sense
- Note: there can be misleading sequences, they just have to be (infinitely) unlikely

Learnability

- Gold's result says little about real learners (requirements of IIL are way too strong)
- Horning's algorithm is completely impractical (needs astronomical amounts of data)
- Even measure-one identification doesn't say anything about tree structures (or even density over strings)
- Only talks about learning grammatical sets
- Strong generative vs weak generative capacity

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
- Raw sentences in
- Tagged sentences out
- Obvious thing to do:
- Start with a (mostly) uniform HMM
- Run EM
- Inspect results

EM for HMMs: Process

- Alternate between recomputing distributions over hidden variables (the tags) and reestimating parameters
- Crucial step: we want to tally up how many (fractional) counts of each kind of transition and emission we have under current params:

$$
\begin{aligned}
& \operatorname{count}(w, s)=\sum_{i: w_{i}=w} P\left(t_{i}=s \mid \mathbf{w}\right) \\
& \operatorname{count}\left(s \rightarrow s^{\prime}\right)=\sum_{i} P\left(t_{i-1}=s, t_{i}=s^{\prime} \mid \mathbf{w}\right)
\end{aligned}
$$

- Same quantities we needed to train a CRF!

Merialdo: Setup

- Some (discouraging) experiments [Merialdo 94]
- Setup:
- You know the set of allowable tags for each word
- Learn a supervised model on k training sentences
- Learn $\mathrm{P}(\mathrm{w} \mid \mathrm{t})$ on these examples
- Learn $\mathrm{P}\left(\mathrm{t} \mid \mathrm{t}_{-1}, \mathrm{t}_{-2}\right)$ on these examples
- On n > k sentences, re-estimate with EM
- Note: we know allowed tags but not frequencies

Merialdo: Results

Number of tagged sentences used for the initial model							
	0	100	2000	5000	10000	20000	all
Iter	Correct tags (\% words) after ML on 1M words						
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8
2	81.8	93.0	95.7	96.1	96.3	96.4	96.4
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2

Distributional Clustering

- Three main variants on the same idea:
- Pairwise similarities and heuristic clustering
- E.g. [Finch and Chater 92]
- Produces dendrograms
- Vector space methods
- E.g. [Shuetze 93]
- Models of ambiguity
- Probabilistic methods
- Various formulations, e.g. [Lee and Pereira 99]

Early Approaches: Structure Search

- Incremental grammar learning, chunking [Wolff 88, Langley 82, many others]
- Can recover synthetic grammars
- An (extremely good / lucky) result of incremental structure search:

Idea: Learn PCFGs with EM

- Classic experiments on learning PCFGs with Expectation-Maximization [Lari and Young, 1990]

$$
\left\{X_{1}, X_{2} \ldots X_{n}\right\}
$$

- Full binary grammar over n symbols

- Parse uniformly/randomly at first
- Re-estimate rule expectations off of parses
- Repeat
- Their conclusion: it doesn't really work.

Problem: Model Symmetries

- How does this relate to trees

Other Approaches

- Evaluation: fraction of nodes in gold trees correctly posited in proposed trees (unlabeled recall)
- Some recent work in learning constituency:
- [Adrians, 99] Language grammars aren't general PCFGs
- [Clark, 01] Mutual-information filters detect constituents, then an MDL-guided search assembles them
- [van Zaanen, 00] Finds low edit-distance sentence pairs and extracts their differences

Right-Branching Baseline

- English trees tend to be right-branching, not balanced

- A simple (English-specific) baseline is to choose the right chain structure for each sentence

| van Zaanen, 00 | 35.6 |
| :--- | :--- | :--- |

Syntactic Parsing

- Parsing assigns structures to sentences.

- Dependency structure gives attachments.

Idea: Lexical Affinity Models

- Words select other words on syntactic grounds

congress narrowly passed the amended bill
- Link up pairs with high mutual information
- [Yuret, 1998]: Greedy linkage
- [Paskin, 2001]: Iterative re-estimation with EM
- Evaluation: compare linked pairs to a gold standard

Method	Accuracy
Paskin, 2001	39.7

Idea: Word Classes

- Individual words like congress are entwined with semantic facts about the world.
- Syntactic classes, like NOUN and ADVERB are bleached of word-specific semantics.
- Automatic word classes more likely to look like DAYS-OF-WEEK or PERSON-NAME.
- We could build dependency models over word classes. [cf. Carroll and Charniak, 1992]
congress narrowly passed the amended bill

Results: Dependencies

Adjacent Words	55.9	
DMV	62.7	

- Situation so far:
- Task: unstructured text in, word pairs out
- Previous results were below baseline
- We modeled word classes [cf. Carroll \& Charniak 92]
- We added a model of distance [cf. Collins 99]
- Resulting model is substantially over baseline
- ... but we can do much better

| Results: Combined Models | | |
| :--- | :--- | :--- | | Rependency Evaluation (Undir. Dep. Acc.) | | |
| :--- | :--- | :--- |
| DMV | 45.6 | |
| CCM + DMV | 62.7 | |
| Constituency Evaluation (Unlabeled Recall) | | |
| Random 39.4
 CCM 81.0
 CCM + DMV 88.0 | | |
| - Supervised PCFG constituency recall is at 92.8 | | |
| - Qualitative improvements | | |
| - Subject-verb groups gone, modifier placement improved | | |

How General is This?

English (7422 sentences) Constituency Evaluation Random Baseline 39.4 CCM+DMV 88.0 German (2175 sentences) Random Baseline 49.6 CCM+DMV 89.7 Chinese (2473 sentences) Random Baseline 35.5 CCM+DMV 46.7 DMV 54.2 CCM+DMV 60.0			

