Statistical NLP Spring 2010

Lecture 17: Word / Phrase MT
Dan Klein - UC Berkeley

Corpus-Based MT

Modeling correspondences between languages
Sentence-aligned parallel corpus:

- Novel Sentence

I will do it soon
I will do it around
See you tomorrow

Unsupervised Word Alignment

- Input: a bitext: pairs of translated sentences

```
nous acceptons votre opinion.
we accept your view .
```

- Output: alignments: pairs of translated words
- When words have unique sources, can represent as a (forward) alignment function a from French to English positions

Alignment Error Rate

- Alignment Error Rate

$$
\begin{aligned}
\square & =\text { Sure } \\
\square & =\text { Possible } \\
& =\text { Predicted } \\
\Lambda E R(\Lambda, S, P) & =\left(1-\frac{|A \cap S|+|A \cap P|}{|A|+|S|}\right) \\
& =\left(1-\frac{3+3}{3+4}\right)=\frac{1}{7}
\end{aligned}
$$

en

1978
,
a
enregistré
1,122,000 divorces
sur
le
continent

IBM Models 1/2

Model Parameters

```
Emissions: P( F
```


Problems with Model 1

- There's a reason they designed models 2-5!
- Problems: alignments jump around, align everything to rare words
- Experimental setup:
- Training data: 1.1M sentences of French-English text, Canadian Hansards
- Evaluation metric: alignment error Rate (AER)
- Evaluation data: 447 handaligned sentences

Intersected Model 1

- Post-intersection: standard practice to train models in each direction then intersect their predictions [Och and Ney, 03]
- Second model is basically a filter on the first
- Precision jumps, recall drops
- End up not guessing hard alignments

Model	P/R	AER
Model 1 E $\rightarrow \mathrm{F}$	$82 / 58$	30.6
Model 1 F $\rightarrow \mathrm{E}$	$85 / 58$	28.7
Model 1 AND	$96 / 46$	34.8

Joint Training?

- Overall:
- Similar high precision to post-intersection
- But recall is much higher
- More confident about positing non-null alignments

Model	P/R	AER
Model 1 E $\rightarrow \mathrm{F}$	$82 / 58$	30.6
Model 1 F $\rightarrow \mathrm{E}$	$85 / 58$	28.7
Model 1 AND	$96 / 46$	34.8
Model 1 INT	$93 / 69$	19.5

Monotonic Translation

Japan shaken by two new quakes

Le Japon secoué par deux nouveaux séismes

Local Order Change

Japan is at the junction of four tectonic plates

Le Japon est au confluent de quatre plaques tectoniques

IBM Model 2

- Alignments tend to the diagonal (broadly at least)

$$
\begin{gathered}
P(f, a \mid e)=\prod_{j} P\left(a_{j}=i \mid j, I, J\right) P\left(f_{j} \mid e_{i}\right) \\
P\left(d i s t=i-j \frac{I}{J}\right) \\
\frac{1}{Z} e^{-\alpha\left(i-j \frac{I}{J}\right)}
\end{gathered}
$$

- Other schemes for biasing alignments towards the diagonal:
- Relative vs absolute alignment
- Asymmetric distances
- Learning a full multinomial over distances

EM for Models $1 / 2$

- Model parameters:

Translation probabilities (1+2) $\quad P\left(f_{j} \mid e_{i}\right)$
Distortion parameters (2 only) $\quad P\left(a_{j}=i \mid j, I, J\right)$

- Start with $P\left(f_{j} \mid e_{i}\right)$ uniform, including $P\left(f_{j} \mid n u l l\right)$
- For each sentence:
- For each French position j
- Calculate posterior over English positions

$$
P\left(a_{j}=i \mid f, e\right)=\frac{P\left(a_{j}=i \mid j, I, J\right) P\left(f_{j} \mid e_{i}\right)}{\sum_{i^{\prime}} P\left(a_{j}=i^{\prime} \mid j, I, J\right) P\left(f_{j} \mid e_{i}^{\prime}\right)}
$$

- (or just use best single alignment)
- Increment count of word f_{j} with word e_{i} by these amounts
- Also re-estimate distortion probabilities for model 2
- Iterate until convergence

Example: Model 2 Helps

Phrase Movement

Des tremblements de terre ont à nouveau touché le Japon jeudi 4 novembre.

The HMM Model

Model Parameters

Emissions: $\mathrm{P}\left(\mathrm{F}_{1}=\right.$ Gracias $\mid \mathrm{E}_{\mathrm{A}_{1}}=$ Thank $)$ Transitions: $\mathrm{P}\left(\mathrm{A}_{2}=3 \mid \mathrm{A}_{1}=1\right)$

The HMM Model

- Model 2 preferred global monotonicity
- We want local monotonicity:
- Most jumps are small
- HMM model (Vogel 96)

\mathbf{f}	$t(f \mid e)$
nationale	0.469
national	0.418
nationaux	0.054
nationales	0.029

$$
\begin{aligned}
& P(f, a \mid e)=\prod_{j} P\left(a_{j} \mid a_{j-1}\right) P\left(f_{j} \mid e_{i}\right) \\
& P\left(a_{j}-a_{j-1}\right) \square \square \square \square \square \square \square \square \\
& \square \square-10123
\end{aligned}
$$

- Re-estimate using the forward-backward algorithm
- Handling nulls requires some care
- What are we still missing?

HMM Examples

AER for HMMs

Model	AER
Model 1 INT	19.5
HMM E \rightarrow F	11.4
HMM F \rightarrow E	10.8
HMM AND	7.1
HMM INT	4.7
GIZA M4 AND	6.9

IBM Models 3/4/5

Examples: Translation and Fertility

the
f $t(f \mid e)$ ϕ $n(\phi \mid e)$ le 0.497 1 0.746 la 0.207 0 0.254 les 0.155 l^{\prime} 0.086 ce 0.018 \quadf $t(f \mid e)$ ϕ $n(\phi \mid e)$ ne 0.497 2 0.735 pas 0.442 0 0.154 non 0.029 1 0.107 rien 0.011

farmers

f	$t(f \mid e)$	ϕ	$n(\phi \mid e)$
agriculteurs	0.442	2	0.731
les	0.418	1	0.228
cultivateurs	0.046	0	0.039
producteurs	0.021		

Example: Idioms

	nodding			
	f	$t(f \mid e)$	ϕ	$n(\phi \mid e)$
	signe	0.164	4	0.342
	la	0.123	3	0.293
he is nodding	tête	0.097	2	0.167
$1+$	oui	0.086	1	0.163
il hoche la tête	fait	0.073	0	0.023
	que	0.073		
	hoche	0.054		
	hocher	0.048		
	faire	0.030		
	me	0.024		
	approuve	0.019		
	qui	0.019		
	un	0.012		
	faites	0.011		

Example: Morphology

should

f	$t(f \mid e)$	ϕ	$n(\phi \mid e)$
devrait	0.330	1	0.649
devraient	0.123	0	0.336
devrions	0.109	2	0.014
faudrait	0.073		
faut	0.058		
doit	0.058		
aurait	0.041		
doivent	0.024		
devons	0.017		
devrais	0.013		

Some Results

- [Och and Ney 03]

Model	Training scheme	0.5 K	8 K	128 K	1.47 M
Dice		50.9	43.4	39.6	38.9
Dice+C		46.3	37.6	35.0	34.0
Model 1	1^{5}	40.6	33.6	28.6	25.9
Model 2	$1^{5} 2^{5}$	46.7	29.3	22.0	19.5
HMM	$1^{5} H^{5}$	26.3	23.3	15.0	10.8
Model 3	$1^{5} 2^{5} 3^{3}$	43.6	27.5	20.5	18.0
	$1^{5} H^{5} 3^{3}$	27.5	22.5	16.6	13.2
Model 4	$1^{5} 2^{5} 3^{3} 4^{3}$	41.7	25.1	17.3	14.1
	$1^{5} H^{5} 3^{3} 4^{3}$	26.1	20.2	13.1	9.4
	$1^{5} H^{5} 4^{3}$	26.3	21.8	13.3	9.3
Model 5	$1^{5} H^{5} 4^{3} 5^{3}$	26.5	21.5	13.7	9.6
	$1^{5} H^{5} 3^{3} 4^{3} 5^{3}$	26.5	20.4	13.4	9.4
Model 6	$1^{5} H^{5} 4^{3} 6^{3}$	26.0	21.6	12.8	8.8
	$1^{5} H^{5} 3^{3} 4^{3} 6^{3}$	25.9	20.3	12.5	8.7

Decoding

- In these word-to-word models
- Finding best alignments is easy
- Finding translations is hard (why?)

Bag "Generation" (Decoding)

Exact reconstruction (24 of 38)
Please give me your response as soon as possible.
$\Rightarrow \quad$ Please give me your response as soon as possible.
Reconstruction preserving meaning (8 of 38)
Now let me mention some of the disadvantages.
$\Rightarrow \quad$ Let me mention some of the disadvantages now.
Garbage reconstruction (6 of 38)
In our organization research has two missions. $\Rightarrow \quad$ In our missions research organization has two.

Bag Generation as a TSP

- Imagine bag generation with a bigram LM
- Words are nodes
- Edge weights are P(w|w')
- Valid sentences are Hamiltonian paths
- Not the best news for word-based MT!

IBM Decoding as a TSP

Greedy Decoding

Stack Decoding

- Stack decoding:
- Beam search
- Usually A* estimates for completion cost
- One stack per candidate sentence length
- Other methods:
- Dynamic programming decoders possible if we make assumptions about the set of allowable permutations

| sent
 length | decoder
 type | time
 (sec/sent) | search
 errors | translation
 errors (semantic
 and/or syntactic) | NE | PME | DSE | FSE | HSE | CE |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | IP | 47.50 | 0 | 57 | 44 | 57 | 0 | 0 | 0 | 0 |
| 6 | stack | 0.79 | 5 | 58 | 43 | 53 | 1 | 0 | 0 | 4 |
| 6 | greedy | 0.07 | 18 | 60 | 38 | 45 | 5 | 2 | 1 | 10 |
| 8 | IP | 499.00 | 0 | 76 | 27 | 74 | 0 | 0 | 0 | 0 |
| 8 | stack | 5.67 | 20 | 75 | 24 | 57 | 1 | 2 | 2 | 15 |
| 8 | greedy | 2.66 | 43 | 75 | 20 | 38 | 4 | 5 | 1 | 33 |

Stack Decoding

- Stack decoding:
- Beam search
- Usually A* estimates for completion cost
- One stack per candidate sentence length
- Other methods:
- Dynamic programming decoders possible if we make assumptions about the set of allowable permutations

sent length	decoder type	time (sec/sent)	search errors	translation errors (semantic and/or syntactic)	NE	PME	DSE	FSE	HSE	CE
6	IP	47.50	0	57	44	57	0	0	0	0
6	stack	0.79	5	58	43	53	1	0	0	4
6	greedy	0.07	18	60	38	45	5	2	1	10
8	IP	499.00	0	76	27	74	0	0	0	0
8	stack	5.67	20	75	24	57	1	2	2	15
8	greedy	2.66	43	75	20	38	4	5	1	33

Phrase-Based Systems

Sentence-aligned corpus

Word alignments
cat ||| chat ||| 0.9 the cat ||| le chat ||| 0.8 dog ||| chien ||| 0.8 my house ||| ma maison ||| 0.9 language ||| langue ||| 0.9

Phrase table (translation model)

Phrase-Based Decoding

Decoder design is important: [Koehn et al. 03]

The Pharaoh "Model"

[Koehn et al, 2003]

The Pharaoh "Model"

Where do we get these counts?

Phrase Weights

How the MT community estimates $P(\bar{f} \mid \bar{e})$

All phrase pairs are counted, and counts are normalized.

Thank you 'I shall do so'gladly :

Counting Phrase Pairs

Gracias , lo haré de muy buen grado
Thank you , I shall do so gladly .

Gloss
Thanks
that
do [first; future]
of
very
good
degree

Thank you , I shall do so gladly.

Phrase Scoring

$$
\phi_{n e w}\left(\bar{e}_{j} \mid \bar{f}_{i}\right)=\frac{c\left(\bar{f}_{i}, \bar{e}_{j}\right)}{c\left(\bar{f}_{i}\right)}
$$

- Learning weights has been tried, several times:
- [Marcu and Wong, 02]
- [DeNero et al, 06]
- ... and others
- Seems not to work well, for a variety of partially understood reasons
- Main issue: big chunks get all the weight, obvious priors don't help
- Though, [DeNero et al 08]

Phrase Size

- Phrases do help
- But they don't need to be long
- Why should this be?

Lexical Weighting

$$
\begin{aligned}
& \phi\left(\bar{f}_{i} \mid \bar{e}_{i}\right)=\frac{\operatorname{count}\left(\bar{f}_{i}, \bar{e}_{i}\right)}{\operatorname{count}\left(\bar{e}_{i}\right)} p_{w}\left(\bar{f}_{i} \mid \bar{e}_{i}\right) \\
& \text { f1 } £ 2 \text { f3 } \\
& \text { NULL -- -- \#\# } \\
& \text { e1 \#\# -- -- } \\
& \text { e2 -- \#\# -- } \\
& \text { e3 -- \#\# -- } \\
& p_{w}(\bar{f} \mid \bar{e}, a)=p_{w}\left(f_{1} f_{2} f_{3} \mid e_{1} \epsilon_{2} e_{3}, a\right) \\
& =w\left(f_{1} \mid e_{1}\right) \\
& \times \frac{1}{2}\left(w\left(f_{2} \mid e_{2}\right)+w\left(f_{2} \mid e_{3}\right)\right) \\
& \times w\left(f_{3} \mid \text { NULL }\right)
\end{aligned}
$$

The Pharaoh Decoder

- Probabilities at each step include LM and TM

Hypotheis Lattices

Pruning

- Problem: easy partial analyses are cheaper
- Solution 1: use beams per foreign subset
- Solution 2: estimate forward costs (A^{*}-like)

WSD?

- Remember when we discussed WSD?
- Word-based MT systems rarely have a WSD step
- Why not?

