Statistical NLP Spring 2010

Lecture 20: Compositional Semantics
Dan Klein - UC Berkeley

Truth-Conditional Semantics

- Linguistic expressions:
- "Bob sings"
- Logical translations:
- sings(bob)
- Could be p_1218(e_397)

- Denotation:
- [[bob]] = some specific person (in some context)
- [[sings(bob)]] = ???
- Types on translations:
- bob:e (for entity)
- sings(bob): t (for truth-value)

Truth-Conditional Semantics

- Proper names:
- Refer directly to some entity in the world
- Bob : bob $[[b o b]]^{W} \rightarrow$???
- Sentences:
- Are either true or false (given how the world actually is)
- Bob sings : sings(bob)

- So what about verbs (and verb phrases)?
- sings must combine with bob to produce sings(bob)
- The λ-calculus is a notation for functions whose arguments are not yet filled.
- sings : λx.sings(x)
- This is predicate - a function which takes an entity (type e) and produces a truth value (type t). We can write its type as $e \rightarrow t$.
- Adjectives?

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
- $S: \beta(\alpha) \rightarrow N P: \alpha$ VP : β (function application)
- $V P: \lambda x \cdot \alpha(x) \wedge \beta(x) \rightarrow V P: \alpha$ and : $\varnothing \mathrm{VP}: \beta$ (intersection)
- Example:

Denotation

- What do we do with logical translations?
- Translation language (logical form) has fewer ambiguities
- Can check truth value against a database
- Denotation ("evaluation") calculated using the database
- More usefully: assert truth and modify a database
- Questions: check whether a statement in a corpus entails the (question, answer) pair:
- "Bob sings and dances" \rightarrow "Who sings?" + "Bob"
- Chain together facts and use them for comprehension

Other Cases

- Transitive verbs:
- likes : $\lambda x . \lambda y . l i k e s(y, x)$
- Two-place predicates of type $\mathrm{e} \rightarrow(\mathrm{e} \rightarrow \mathrm{t})$.
- likes Amy : λy.likes(y,Amy) is just like a one-place predicate.
- Quantifiers:
- What does "Everyone" mean here?
- Everyone : $\lambda \mathrm{f} . \forall \mathrm{x} . \mathrm{f}(\mathrm{x})$
- Mostly works, but some problems
- Have to change our NP/VP rule.
- Won't work for "Amy likes everyone."
- "Everyone likes someone."
- This gets tricky quickly!

Indefinites

- First try
- "Bob ate a waffle" : ate(bob,waffle)
- "Amy ate a waffle" : ate(amy,waffle)
- Can't be right!
- $\exists \mathrm{x}$: waffle(x) \wedge ate(bob,x)
- What does the translation of "a" have to be?
" What about "the"?
- What about "every"?

Grounding

- Grounding
- So why does the translation likes : $\lambda x . \lambda y$.likes($y, x)$ have anything to do with actual liking?
- It doesn't (unless the denotation model says so)
- Sometimes that's enough: wire up bought to the appropriate entry in a database
- Meaning postulates
- Insist, e.g $\forall x, y . l i k e s(y, x) \rightarrow$ knows(y, x)
- This gets into lexical semantics issues
- Statistical version?

Tense and Events

- In general, you don’t get far with verbs as predicates
- Better to have event variables e
- "Alice danced" : danced(alice)
- $\exists \mathrm{e}: \operatorname{dance}(\mathrm{e}) \wedge$ agent $(\mathrm{e}$, alice $) \wedge($ time $(\mathrm{e})<$ now $)$
- Event variables let you talk about non-trivial tense / aspect structures
- "Alice had been dancing when Bob sneezed"
- $\exists \mathrm{e}, \mathrm{e}^{\prime}: \quad$ dance $(\mathrm{e}) \wedge$ agent(e,alice) \wedge
sneeze (e') \wedge agent(e',bob) \wedge
(start(e) < start(e') \wedge end $\left.(e)=\operatorname{end}\left(e^{\prime}\right)\right) \wedge$
(time(e') < now)

Adverbs

- What about adverbs?
- "Bob sings terribly"
- terribly(sings(bob))?
- (terribly(sings))(bob)?
- $\exists \mathrm{e}$ present(e) \wedge type(e, singing) \wedge agent(e,bob) \wedge
 manner(e, terrible) ?
- It's really not this simple..

Propositional Attitudes

- "Bob thinks that I am a gummi bear"
- thinks(bob, gummi(me))?
- thinks(bob, "I am a gummi bear") ?
- thinks(bob, ^gummi(me)) ?
- Usual solution involves intensions (\wedge X) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
- Modeling other agents models, etc
- Can come up in simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives
- green ball : λx.[green $(x) \wedge$ ball (x)]
- fake diamond : λx.[fake $(x) \wedge$ diamond $(x)]$? $\longrightarrow \lambda x$.[fake(diamond $(x))$
- Generalized Quantifiers
- the: : $\lambda \mathrm{f}$.[unique-member(f)]
- all : $\lambda \mathrm{f}$. $\lambda \mathrm{g}[\forall \mathrm{x} . \mathrm{f}(\mathrm{x}) \rightarrow \mathrm{g}(\mathrm{x})]$
- most?
- Could do with more general second order predicates, too (why worse?)
- the(cat, meows), all(cat, meows)
- Generics
- "Cats like naps"
- "The players scored a goal"
- Pronouns (and bound anaphora)
- "If you have a dime, put it in the meter."
- ... the list goes on and on!

Multiple Quantifiers

- Quantifier scope
- Groucho Marx celebrates quantifier order ambiguity:
"In this country a woman gives birth every 15 min.
Our job is to find that woman and stop her."
- Deciding between readings
- "Bob bought a pumpkin every Halloween"
- "Bob put a warning in every window"
- Multiple ways to work this out
- Make it syntactic (movement)
- Make it lexical (type-shifting)

Implementation, TAG, Idioms

- Add a "sem" feature to each context-free rule
- $S \rightarrow$ NP loves NP
- S[sem=loves(x, y)] \rightarrow NP[sem=x] loves NP[sem=y]
- Meaning of S depends on meaning of NPs
- TAG version:

- Template filling: S[sem=showflights(x,y)] \rightarrow

I want a flight from NP[sem=x] to NP[sem=y]

Modeling Uncertainty

- Gaping hole warning!
- Big difference between statistical disambiguation and statistical reasoning.

The scout saw the enemy soldiers with night goggles.

- With probabilistic parsers, can say things like " 72% belief that the PP attaches to the NP."
- That means that probably the enemy has night vision goggles.
- However, you can't throw a logical assertion into a theorem prover with 72% confidence.
- Not clear humans really extract and process logical statements symbolically anyway.
- Use this to decide the expected utility of calling reinforcements?
- In short, we need probabilistic reasoning, not just probabilistic disambiguation followed by symbolic reasoning!

CCG Parsing

- Combinatory

Categorial
Grammar

- Fully (mono-) lexicalized grammar
- Categories encode argument sequences
- Very closely related to the lambda calculus
- Can have spurious ambiguities (why?)

$$
\begin{aligned}
& \text { John } \vdash \mathrm{NP}: \text { john }^{\prime} \\
& \text { shares } \vdash \mathrm{NP}: \text { shares }^{\prime} \\
& \text { buys } \vdash(\mathrm{S} \backslash \mathrm{NP}) / \mathrm{NP}: \lambda x . \lambda y . \text { buys }^{\prime} x y \\
& \text { sleeps } \vdash \mathrm{S} \backslash \mathrm{NP}: \lambda x . \text { sleeps }^{\prime} x \\
& \text { well } \vdash(\mathrm{S} \backslash \mathrm{NP}) \backslash(\mathrm{S} \backslash \mathrm{NP}): \lambda f . \lambda x . \text { well }^{\prime}(f x)
\end{aligned}
$$

Syntax-Based MT

- synchronous context-free grammars (SCFGs)
- context-free grammar in two dimensions
- generating pairs of strings/trees simultaneously
- co-indexed nonterminal further rewritten as a unit

VP	$\rightarrow \mathbf{P P}^{(1)} \mathrm{VP}^{(2)}$,	$\mathrm{VP}^{(2)} \mathbf{P P}^{(1)}$
VP	\rightarrow juxing le huitan,	held a meeting
PP	\rightarrow yu Shalong,	with Sharon

Learning MT Grammars

- syntax-directed, English to Chinese (Huang, Knight, Joshi, 2006)
- first parse input, and then recursively transfer

synchronous treesubstitution grammars (STSG)
(Galley et al., 2004; Eisner, 2003)

Rules can...

- capture phrasal translation
- reorder parts of the tree
- traverse the tree without reordering
- insert (and delete) words

Bad alignments make bad rules

This isn't very good, but let's look at a worse example...

Sometimes they're really bad

One bad link makes a totally unusable rule!

Alignment: Words, Blocks, Phrases

Discriminative Block ITG

Features
$\varphi\left(b_{0}, s, s^{\prime}\right)$
$\varphi\left(b_{1}, s, s^{\prime}\right)$
$\varphi\left(b_{2}, s, s^{\prime}\right)$
$\phi(\mathcal{A})=\sum_{b \in \mathcal{A}} \phi\left(b, s, s^{\prime}\right)$
$P(\mathcal{A}) \propto \exp \langle\theta, \phi(\mathcal{A})\rangle$

Syntactic Correspondence

Build a model $p_{\theta}(\boldsymbol{\Delta}, \boldsymbol{\Delta}$ ，国｜中文，EN $)$

Synchronous Grammars?

Synchronous Grammars?

Synchronous Grammars?

Adding Syntax: Weak Synchronization

Adding Syntax: Weak Synchronization

Adding Syntax: Weak Synchronization

Weakly Synchronous Features

Parsing	Alignment
$\phi_{\mathcal{F}}(\mathrm{IP}, s)$	$\phi_{\mathcal{A}}\left(b_{0}, s, s^{\prime}\right)$
$\phi_{\mathcal{F}}(\mathrm{NP}, s)$	$\phi_{\mathcal{A}}\left(b_{1}, s, s^{\prime}\right)$
$\phi_{\mathcal{F}}(\mathrm{VP}, s)$	$\phi_{\mathcal{A}}\left(b_{2}, s, s^{\prime}\right)$
	Agreement
$\phi_{\mathcal{E}}\left(\mathrm{S}, s^{\prime}\right)$	$\phi_{\triangleright}\left(\right.$ IP，$\left.b_{0}\right)$
$\phi_{\mathcal{E}}\left(\mathrm{NP}, s^{\prime}\right)$	$\phi_{\triangleleft}\left(b_{0}, \mathrm{~S}\right)$
$\phi_{\mathcal{E}}\left(\mathrm{AP}, s^{\prime}\right)$	$\phi_{\triangleleft}\left(b_{l}, \mathrm{NP}\right)$
$\phi_{\mathcal{E}}\left(\mathrm{VP}, s^{\prime}\right)$	$\phi_{\bowtie\left(\mathrm{IP}, b_{0}, \mathrm{~S}\right)}$

Weakly Synchronous Model

$p_{\theta}\left(\boldsymbol{\Delta}, \boldsymbol{\Delta}, \ddot{\because}^{*} \|_{\text {EN }}\right.$ ，中文 $)$

Feature Type 1：Word Alignment
$\phi(\cdots, ~ E N, ~ 中$ 文 $)$

office［HBDK09］

Feature Type 2：Monolingual Parser

Feature Type 3：Agreement

Inference: Structured Mean Field

- Problem: Summing over weakly aligned hypotheses is intractable
- Factored approximation: $\quad p_{\theta}(\boldsymbol{\Delta}, \boldsymbol{\Delta}$,

Algorithm

1) Initialize: $q(\boldsymbol{\Delta}) q(\boldsymbol{\Delta}) q\left({ }^{*}\right)$
2) Iterate:
$q(\mathbf{\Delta}) \propto \exp \left\{\left\langle\theta, \phi\left(\mathbf{\Lambda}, E_{q}(\mathbf{\Delta}), E_{q}\left(z_{*}\right)\right)\right\rangle\right\}$

Results

English $\mathrm{F}_{\mathbf{1}}$

Incorrect English PP Attachment

Corrected English PP Attachment

Improved Translations

目前	导致	飞机	相撞	的	原因	尚	不	清楚，	当地	民航	部门	将	对此	展开	调查
Cur－ rently	cause	plane	crash	DE	reason	yet	not	clear，	local	civil aero－ nautics	bureau	will	toward	open	investi－ gations

Reference

At this point the cause of the plane collision is still unclear．The local caa will launch an investigation into this．

Baseline（GIZA＋＋）
The cause of planes is still not clear yet，local civil aviation department will investigate this ．

Bilingual Adaptation Model

The cause of plane collision remained unclear，local civil aviation departments will launch an investigation ．

Machine Translation Approach

$$
\begin{gathered}
\text { nous acceptons votre opinion } \\
\text { we accept your view. }
\end{gathered}
$$

Translations from Monotexts

- Translation without parallel text?

ํㅜㄹ ㄹ Data Representation

Orthographic Features

\#st	1.0
tat	1.0
te\#	1.0

Context Features	
world	20.0
politics	5.0
society	10.0

Data Representation

Generative Model (Matching)

Inference: Hard EM

E-Step: Find best matching

$$
\begin{aligned}
w_{i j}= & \log p\left(s_{i}, t_{j} \mid \mathbf{m} ; W_{s}, W_{t}\right)-\log \mathrm{NULL}_{S}\left(s_{i}\right) \\
& -\log \mathrm{NULL}_{T}\left(t_{j}\right)
\end{aligned}
$$

M-Step: Solve a CCA problem
$\max _{\left(W_{s}, W_{t}\right)}\left[\sum_{(i, j) \in \mathbf{m}} \log p\left(s_{i}, t_{j} \mid \mathbf{m} ; W_{s}, W_{t}\right)\right]$

Experimental Setup

- Data: 2K most frequent nouns, texts from Wikipedia
- Seed: 100 translation pairs
- Evaluation: Precision and Recall against lexicon obtained from Wiktionary
- Report $p_{0.33}$, precision at recall 0.33

Lexicon Quality (EN-ES)

Analysis

English-Spanish		
Source	Target	Correct
education	educación	Y
pacto	pact	Y
stability	estabilidad	Y
corruption	corrupción	Y
tourism	turismo	Y
organisation	organización	Y
convenience	conveniencia	Y
syria	siria	Y
cooperation	cooperación	Y
culture	cultura	Y
protocol	protocolo	Y
north	norte	Y
health	salud	Y
action	reacción	N

Interesting Matches
Interesting Mistakes
health salud traceability rastreabilidad youth juventud report advantages informe ventajas
liberal partido Kirkhope Gorsel action reacción Albanians Bosnia a．m． horas

Language Variation

English－Chinese		
Source	Target	Correct
prices	价格	Y
network	网络	Y
population	人口	Y
reporter	孙	N
oil	石油	Y

