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Statistical NLP
Spring 2010

Lecture 20: Compositional Semantics

Dan Klein – UC Berkeley

Truth-Conditional Semantics

� Linguistic expressions:
� “Bob sings”

� Logical translations:
� sings(bob)

� Could be p_1218(e_397)

� Denotation:
� [[bob]] = some specific person (in some context)

� [[sings(bob)]] = ???

� Types on translations:
� bob : e (for entity)

� sings(bob) : t (for truth-value)
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Truth-Conditional Semantics

� Proper names:
� Refer directly to some entity in the world

� Bob : bob          [[bob]]W � ???

� Sentences:
� Are either true or false (given

how the world actually is)

� Bob sings : sings(bob)

� So what about verbs (and verb phrases)?
� sings must combine with bob to produce sings(bob)

� The λ-calculus is a notation for functions whose arguments are 
not yet filled.

� sings : λx.sings(x)

� This is predicate – a function which takes an entity (type e) and 
produces a truth value (type t).  We can write its type as e→t.

� Adjectives?
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Compositional Semantics

� So now we have meanings for the words

� How do we know how to combine words?

� Associate a combination rule with each grammar rule:

� S : β(α)→ NP : α VP : β (function application)

� VP : λx . α(x) ∧ β(x)→ VP : α and : ∅ VP : β (intersection)

� Example:

S

NP VP

Bob VP and

sings

VP

dances
bob

λy.sings(y) λz.dances(z)

λx.sings(x) ∧ dances(x)

[λx.sings(x) ∧ dances(x)](bob)

sings(bob) ∧ dances(bob)
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Denotation

� What do we do with logical translations?

� Translation language (logical form) has fewer 

ambiguities

� Can check truth value against a database

� Denotation (“evaluation”) calculated using the database

� More usefully: assert truth and modify a database

� Questions: check whether a statement in a corpus 

entails the (question, answer) pair:

� “Bob sings and dances” → “Who sings?” + “Bob”

� Chain together facts and use them for comprehension

Other Cases

� Transitive verbs:

� likes : λx.λy.likes(y,x)

� Two-place predicates of type e→(e→t).

� likes Amy : λy.likes(y,Amy) is just like a one-place predicate.

� Quantifiers:

� What does “Everyone” mean here?

� Everyone : λf.∀x.f(x)

� Mostly works, but some problems

� Have to change our NP/VP rule.

� Won’t work for “Amy likes everyone.”

� “Everyone likes someone.”

� This gets tricky quickly!

S

NP VP

Everyone VBP NP

Amylikes

λx.λy.likes(y,x)

λy.likes(y,amy)

amy

λf.∀x.f(x)

[λf.∀x.f(x)](λy.likes(y,amy))

∀x.likes(x,amy)
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Indefinites

� First try

� “Bob ate a waffle” : ate(bob,waffle)

� “Amy ate a waffle” : ate(amy,waffle)

� Can’t be right!
� ∃ x : waffle(x) ∧ ate(bob,x)

� What does the translation

of “a” have to be?

� What about “the”?

� What about “every”?

S

NP VP

Bob VBD NP

a waffleate

Grounding

� Grounding
� So why does the translation likes : λx.λy.likes(y,x) have anything 
to do with actual liking?

� It doesn’t (unless the denotation model says so)

� Sometimes that’s enough: wire up bought to the appropriate 
entry in a database

� Meaning postulates
� Insist, e.g ∀x,y.likes(y,x) → knows(y,x)

� This gets into lexical semantics issues

� Statistical version?
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Tense and Events

� In general, you don’t get far with verbs as predicates

� Better to have event variables e

� “Alice danced” : danced(alice)

� ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)

� Event variables let you talk about non-trivial tense / 

aspect structures

� “Alice had been dancing when Bob sneezed”

� ∃ e, e’ : dance(e) ∧ agent(e,alice) ∧

sneeze(e’) ∧ agent(e’,bob) ∧

(start(e) < start(e’) ∧ end(e) = end(e’)) ∧

(time(e’) < now)

Adverbs

� What about adverbs?

� “Bob sings terribly”

� terribly(sings(bob))?

� (terribly(sings))(bob)?

� ∃e present(e) ∧

type(e, singing) ∧
agent(e,bob) ∧
manner(e, terrible) ?

� It’s really not this 
simple..

S

NP VP

Bob VBP ADVP

terriblysings
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Propositional Attitudes

� “Bob thinks that I am a gummi bear”
� thinks(bob, gummi(me)) ?

� thinks(bob, “I am a gummi bear”) ?

� thinks(bob, ^gummi(me)) ?

� Usual solution involves intensions (^X) which are, 
roughly, the set of possible worlds (or conditions) in 
which X is true

� Hard to deal with computationally
� Modeling other agents models, etc

� Can come up in simple dialog scenarios, e.g., if you want to talk 
about what your bill claims you bought vs. what you actually 
bought

Trickier Stuff

� Non-Intersective Adjectives
� green ball : λx.[green(x) ∧ ball(x)]

� fake diamond : λx.[fake(x) ∧ diamond(x)] ?

� Generalized Quantifiers
� the : λf.[unique-member(f)]

� all : λf. λg [∀x.f(x) → g(x)]

� most?

� Could do with more general second order predicates, too (why worse?)
� the(cat, meows), all(cat, meows)

� Generics
� “Cats like naps”

� “The players scored a goal”

� Pronouns (and bound anaphora)
� “If you have a dime, put it in the meter.”

� … the list goes on and on!

λx.[fake(diamond(x))
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Multiple Quantifiers

� Quantifier scope
� Groucho Marx celebrates quantifier order ambiguity:
“In this country a woman gives birth every 15 min.

Our job is to find that woman and stop her.”

� Deciding between readings
� “Bob bought a pumpkin every Halloween”

� “Bob put a warning in every window”

� Multiple ways to work this out
� Make it syntactic (movement)

� Make it lexical (type-shifting)

� Add a “sem” feature to each context-free rule

� S→ NP loves NP

� S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

� Meaning of S depends on meaning of NPs

� TAG version:

Implementation, TAG, Idioms

NPV
loves

VP

S

NP
x

y

loves(x,y)

NP
the bucket

V
kicked

VP

S

NP
x

died(x)

� Template filling: S[sem=showflights(x,y)] →
I want a flight from NP[sem=x] to NP[sem=y]
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Modeling Uncertainty

� Gaping hole warning!

� Big difference between statistical disambiguation and statistical 
reasoning.

� With probabilistic parsers, can say things like “72% belief that the PP 
attaches to the NP.”

� That means that probably the enemy has night vision goggles.

� However, you can’t throw a logical assertion into a theorem prover 
with 72% confidence.

� Not clear humans really extract and process logical statements 
symbolically anyway.

� Use this to decide the expected utility of calling reinforcements?

� In short, we need probabilistic reasoning, not just probabilistic 
disambiguation followed by symbolic reasoning!

The scout saw the enemy soldiers with night goggles.

CCG Parsing

� Combinatory 
Categorial 
Grammar
� Fully (mono-) 
lexicalized 
grammar

� Categories encode 
argument 
sequences

� Very closely 
related to the 
lambda calculus

� Can have spurious 
ambiguities (why?)
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Syntax-Based MT
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Learning MT Grammars

Extracting syntactic rules

Extract rules (Galley et. al. ’04, ‘06)
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Rules can...

� capture phrasal 

translation

� reorder parts of the tree

� traverse the tree 

without reordering

� insert (and delete) 

words

Bad alignments make bad rules

This isn’t very good, but let’s look at a worse example...
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Sometimes they’re really bad

One bad link makes a totally unusable rule!

在在在在
atatatat

办公室办公室办公室办公室
officeofficeofficeoffice

里里里里
inininin

读了读了读了读了
readreadreadread

书书书书
bookbookbookbook

read

the

book

in

the

office

Alignment: Words, Blocks, Phrases
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b0

b1

b2

Features

φ( b0, s, s’ )

φ( b1, s, s’ )

φ( b2, s, s’ )

全

国

近年

来
提醒

Discriminative Block ITG

[Haghighi, Blitzer, Denero,and Klein, ACL 09]

EN中文Build a model

Syntactic Correspondence
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Synchronous Grammars?

Synchronous Grammars?
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Synchronous Grammars?

Block ITG 

Alignment

Adding Syntax: Weak Synchronization
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Separate 

PCFGs

Adding Syntax: Weak Synchronization

Get points for 

synchronization;

not required

Adding Syntax: Weak Synchronization
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NP VP

S

NP

IP

b0

b1

b2

VP

AP (IP, s) (b0, s, s’)

(NP, s) (b1, s, s’)

(VP, s) (b2, s, s’)

(S, s’) (IP, b0)

(NP, s’) (b0, S)

(AP, s’) (b1, NP)

(VP, s’) (IP, b0, S)

Weakly Synchronous Features

Parsing Alignment

Agreement

办公室

office

Feature Type 1: Word Alignment

EN 中文

Feature Type 3: Agreement

Feature Type 2: Monolingual Parser

EN
PP

in the office

EN中文
EN 中文

EN 中文EN 中文
EN 中文

[HBDK09]

Weakly Synchronous Model
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• Problem: Summing over weakly aligned hypotheses is intractable 

• Factored  approximation: EN 中文

1) Initialize:

2) Iterate:

• Set        to minimize EN 中文

Algorithm

Inference: Structured Mean Field

Results

[Burkett, Blitzer, and Klein, NAACL 10]
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Incorrect English PP Attachment

Corrected English PP Attachment
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Reference
At this point the cause of the plane collision is still unclear.  The local caa will 

launch an investigation into this .

Baseline (GIZA++)
The cause of planes is still not clear yet, local civil aviation department will 

investigate this . 

目前 导致 飞机 相撞 的 原因 尚 不 清楚, 当地 民航 部门 将 对此 展开 调查

Cur-

rently
cause plane crash DE reason yet not clear, local

civil

aero-

nautics

bureau will toward open
investi-

gations

Bilingual Adaptation Model
The cause of plane collision remained unclear, local civil aviation 

departments will launch an investigation .

Improved Translations

Machine Translation Approach

Source

Text

Target

Text

nous acceptons votre opinion .

we accept your view .
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Translations from Monotexts

Source

Text

Target

Text

� Translation without parallel text?

[Fung 95, Koehn and Knight 02, Haghighi and Klein 08]

Task: Lexicon Matching

Source

Text

Target

Text

Matching

m
state

world

name

Source  Words 

ssss

natio

n

estad

o

polític

a

Target  Words 

t

mund

o

nombre

[Haghighi and 

Klein 08]
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Data Representation

state

Source

Text

Orthographic Features

1.0

1.0

1.0

#st

tat

te#

Context Features

20.0

5.0

10.0

world

politics

society

Data Representation

state

Orthographic Features

1.0

1.0

1.0

#st

tat

te#

5.0

20.0

10.0

Context Features

world

politics

society

Source

Text

estado

Orthographic Features

1.0

1.0

1.0

#es

sta

do#

10.0

17.0

6.0

Context Features

mundo

politica

socieda

d

Target

Text
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Generative Model (CCA)

estadostate
Source Space Target  Space 

Canonical Space

Generative Model (Matching)

Source  Words 

ssss

Target  Words 

tMatching

m
state

world

name

nation

estado

nombre

politica

mundo
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E-Step: Find best matching

M-Step: Solve a CCA problem

Inference: Hard EM

Experimental Setup

� Data: 2K most frequent nouns, texts from 

Wikipedia

� Seed: 100 translation pairs 

� Evaluation: Precision and Recall against 

lexicon obtained from Wiktionary

� Report p0.33, precision at recall 0.33
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Lexicon Quality (EN-ES)

P
re

c
is

io
n

Recall

Analysis
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Analysis

Interesting Matches Interesting Mistakes

Language Variation


