Statistical NLP Spring 2010

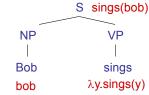
Lecture 21: Compositional Semantics

Dan Klein - UC Berkeley

Includes slides from Luke Zettlemoyer

Truth-Conditional Semantics

- Linguistic expressions:
 - "Bob sings"
- Logical translations:
 - sings(bob)
 - Could be p_1218(e_397)



- Denotation:
 - [[bob]] = some specific person (in some context)
 - [[sings(bob)]] = ???
- Types on translations:
 - bob : e (for entity)sings(bob) : t (for truth-value)

Truth-Conditional Semantics

- Proper names:
 - Refer directly to some entity in the world
 - Bob : bob [[bob]]^W → ???
- Sentences:
 - Are either true or false (given how the world actually is)
 - Bob sings : sings(bob)

- S sings(bob)

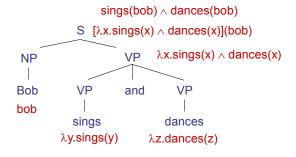
 NP VP

 Bob sings

 bob \(\lambda y.\sings(y)\)
- So what about verbs (and verb phrases)?
 - sings must combine with bob to produce sings(bob)
 - The λ-calculus is a notation for functions whose arguments are not yet filled.
 - sings : λx.sings(x)
 - This is predicate a function which takes an entity (type e) and produces a truth value (type t). We can write its type as e→t.
 - Adjectives?

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
 - S: $\beta(\alpha) \rightarrow NP$: $\alpha \quad VP$: β (function application)
 - $VP : \lambda x . \alpha(x) \wedge \beta(x) \rightarrow VP : \alpha$ and $: \emptyset VP : \beta$ (intersection)
- Example:

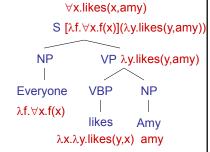


Denotation

- What do we do with logical translations?
 - Translation language (logical form) has fewer ambiguities
 - Can check truth value against a database
 - Denotation ("evaluation") calculated using the database
 - More usefully: assert truth and modify a database
 - Questions: check whether a statement in a corpus entails the (question, answer) pair:
 - "Bob sings and dances" → "Who sings?" + "Bob"
 - Chain together facts and use them for comprehension

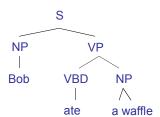
Other Cases

- Transitive verbs:
 - likes : λx.λy.likes(y,x)
 - Two-place predicates of type $e \rightarrow (e \rightarrow t)$.
 - likes Amy : λy.likes(y,Amy) is just like a one-place predicate.
- Quantifiers:
 - What does "Everyone" mean here?
 - Everyone : $\lambda f. \forall x. f(x)$
 - Mostly works, but some problems
 - Have to change our NP/VP rule.
 - Won't work for "Amy likes everyone."
 - "Everyone likes someone."
 - This gets tricky quickly!



Indefinites

- First try
 - "Bob ate a waffle" : ate(bob,waffle)
 - "Amy ate a waffle": ate(amy,waffle)
- Can't be right!
 - ∃ x : waffle(x) ∧ ate(bob,x)
 - What does the translation of "a" have to be?
 - What about "the"?
 - What about "every"?



Grounding

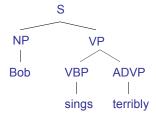
- Grounding
 - So why does the translation likes : λx.λy.likes(y,x) have anything to do with actual liking?
 - It doesn't (unless the denotation model says so)
 - Sometimes that's enough: wire up bought to the appropriate entry in a database
- Meaning postulates
 - Insist, e.g $\forall x,y.likes(y,x) \rightarrow knows(y,x)$
 - This gets into lexical semantics issues
- Statistical version?

Tense and Events

- In general, you don't get far with verbs as predicates
- Better to have event variables e
 - "Alice danced": danced(alice)
 - ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)
- Event variables let you talk about non-trivial tense / aspect structures
 - "Alice had been dancing when Bob sneezed"
 - ∃ e, e': dance(e) ∧ agent(e,alice) ∧
 sneeze(e') ∧ agent(e',bob) ∧
 (start(e) < start(e') ∧ end(e) = end(e')) ∧
 (time(e') < now)

Adverbs

- What about adverbs?
 - "Bob sings terribly"
 - terribly(sings(bob))?
 - (terribly(sings))(bob)?
 - ∃e present(e) ∧
 type(e, singing) ∧
 agent(e,bob) ∧
 manner(e, terrible) ?
 - Hard to work out correctly!



Propositional Attitudes

- "Bob thinks that I am a gummi bear"
 - thinks(bob, gummi(me))?
 - thinks(bob, "I am a gummi bear") ?
 - thinks(bob, ^gummi(me))?
- Usual solution involves intensions (^{^X}) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
 - Modeling other agents models, etc
 - Can come up in simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives
 - green ball : λx .[green(x) \wedge ball(x)]
 - fake diamond : λx .[fake(x) \wedge diamond(x)] ? $\longrightarrow \lambda x$.[fake(diamond(x))
- Generalized Quantifiers
 - the : λf.[unique-member(f)]
 - all : $\lambda f. \lambda g \ [\forall x. f(x) \rightarrow g(x)]$
 - most?
 - Could do with more general second order predicates, too (why worse?)
 - the(cat, meows), all(cat, meows)
- Generics
 - "Cats like naps"
 - "The players scored a goal"
- Pronouns (and bound anaphora)
 - "If you have a dime, put it in the meter."
- ... the list goes on and on!

Multiple Quantifiers

- Quantifier scope
 - Groucho Marx celebrates quantifier order ambiguity:
 "In this country <u>a woman</u> gives birth <u>every 15 min</u>.
 Our job is to find that woman and stop her."
- Deciding between readings
 - "Bob bought a pumpkin every Halloween"
 - "Bob put a warning in every window"
 - Multiple ways to work this out
 - Make it syntactic (movement)
 - Make it lexical (type-shifting)

Modeling Uncertainty?

- Gaping hole warning!
- Big difference between statistical disambiguation and statistical reasoning.

The scout saw the enemy soldiers with night goggles.

- With probabilistic parsers, can say things like "72% belief that the PP attaches to the NP."
- That means that *probably* the enemy has night vision goggles.
- However, you can't throw a logical assertion into a theorem prover with 72% confidence.
- Not clear humans really extract and process logical statements symbolically anyway.
- Use this to decide the expected utility of calling reinforcements?
- In short, we need probabilistic reasoning, not just probabilistic disambiguation followed by symbolic reasoning!

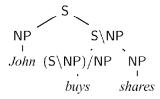
CCG Parsing

- Combinatory Categorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus
 - Can have spurious ambiguities (why?)

John ⊢ NP : john'shares ⊢ NP : shares'buys ⊢ (S\NP)/NP : $\lambda x.\lambda y.buys'xy$

 $sleeps \vdash S \setminus NP : \lambda x. sleeps'x$

 $well \vdash (S \backslash NP) \backslash (S \backslash NP) : \lambda f.\lambda x.well'(fx)$



Mapping to Logical Form

Learning to Map Sentences to Logical Form

Texas borders Kansas

borders(texas, kansas)

Some Training Examples

```
Input: What states border Texas?

Output: \lambda x.state(x) \land borders(x, texas)

Input: What is the largest state?

Output: argmax(\lambda x.state(x), \lambda x.size(x))

Input: What states border the largest state?
```

Output: $\lambda x.state(x) \land borders(x, argmax(\lambda y.state(y), \lambda y.size(y)))$

CCG Lexicon

Words	Category	
vvorus	Syntax : Semantics	
Texas	NP : texas	
borders	(S\NP)/NP : $\lambda x. \lambda y. borders(y, x)$	
Kansas	NP : kansas	
Kansas city	NP : kansas_city_MO	

Parsing Rules (Combinators)

- Application

(S\NP)/NP NP S\NP $\lambda x.\lambda y.borders(y,x)$ texas $\lambda y.borders(y,texas)$

- Additional rules
 - Composition
 - Type Raising

CCG Parsing

oorders	Kansas
S\NP)/NP .borders(y,x)	NP kansas
$S \setminus NP$ $\lambda y . borders (y, kar)$	nsas)
	- •

S borders(texas,kansas)

Parsing a Question

What	states	border	Texas
$S/(S\NP)/N$ $\lambda f. \lambda g. \lambda x. f(x) \wedge g(x)$	N $\lambda x. state(x)$	$(S\NP)/NP$ $\lambda x . \lambda y . borders(y, x)$	NP texas
S/(S\NP)	<u> </u>	S\NP	
$\lambda g. \lambda x. state(x) \wedge g(x)$		λy .borders $(y, texas)$	
		S	
Ä	lx.state(x) 1	borders(x,texas)	

Lexical Generation

Input Training Example

Sentence: Texas borders Kansas

Logic Form: borders (texas, kansas)

Output Lexicon

Words	Category
Texas	NP : texas
borders	$(S\NP)\/NP : \lambda x.\lambda y.borders(y,x)$
Kansas	NP : kansas
• • •	

GENLEX

- Input: a training example (S_i,L_i)
- · Computation:
 - 1. Create all substrings of words in S_i
 - 2. Create categories from L_i
 - 3. Create lexical entries that are the cross product of these two sets
- Output: Lexicon Λ

GENLEX Cross Product

Input Training Example

Sentence: Texas borders Kansas

Logic Form: borders (texas, kansas)

Output Lexicon

Output Substrings:

Texas borders Kansas

Texas

Output Categories:

 $\lambda x.\lambda y.borders(y,x)$

borders $\begin{array}{c} \text{NP : } \textit{texas} \\ \text{NP : } \textit{kansas} \\ \text{SNP) / NP :} \\ \textit{lexas borders} \\ \text{borders Kansas} \\ \end{array}$

GENLEX is the cross product in these two output sets

12

GENLEX: Output Lexicon

Words	Category
Texas	NP : texas
Texas	NP : kansas
Texas	$(S\NP)/NP : \lambda x. \lambda y. borders(y, x)$
borders	NP : texas
borders	NP : kansas
borders	$(S\NP)/NP : \lambda x. \lambda y. borders(y, x)$
Texas borders Kansas	NP : texas
Texas borders Kansas	NP : kansas
Texas borders Kansas	$(S\NP)/NP : \lambda x. \lambda y. borders(y, x)$

Weighted CCG

Given a log-linear model with a CCG lexicon Λ , a feature vector f, and weights w.

The best parse is:

$$y^* = \underset{y}{\operatorname{argmax}} w \cdot f(x, y)$$

Where we consider all possible parses y for the sentence x given the lexicon Λ .

Inputs: Training set $\{(x_i, z_i) \mid i=1...n\}$ of sentences and logical forms. Initial lexicon Λ . Initial parameters w. Number of iterations T.

Computation: For t = 1...T, i = 1...n:

Step 1: Check Correctness

- Let $y^* = \operatorname{argmax} w \cdot f(x_i, y)$
- If $L(y^*) = z_i$, go to the next example

Step 2: Lexical Generation

- Set $\lambda = \Lambda \cup GENLEX(x_i, z_i)$
- Let $\hat{y} = \arg\max_{y \text{ s.t. } L(y) = z_i} w \cdot f(x_i, y)$ Define λ_i to be the lexical entries in \hat{y}
- Set lexicon to $\Lambda = \Lambda \cup \lambda_i$

Step 3: Update Parameters

- Let $y' = \operatorname{argmax} w \cdot f(x_i, y)$
- If $L(y') \neq z_i$
 - Set $w = w + f(x_i, \hat{y}) f(x_i, y')$

Output: Lexicon Λ and parameters w.

Example Learned Lexical Entries

Words	Category
states	N : $\lambda x.state(x)$
major	N/N : $\lambda g.\lambda x.major(x) \wedge g(x)$
population	N : $\lambda x.population(x)$
cities	N : $\lambda x.city(x)$
river	N : $\lambda x.river(x)$
run through	$(S\NP)/NP : \lambda x. \lambda y. traverse(y,x)$
the largest	NP/N : $\lambda g.argmax(g,\lambda x.size(x))$
rivers	N : $\lambda x.river(x)$
the highest	NP/N : $\lambda g.argmax(g,\lambda x.elev(x))$
the longest	$NP/N : \lambda g.argmax(g, \lambda x.len(x))$

Challenge Revisited

The lexical entries that work for:

```
\frac{\text{Show me}}{\text{S/NP}} \xrightarrow{\text{NP/N}} \frac{\text{the latest}}{\text{NP/N}} \xrightarrow{\text{N}} \frac{\text{fight}}{\text{N}} \xrightarrow{\text{NN}} \frac{\text{poston}}{\text{NN}} \xrightarrow{\text{NN}} \frac{\text{to Prague}}{\text{NN}} \xrightarrow{\text{NN}} \frac{\text{on Friday}}{\text{NN}}
```

Will not parse:

$$\frac{\text{Boston}}{\underset{\cdots}{\text{NP}}} \ \frac{\text{to Prague}}{\underset{\cdots}{\text{NN}}} \ \frac{\text{the latest}}{\underset{\cdots}{\text{NP/N}}} \ \frac{\text{on Friday}}{\underset{\cdots}{\text{NN}}}$$

Disharmonic Application

Reverse the direction of the principal category:

N $\lambda x. flight(x) \land one_way(x)$

Missing content words

Insert missing semantic content

NP : c =>
$$N \setminus N : \lambda f.\lambda x.f(x) \land p(x,c)$$

flights	Boston	to Prague
N λx.flight(x)	$\frac{\text{NP}}{\text{BOS}}$ $\frac{\text{N} \setminus \text{N}}{\lambda f. \lambda x. f(x) \wedge from(x, \text{BOS})}$	$N\N$ $\lambda f. \lambda x. f(x) \wedge to(x, PRG)$
λx.flig	N ht(x)∧from(x,BOS)	

 $\label{eq:loss_loss} \texttt{N} \\ \pmb{\lambda x}. \textit{flight(x)} \land \textit{from(x,BOS)} \land \textit{to(x,PRG)}$

Missing content-free words

Bypass missing nouns

$$N \setminus N : f => N : f(\lambda x.true)$$

to Prague
$N \setminus N$ $\lambda f. \lambda x. f(x) \wedge to(x, PRG)$
N
λx . to (x, PRG)

 $\lambda x.airline(x,NWA) \wedge to(x,PRG)$

A Complete Parse

Boston	to Prague	the latest	on Friday
NP BOS	$N \setminus N$ $\lambda f. \lambda x. f(x) \wedge to(x, PRG)$	NP/N $Af.argmax(\lambda x. f(x), \lambda x. time(x))$	$N\N$ $\lambda f. \lambda x. f(x) \land day(x, FRI)$
n\n			
$\lambda f \cdot \lambda x \cdot f(x) \wedge from$	m(x,BOS)		N $\lambda x. day(x, FRI)$
$\lambda f. \lambda x. f(x) \wedge fx$	$N \setminus N$ $rom(x, BOS) \land to(x, PRG)$		
λf.argmax	$\begin{array}{c} \texttt{NP} \backslash \texttt{N} \\ \texttt{K}(\pmb{\lambda} \textbf{x}. \textbf{f}(\textbf{x}) \land \texttt{from}(\textbf{x}, \texttt{BOS}) \land \texttt{t} \end{array}$	$co(x, PRG)$, $\lambda x. time(x)$)	-
	_	N .	
	aromavily fromia BOSIA	$to(x, PRG) \land day(x, FRI)$, $\lambda x. ti$	me(x)
	argmax (Ax. From (x, bob) / (t	,,,	
	argman (NA. III om (A, Boo))	· · · · · · · · · · · · · · · · · · ·	

Geo880 Test Set

Exact Match Accuracy:	Precision	Recall	F1
Zettlemoyer & Collins 2007	95.49	83.20	88.93
Zettlemoyer & Collins 2005	96.25	79.29	86.95
Wong & Money 2007	93.72	80.00	86.31