Statistical NLP
Spring 2010

University of
California

g
N O E

Berkeley

Lecture 21: Compositional Semantics

Dan Klein — UC Berkeley

Includes slides from Luke Zettlemoyer

Truth-Conditional Semantics

= Linguistic expressions: S sings(bob)

= “Bob sings”
. . NP VP
= Logical translations: | ‘
= sings(bob) .
= Could be p_1218(e_397) Bob | sings
bob Ly.sings(y)

= Denotation:
= [[bob]] = some specific person (in some context)
= [[sings(bob)]] = ???

= Types on translations:
= bob:e (for entity)
= sings(bob) : t (for truth-value)

Truth-Conditional Semantics

= Proper names:
= Refer directly to some entity in the world

= Bob : bob [[bob]]W > ?27? S sings(bob)
/\
= Sentences: NP VP
= Are either true or false (given | _‘
how the world actually is) Bob sings
= Bob sings : sings(bob) bob Ly.sings(y)

= So what about verbs (and verb phrases)?

= sings must combine with bob to produce sings(bob)
The A-calculus is a notation for functions whose arguments are
not yet filled.
sings : Ax.sings(x)
This is predicate — a function which takes an entity (type e) and
produces a truth value (type t). We can write its type as e—t.
Adjectives?

Compositional Semantics

= So now we have meanings for the words
= How do we know how to combine words?
= Associate a combination rule with each grammar rule:

= S:B(a) >NP:a VP:B (function application)

= VP:x.a(x) AB(X)>VP:a and:<& VP:B (intersection)
= Example:

sings(bob) A dances(bob)
S [rx.sings(x) A dances(x)](bob)

NP VP  Ax.sings(x) A dances(x)
\ -
Bob VP and VP
bob \ |
sings dances
Ay.sings(y) Az.dances(z)

Denotation

= What do we do with logical translations?
= Translation language (logical form) has fewer
ambiguities
= Can check truth value against a database
= Denotation (“evaluation”) calculated using the database
= More usefully: assert truth and modify a database
= Questions: check whether a statement in a corpus
entails the (question, answer) pair:
= “Bob sings and dances” — “Who sings?” + “Bob”
= Chain together facts and use them for comprehension

Other Cases

= Transitive verbs:
= likes : Ax.Ly.likes(y,x)
= Two-place predicates of type e—(e—t).
= likes Amy : Ly.likes(y,Amy) is just like a one-place predicate.

= Quantifiers: vx.likes(x,amy)
= What does “Everyone” mean here? S [Af.VxF(X)](Ly.likes(y,amy)
= Everyone : Af.Vx.f(x) T
= Mostly works, but some problems NP VP 2y likes(y.amy)

= Have to change our NP/VP rule.
Everyone  VBP NP

= Won't work for “Amy likes everyone.” N | |
“Everyone likes someone.” MR likes  Amy
This gets tricky quickly! ax.y.likes(y,x) amy




Indefinites

Grounding

= First try
= “Bob ate a waffle” : ate(bob,waffle)
= “Amy ate a waffle” : ate(amy,waffle)

= Can'’t be right! s
= I x: waffle(x) A ate(bob,x) e T
= What does the translation NP VP
of “a” have to be? ! N
* What about “the™ Bob V‘BD '}‘s
= What about “every”? ate a waffle

= Grounding

= So why does the translation likes : A.x.Ay.likes(y,x) have anything
to do with actual liking?
It doesn’t (unless the denotation model says so)

Sometimes that’'s enough: wire up bought to the appropriate
entry in a database

= Meaning postulates
= Insist, e.g Vx,y.likes(y,x) — knows(y,x)
= This gets into lexical semantics issues

= Statistical version?

Tense and Events

Adverbs

= In general, you don't get far with verbs as predicates

= Better to have event variables e
= “Alice danced” : danced(alice)
= Je:dance(e) A agent(e,alice) A (time(e) < now)
= Event variables let you talk about non-trivial tense /
aspect structures
= “Alice had been dancing when Bob sneezed”
= Je, e’ : dance(e) A agent(e,alice) A
sneeze(e’) A agent(e’,bob) A
(start(e) < start(e’) A end(e) = end(e’)) A
(time(e’) < now)

= What about adverbs?
= “Bob sings terribly”

terribly(sings(bob))? s
/\
(terribly(sings))(bob)? NP VP
| N
Bob VBP  ADVP

Je present(e) A
type(e, singing) A |
agent(e,bob) A sings  terribly
manner(e, terrible) ?

Hard to work out

correctly!

Propositional Attitudes

Trickier Stuff

“Bob thinks that | am a gummi bear”
= thinks(bob, gummi(me)) ?
= thinks(bob, “I am a gummi bear”) ?
= thinks(bob, "gummi(me)) ?

Usual solution involves intensions (*X) which are,
roughly, the set of possible worlds (or conditions) in
which Xis true

= Hard to deal with computationally
= Modeling other agents models, etc

= Can come up in simple dialog scenarios, e.g., if you want to talk
about what your bill claims you bought vs. what you actually
bought

= Non-Intersective Adjectives
= green ball : x.[green(x) A ball(x)]
= fake diamond : 1.x.[fake(x) A diamond(x)] ? —» Ax.[fake(diamond(x))
= Generalized Quantifiers
the : Af.[unique-member(f)]
all : Af. Ag [Vx.f(x) = g(x)]
most?
Could do with more general second order predicates, too (why worse?)
= the(cat, meows), all(cat, meows)
= Generics
= “Cats like naps”
= “The players scored a goal”
= Pronouns (and bound anaphora)
= “If you have a dime, put it in the meter.”

= ... the list goes on and on!




Multiple Quantifiers

= Quantifier scope
= Groucho Marx celebrates quantifier order ambiguity:
“In this country a woman gives birth every 15 min.
Our job is to find that woman and stop her.”

= Deciding between readings
= “Bob bought a pumpkin every Halloween”
= “Bob put a warning in every window”
= Multiple ways to work this out

= Make it syntactic (movement)
= Make it lexical (type-shifting)

Modeling Uncertainty?

Gaping hole warning!
Big difference between statistical disambiguation and statistical
reasoning.

The scout saw the enemy soldiers with night goggles.

With probabilistic parsers, can say things like “72% belief that the PP
attaches to the NP.”

That means that probably the enemy has night vision goggles.

However, you can't throw a logical assertion into a theorem prover
with 72% confidence.

Not clear humans really extract and process logical statements
symbolically anyway.

Use this to decide the expected utility of calling reinforcements?

In short, we need probabilistic reasoning, not just probabilistic
disambiguation followed by symbolic reasoning!

CCG Parsing

= Combinator
Y Johnt= NP : john'

Categorial
Grammar shares = NP : shares'
= Fully (mono-) buys E (S\NP) /NP : Ax.Ay.buys'xy
;‘);I%a#z:rd sleeps = S\NP : Ax.sleeps'x
= Categories encode well = (S\NP)\(S\NP) : &/ Ax.well'(fx)
argument
sequences
= Very closely S
related to the N
lambda calculus NP S\NP

Can have spurious

! . N
ambiguities (why?) John (S\NP)/NP N|P

buys shares

Mapping to Logical Form

= Learning to Map Sentences to Logical Form

Texas borders Kansas
v

borders (texas,kansas)

Some Training Examples

Input: What states border Texas?
Output: Ax.state (x) A borders (x,texas)

Input: What is the largest state?
Output: argmax (Ax.state(x), Ax.size(x))

Input: What states border the largest state?
Output: Ax.state(x) A borders(x,
argmax (Aly.state(y), Ay.size(y)))

CCG Lexicon

Category
Words
Syntax : Semantics
Texas NP : texas
borders (S\NP) /NP : Ax.Ay.borders(y,x)
Kansas NP : kansas
Kansas city NP : kansas city MO




Parsing Rules (Combinators)

CCG Parsing

 Application
= X/Y : £ Y : a => X : f(a)
(S\NP) /NP NP S\NP
Ax.Ay.borders (y,x) texas Ay.borders (y, texas)
"Y : a X\Y : f => X : f(a)
NP S\NP
kansas Ay.borders (y, texas) borders (kansas, texas)

+ Additional rules
= Composition
= Type Raising

Texas borders Kansas
NP (S\NP) /NP NP
texas Ax.Ay.borders (y,x) kansas
S\NP

Ay.borders (y, kansas)

borders (texas, kansas)

Parsing a Question

Lexical Generation

What states border Texas

S/ (S\NP) /N N (S\NP) /NP NP
Af.Ag.Ax.f(x)Ag(x) Ax.state(x) Ax.Ay.borders(y,x) texas

S/ (S\NP) s\NP
Ag.Ax.state (x) Ag (x) Ay.borders (y, texas)

Input Training Example

Sentence: Texas borders Kansas

Logic Form: borders (texas,kansas)

Output Lexicon

s
Ax.state (x) A borders (x,texas)

Words Category
Texas NP : texas
borders (S\NP) /NP : Ax.Ay.borders(y,x)
Kansas NP : kansas

GENLEX

GENLEX Cross Product

* Input: a training example (S, L,

» Computation:
1. Create all substrings of words in S,
2. Create categories from L,

3. Create lexical entries that are the cross
product of these two sets

* Output: Lexicon A

Input Training Example

Sentence: Texas borders Kansas

Logic Form: borders (texas,kansas)

Output Lexicon

=Output Substrings: =QOutput Categories:
Texas
borders NP : texas
Kansas X NP : kansas
(S\NP) /NP :
Texas borders Ax.Ay.borders(y,x)

borders Kansas
Texas borders Kansas

GENLEX is the cross product in these two output sets




GENLEX: Output Lexicon

Weighted CCG

Words Category
Texas NP : texas
Texas NP : kansas
Texas (S\NP) /NP : Ax.Ay.borders(y,x)
borders NP : texas
borders NP : kansas
borders (S\NP) /NP : Ax.Ay.borders(y,x)
Texas borders Kansas NP : texas
Texas borders Kansas NP : kansas
Texas borders Kansas (S\NP) /NP : Ax.Ay.borders(y,x)

Given a log-linear model with a CCG lexicon A,
a feature vector f, and weights w.

The best parse is:

y*=argmax w- f(x,y)
y

Where we consider all possible parses y
for the sentence x given the lexicon A.

Inputs: Training set {(x; z;) | i=1...n} of sentences and logical forms. Initial
lexicon A. Initial parameters w. Number of iterations 7.

Computation: For¢t=1..T, i =1...n:
Step 1: Check Correctness
+ Let y*=argmax w- f(x,y)
e fLG* =z, gc: to the next example
Step 2: Lexical Generation
+ Set A=A U GENLEX(x,z,)
. Let jz:argmeag(F:’ w )
« Define %, to be the lexical entries in »
« Setlexiconto A=A U,
Step 3: Update Parameters
* Let y'=argmax w- f(x,y)
c If L(y)#z,
.« Set w=w+ f(x,5)- f(x,")
Output: Lexicon A and parameters w.

Example Learned Lexical Entries

Words Category
states N : Ax.state(x)
major N/N : Ag.Ax.major (x)Ag(x)
population N : Ax.population(x)
cities N : Ax.city(x)
river N : Ax.river(x)
run through (S\NP) /NP : Ax.Ay.traverse(y,x)
the largest NP/N : Ag.argmax(g,Ax.size(x))
rivers N : Ax.river(x)
the highest NP/N : Ag.argmax(g,Ax.elev(x))
the longest NP/N : Ag.argmax(g,Ax.len(x))

Challenge Reuvisited

The lexical entries that work for:

Show me the latest flight from Boston to Prague on Friday
S/NP NP/N N NAN NAN N\N

Will not parse:

Boston to Prague the latest on Friday

NP NAN NP/N NAN

Disharmonic Application

Reverse the direction of the principal category:

X\Y : f Y:a = X : f(a)
Y : a X/Y : f => X : f(a)
flights one way
N N/N
Ax.flight(x) Af.Ax.f (x) none_way (x)
N

Ax.flight (x)Aone_way (x)




Missing content words

Insert missing semantic content

NP : ¢ => N\N : Af.Ax.f(x) A p(x,C)

flights Boston to Prague
N NP N\N
Ax.flight (x) BOS Af.Ax. £(x)Ato(x,PRG)

N\N
Af.2Ax. f(x) Afrom(x,BOS)

N
Ax.flight (x) Afrom(x,BOS)

N
Ax. £1ight (x) nfrom(x,BOS) Ato(x, PRG)

Missing content-free words

Bypass missing nouns

N\N : £ => N : f(Ax.true)

Northwest Air to Prague

N/N N\N
Af.Ax.f (x)Aairline (x,NWA) Af.Ax.f (x)Ato(x,PRG)

N
Ax. to(x,PRG)

N
Ax.airline(x,NWA) A to(x,PRG)

A Complete Parse

Boston to Prague the latest on Friday

Geo880 Test Set

NP N\N

NP/N N\N
BOS Af£.Ax. £(x) Ato(x,PRG)

Af.argmax(Ax.f(x),Ax.time(x)) Af.Ax.f(x)rday(x,FRI)|
N\N

A£. Ax. £ (x) Afrom(x,BOS) " day’(‘x £RD)

N\N
Af.Ax.£(x)Afrom(x,BOS) Ato(x,PRG)

NP\N
Af.argmax(Ax. f (x) from(x,BOS) Ato(x,PRG) , Ax.time (x))

N
argmax (Ax. from(x,BOS) Ato(x,PRG) Aday(x,FRI) , Ax.time (x))

Exact Match Accuracy: Precision Recall F1
Zettlemoyer & Collins 2007 95.49 83.20 88.93
Zettlemoyer & Collins 2005 96.25 79.29 86.95

Wong & Money 2007 93.72 80.00 86.31




