

- Questions: check whether a statement in a corpus entails the (question, answer) pair:
 "Bob sings and dances" → "Who sings?" + "Bob"
- Chain together facts and use them for comprehension

Tense and Events

- In general, you don't get far with verbs as predicates
- Better to have event variables e
 - "Alice danced" : danced(alice)
 - ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)
- Event variables let you talk about non-trivial tense / aspect structures
 - · "Alice had been dancing when Bob sneezed"
 - ∃ e, e': dance(e) ∧ agent(e,alice) ∧
 - sneeze(e') ^ agent(e',bob) $(start(e) < start(e') \land end(e) = end(e')) \land$ (time(e') < now)

Propositional Attitudes

- "Bob thinks that I am a gummi bear"
 - thinks(bob, gummi(me)) ?
 thinks(bob, "I am a gummi bear") ?
 thinks(bob, ^gummi(me)) ?
- Usual solution involves intensions (^AX) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
 - Modeling other agents models, etc
 - Can come up in simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives

 green ball : λx.[green(x) ∧ ball(x)]
 fake diamond : λx.[fake(x) ∧ diamond(x)] ? → λx.[fake(diamond(x))

 Generalized Quantifiers

 - the : $\lambda f.[unique-member(f)]$ all : $\lambda f. \lambda g [\forall x.f(x) \rightarrow g(x)]$
 - most?
 - Could do with more general second order predicates, too (why worse?)
 the(cat, meows), all(cat, meows)
- Generics
- "Cats like naps"
 "The players scored a goal"
 Pronouns (and bound anaphora)
- "If you have a dime, put it in the n
- ... the list goes on and on! .

Multiple Quantifiers

- Quantifier scope
 - Groucho Marx celebrates quantifier order ambiguity: "In this country <u>a woman</u> gives birth <u>every 15 min.</u> Our job is to find that woman and stop her."
- Deciding between readings
 - "Bob bought a pumpkin every Halloween"
 - "Bob put a warning in every window"
 - Multiple ways to work this out
 Make it syntactic (movement)
 - Make it lexical (type-shifting)

Modeling Uncertainty?

- Gaping hole warning!
 Big difference between
 - Big difference between statistical disambiguation and statistical reasoning.
 - The scout saw the enemy soldiers with night goggles.
 - With probabilistic parsers, can say things like "72% belief that the PP attaches to the NP."
 That means that *probably* the enemy has night vision goggles.
 - I hat means that probably the enemy has hight vision goggles.
 However, you can't throw a logical assertion into a theorem prover with 72% confidence.
 - Not clear humans really extract and process logical statements symbolically anyway.
 - Use this to decide the expected utility of calling reinforcements?
- In short, we need probabilistic reasoning, not just probabilistic disambiguation followed by symbolic reasoning!

Some Training Examples

Input: What states border Texas? Output: λx.state(x) ∧ borders(x,texas)

Input: What is the largest state? Output: argmax(λx.state(x), λx.size(x))

CCG Lexicon			
	Category		
Words	Syntax : Semantics		
Texas	NP : texas		
borders	(S\NP)/NP : λx.λy.borders(y,x)		
Kansas	NP : kansas		
ansas city	NP : kansas_city_MO		

Lexical Generation					
Input Training Example					
Sentence:	Texas borders Kansas				
Logic Form:	borders(texas,kansas)				
	Output Lexicon				
Words	Category				
Texas	NP : texas				
borders	$(S\NP)/NP : \lambda x.\lambda y.borders(y,x)$				
Kansas	NP : kansas				

GENLEX

- Input: a training example (S_{i}, L_{i})
- Computation:
 - 1. Create all substrings of words in S_i
 - 2. Create categories from L_i
 - 3. Create lexical entries that are the cross product of these two sets
- Output: Lexicon Λ

GENLEX: Output Lexicon				
Words	Category			
Texas	NP : texas			
Texas	NP : kansas			
Texas	$(S\NP)/NP : \lambda x.\lambda y.borders(y,x)$			
borders	NP : texas			
borders	NP : kansas			
borders	$(S\NP)/NP : \lambda x.\lambda y.borders(y,x)$			
Texas borders Kansas	NP : texas			
Texas borders Kansas	NP : kansas			
Texas borders Kansas	$(S\NP)/NP : \lambda x.\lambda y.borders(y,x)$			

Weighted CCG Given a log-linear model with a CCG lexicon Λ , a feature vector *f*, and weights *w*. The best parse is: $y^* = \underset{y}{\operatorname{argmax}} w \cdot f(x,y)$ Where we consider all possible parses *y*

Where we consider all possible parses y for the sentence x given the lexicon Λ .

Inputs: Training set $\{(x_p, z_i) \mid i=1n\}$ of sentences and logical forms. Initial lexicon Λ . Initial parameters w . Number of iterations T .
Computation: For $t = 1T$, $i = 1n$:
Step 1: Check Correctness
• Let $y^* = \operatorname{argmax} w \cdot f(x_i, y)$
 If L(y*) = z_i, go to the next example
Step 2: Lexical Generation
• Set $\lambda = \Lambda \bigcup$ GENLEX (x_i, z_i)
• Let $\hat{y} = \arg \max_{i \in \mathcal{X}} w \cdot f(x_i, y)$
• Define λ_i to be the lexical entries in \hat{y}
• Set lexicon to $\Lambda = \Lambda \cup \lambda_i$
Step 3: Update Parameters
• Let $y' = \operatorname{argmax} w \cdot f(x_i, y)$
• If $L(y') \neq z_i^{y}$
• Set $w = w + f(x_{i}, \hat{y}) - f(x_{i}, y')$
Output: Lexicon Λ and parameters w .

Example Learned Lexical Entries

Words	Category	
states	N : $\lambda x.state(x)$	
major	N/N : $\lambda g.\lambda x.major(x) \land g(x)$	
population	N : λx.population(x)	
cities	N : $\lambda x.city(x)$	
river	N : $\lambda x.river(x)$	
run through	(S\NP)/NP : λx.λy.traverse(y,x	
the largest	NP/N : λg.argmax(g,λx.size(x))	
rivers	N : $\lambda x.river(x)$	
the highest	NP/N : λg.argmax(g,λx.elev(x))	
the longest	NP/N : λg.argmax(g,λx.len(x))	

Geo	380 Test	Set	
Exact Match Accuracy:	Precision	Recall	F1
Zettlemoyer & Collins 2007	95.49	83.20	88.93
Zettlemoyer & Collins 2005	96.25	79.29	86.95
Wong & Money 2007	93.72	80.00	86.31