
1

Statistical NLP
Spring 2010

Lecture 21: Compositional Semantics

Dan Klein – UC Berkeley

Includes slides from Luke Zettlemoyer

Truth-Conditional Semantics

� Linguistic expressions:
� “Bob sings”

� Logical translations:
� sings(bob)

� Could be p_1218(e_397)

� Denotation:
� [[bob]] = some specific person (in some context)

� [[sings(bob)]] = ???

� Types on translations:
� bob : e (for entity)

� sings(bob) : t (for truth-value)

S

NP

Bob

bob

VP

sings

λy.sings(y)

sings(bob)

Truth-Conditional Semantics

� Proper names:
� Refer directly to some entity in the world

� Bob : bob [[bob]]W � ???

� Sentences:
� Are either true or false (given

how the world actually is)

� Bob sings : sings(bob)

� So what about verbs (and verb phrases)?
� sings must combine with bob to produce sings(bob)

� The λ-calculus is a notation for functions whose arguments are
not yet filled.

� sings : λx.sings(x)

� This is predicate – a function which takes an entity (type e) and
produces a truth value (type t). We can write its type as e→t.

� Adjectives?

S

NP

Bob

bob

VP

sings

λy.sings(y)

sings(bob)

Compositional Semantics

� So now we have meanings for the words

� How do we know how to combine words?

� Associate a combination rule with each grammar rule:

� S : β(α) → NP : α VP : β (function application)

� VP : λx . α(x) ∧ β(x) → VP : α and : ∅ VP : β (intersection)

� Example:

S

NP VP

Bob VP and

sings

VP

dances
bob

λy.sings(y) λz.dances(z)

λx.sings(x) ∧ dances(x)

[λx.sings(x) ∧ dances(x)](bob)

sings(bob) ∧ dances(bob)

Denotation

� What do we do with logical translations?

� Translation language (logical form) has fewer

ambiguities

� Can check truth value against a database

� Denotation (“evaluation”) calculated using the database

� More usefully: assert truth and modify a database

� Questions: check whether a statement in a corpus

entails the (question, answer) pair:

� “Bob sings and dances” → “Who sings?” + “Bob”

� Chain together facts and use them for comprehension

Other Cases

� Transitive verbs:

� likes : λx.λy.likes(y,x)

� Two-place predicates of type e→(e→t).

� likes Amy : λy.likes(y,Amy) is just like a one-place predicate.

� Quantifiers:

� What does “Everyone” mean here?

� Everyone : λf.∀x.f(x)

� Mostly works, but some problems

� Have to change our NP/VP rule.

� Won’t work for “Amy likes everyone.”

� “Everyone likes someone.”

� This gets tricky quickly!

S

NP VP

Everyone VBP NP

Amylikes

λx.λy.likes(y,x)

λy.likes(y,amy)

amy

λf.∀x.f(x)

[λf.∀x.f(x)](λy.likes(y,amy))

∀x.likes(x,amy)

2

Indefinites

� First try

� “Bob ate a waffle” : ate(bob,waffle)

� “Amy ate a waffle” : ate(amy,waffle)

� Can’t be right!
� ∃ x : waffle(x) ∧ ate(bob,x)

� What does the translation

of “a” have to be?

� What about “the”?

� What about “every”?

S

NP VP

Bob VBD NP

a waffleate

Grounding

� Grounding
� So why does the translation likes : λx.λy.likes(y,x) have anything

to do with actual liking?

� It doesn’t (unless the denotation model says so)

� Sometimes that’s enough: wire up bought to the appropriate
entry in a database

� Meaning postulates
� Insist, e.g ∀x,y.likes(y,x) → knows(y,x)

� This gets into lexical semantics issues

� Statistical version?

Tense and Events

� In general, you don’t get far with verbs as predicates

� Better to have event variables e

� “Alice danced” : danced(alice)

� ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)

� Event variables let you talk about non-trivial tense /

aspect structures

� “Alice had been dancing when Bob sneezed”

� ∃ e, e’ : dance(e) ∧ agent(e,alice) ∧

sneeze(e’) ∧ agent(e’,bob) ∧

(start(e) < start(e’) ∧ end(e) = end(e’)) ∧

(time(e’) < now)

Adverbs

� What about adverbs?

� “Bob sings terribly”

� terribly(sings(bob))?

� (terribly(sings))(bob)?

� ∃e present(e) ∧

type(e, singing) ∧
agent(e,bob) ∧
manner(e, terrible) ?

� Hard to work out
correctly!

S

NP VP

Bob VBP ADVP

terriblysings

Propositional Attitudes

� “Bob thinks that I am a gummi bear”
� thinks(bob, gummi(me)) ?

� thinks(bob, “I am a gummi bear”) ?

� thinks(bob, ^gummi(me)) ?

� Usual solution involves intensions (^X) which are,
roughly, the set of possible worlds (or conditions) in
which X is true

� Hard to deal with computationally
� Modeling other agents models, etc

� Can come up in simple dialog scenarios, e.g., if you want to talk
about what your bill claims you bought vs. what you actually
bought

Trickier Stuff

� Non-Intersective Adjectives
� green ball : λx.[green(x) ∧ ball(x)]

� fake diamond : λx.[fake(x) ∧ diamond(x)] ?

� Generalized Quantifiers
� the : λf.[unique-member(f)]

� all : λf. λg [∀x.f(x) → g(x)]

� most?

� Could do with more general second order predicates, too (why worse?)
� the(cat, meows), all(cat, meows)

� Generics
� “Cats like naps”

� “The players scored a goal”

� Pronouns (and bound anaphora)
� “If you have a dime, put it in the meter.”

� … the list goes on and on!

λx.[fake(diamond(x))

3

Multiple Quantifiers

� Quantifier scope
� Groucho Marx celebrates quantifier order ambiguity:

“In this country a woman gives birth every 15 min.

Our job is to find that woman and stop her.”

� Deciding between readings
� “Bob bought a pumpkin every Halloween”

� “Bob put a warning in every window”

� Multiple ways to work this out
� Make it syntactic (movement)

� Make it lexical (type-shifting)

Modeling Uncertainty?

� Gaping hole warning!

� Big difference between statistical disambiguation and statistical
reasoning.

� With probabilistic parsers, can say things like “72% belief that the PP
attaches to the NP.”

� That means that probably the enemy has night vision goggles.

� However, you can’t throw a logical assertion into a theorem prover
with 72% confidence.

� Not clear humans really extract and process logical statements
symbolically anyway.

� Use this to decide the expected utility of calling reinforcements?

� In short, we need probabilistic reasoning, not just probabilistic
disambiguation followed by symbolic reasoning!

The scout saw the enemy soldiers with night goggles.

CCG Parsing

� Combinatory
Categorial
Grammar
� Fully (mono-)

lexicalized
grammar

� Categories encode
argument
sequences

� Very closely
related to the
lambda calculus

� Can have spurious
ambiguities (why?)

Mapping to Logical Form

� Learning to Map Sentences to Logical Form

Texas borders Kansas

borders(texas,kansas)

�

Some Training Examples

Input: What states border Texas?

Output: λx.state(x) ∧ borders(x,texas)

Input: What is the largest state?

Output: argmax(λx.state(x), λx.size(x))

Input: What states border the largest state?

Output: λx.state(x) ∧ borders(x,
argmax(λy.state(y), λy.size(y)))

CCG Lexicon

Words
Category

Syntax : Semantics

Texas NP : texas

borders (S\NP)/NP : λx.λy.borders(y,x)

Kansas NP : kansas

Kansas city NP : kansas_city_MO

4

Parsing Rules (Combinators)

• Application

� X/Y : f Y : a => X : f(a)

� Y : a X\Y : f => X : f(a)

• Additional rules

� Composition

� Type Raising

(S\NP)/NP
λλλλx.λλλλy.borders(y,x)

NP
texas

S\NP
λλλλy.borders(y,texas)

NP
kansas

S\NP
λλλλy.borders(y,texas)

S
borders(kansas,texas)

CCG Parsing

NP
texas

(S\NP)/NP
λλλλx.λλλλy.borders(y,x)

borders KansasTexas

NP
kansas

S\NP
λλλλy.borders(y,kansas)

S
borders(texas,kansas)

Parsing a Question

(S\NP)/NP

λλλλx.λλλλy.borders(y,x)

border TexasWhat

NP
texas

S\NP
λλλλy.borders(y,texas)

states

N

λλλλx.state(x)
S/(S\NP)/N

λλλλf.λλλλg.λλλλx.f(x)∧∧∧∧g(x)

S/(S\NP)

λλλλg.λλλλx.state(x)∧∧∧∧g(x)

S

λλλλx.state(x) ∧∧∧∧ borders(x,texas)

Lexical Generation

Words Category

Texas NP : texas

borders (S\NP)/NP : λx.λy.borders(y,x)

Kansas NP : kansas

... ...

Output Lexicon

Input Training Example

Sentence: Texas borders Kansas

Logic Form: borders(texas,kansas)

GENLEX

• Input: a training example (Si,Li)

• Computation:

1. Create all substrings of words in Si

2. Create categories from Li

3. Create lexical entries that are the cross

product of these two sets

• Output: Lexicon Λ

GENLEX Cross Product

�Output Substrings:
Texas

borders

Kansas

Texas borders

borders Kansas

Texas borders Kansas

�Output Categories:

NP : texas

NP : kansas

(S\NP)/NP :

λx.λy.borders(y,x)

GENLEX is the cross product in these two output sets

X

Input Training Example

Sentence: Texas borders Kansas

Logic Form: borders(texas,kansas)

Output Lexicon

5

GENLEX: Output Lexicon

Words Category

Texas NP : texas

Texas NP : kansas

Texas (S\NP)/NP : λx.λy.borders(y,x)

borders NP : texas

borders NP : kansas

borders (S\NP)/NP : λx.λy.borders(y,x)

... ...

Texas borders Kansas NP : texas

Texas borders Kansas NP : kansas

Texas borders Kansas (S\NP)/NP : λx.λy.borders(y,x)

Weighted CCG

Given a log-linear model with a CCG lexicon Λ,

a feature vector f, and weights w.

The best parse is:

Where we consider all possible parses y

for the sentence x given the lexicon Λ.

y* = argmax
y
w ⋅ f (x,y)

Inputs: Training set {(xi, zi) | i=1…n} of sentences and logical forms. Initial
lexicon Λ. Initial parameters w. Number of iterations T.

Computation: For t = 1…T, i =1…n:

Step 1: Check Correctness

• Let

• If L(y*) = zi, go to the next example

Step 2: Lexical Generation

• Set

• Let

• Define λi to be the lexical entries in

• Set lexicon to Λ = Λ ∪ λi

Step 3: Update Parameters

• Let

• If

• Set

Output: Lexicon Λ and parameters w.

y*= argmax
y
w ⋅ f (xi,y)

λ = Λ U GENLEX(x i,zi)

ˆ y = arg max
y s.t. L(y)= zi

w ⋅ f (x i,y)

′ y = argmax
y
w ⋅ f (x i, y)

L(′ y) ≠ zi
w = w + f (x i, ˆ y) − f (x i, ′ y)

ŷ

Example Learned Lexical Entries

Words Category

states N : λx.state(x)

major N/N : λg.λx.major(x)∧g(x)

population N : λx.population(x)

cities N : λx.city(x)

river N : λx.river(x)

run through (S\NP)/NP : λx.λy.traverse(y,x)

the largest NP/N : λg.argmax(g,λx.size(x))

rivers N : λx.river(x)

the highest NP/N : λg.argmax(g,λx.elev(x))

the longest NP/N : λg.argmax(g,λx.len(x))

... ...

Challenge Revisited

The lexical entries that work for:

Show me the latest flight from Boston to Prague on Friday

S/NP NP/N N N\N N\N N\N
… … … … … …

Will not parse:

Boston to Prague the latest on Friday

NP N\N NP/N N\N
… … … …

Disharmonic Application

Reverse the direction of the principal category:

X\Y : f Y : a => X : f(a)

Y : a X/Y : f => X : f(a)

N
λλλλx.flight(x)

N/N
λλλλf.λλλλx.f(x)∧one_way(x)

flights one way

N
λλλλx.flight(x)∧one_way(x)

6

Missing content words

Insert missing semantic content

NP : c => N\N : λf.λx.f(x) ∧ p(x,c)

N
λλλλx.flight(x)

N\N
λλλλf.λλλλx.f(x)∧to(x,PRG)

flights to Prague

NP
BOS

Boston

N\N
λλλλf.λλλλx.f(x)∧from(x,BOS)

N
λλλλx.flight(x)∧from(x,BOS)

N
λλλλx.flight(x)∧from(x,BOS)∧to(x,PRG)

Missing content-free words

Bypass missing nouns

N\N : f => N : f(λx.true)

N/N
λλλλf.λλλλx.f(x)∧airline(x,NWA)

N\N
λλλλf.λλλλx.f(x)∧to(x,PRG)

Northwest Air to Prague

N
λλλλx.to(x,PRG)

N
λλλλx.airline(x,NWA) ∧ to(x,PRG)

A Complete Parse

NP
BOS

N\N

λλλλf.λλλλx.f(x)∧to(x,PRG)

Boston to Prague

NP/N

λλλλf.argmax(λλλλx.f(x),λλλλx.time(x))

the latest

N\N

λλλλf.λλλλx.f(x)∧day(x,FRI)

on Friday

N

λλλλx.day(x,FRI)

N\N

λλλλf.λλλλx.f(x)∧from(x,BOS)

N\N

λλλλf.λλλλx.f(x)∧from(x,BOS) ∧to(x,PRG)

NP\N

λλλλf.argmax(λλλλx.f(x)∧from(x,BOS)∧to(x,PRG), λλλλx.time(x))

N

argmax(λλλλx.from(x,BOS)∧to(x,PRG)∧day(x,FRI), λλλλx.time(x))

Geo880 Test Set

Precision Recall F1

Zettlemoyer & Collins 2007 95.49 83.20 88.93

Zettlemoyer & Collins 2005 96.25 79.29 86.95

Wong & Money 2007 93.72 80.00 86.31

Exact Match Accuracy:

