

- (4) repeat until convergence
- Can also do this when some docs are labeled .

EM: More Formally • Hard EM: $\underset{\theta,y}{\operatorname{arg\,max}} \mathsf{P}(y,\theta|x)$

Improve completions

$$y^* = \arg\max_{y} \mathsf{P}(y, \theta^* | x) = \arg\max_{y} \mathsf{P}(y | x, \theta^*)$$

Improve parameters

$$\theta^* = \arg \max_{\theta} \mathsf{P}(y^*, \theta | x) = \arg \max_{\theta} \mathsf{P}(\theta | x, y^*)$$

 Each step either does nothing or increases the objective

Soft EM for Naïve-Bayes Procedure: (1) calculate posteriors (soft completions):

$$\mathsf{P}(y|x) = \frac{\mathsf{P}(y)\prod_{i}\mathsf{P}(x_{i}|y)}{\sum_{y'}\mathsf{P}(y')\prod_{i}\mathsf{P}(x_{i}|y')}$$

• (2) compute expected counts under those posteriors:

$$c(w,y) = \sum_{x \in D} \mathsf{P}(y|x) \sum_{i} [\mathsf{1}(x_i = w, y)]$$

- (3) compute new parameters from these counts (divide)
- (4) repeat until convergence

EM in General

- We'll use EM over and over again to fill in missing data Convenience Scenario: we want P(x), including y just makes the model simpler (e.g. mixing weights for language models)
 - Induction Scenario: we actually want to know y (e.g. clustering)
 - NLP differs from much of statistics / machine learning in that we often want to interpret or use the induced variables (which is tricky at best)
- General approach: alternately update y and $\boldsymbol{\theta}$ E-step: compute posteriors P(y|x,θ)
 - This means scoring all completions with the current parameters
 Usually, we do this implicitly with dynamic programming
 detext fit to the there.
 - M-step: fit θ to these completions This is usually the easy part – treat the completions as (fractional) complete data
 - Initialization: start with some noisy labelings and the noise adjusts into patterns based on the data and the model
 - We'll see lots of examples in this course
- EM is only locally optimal (why?)

Heuristic Clustering?

- Many methods of clustering have been developed Most start with a pairwise distance function
 - Most can be interpreted probabilistically (with some effort)

 - Axes: flat / hierarchical, agglomerative / divisive, incremental / iterative, probabilistic / graph theoretic / linear algebraic

Examples:

- Single-link agglomerative clustering
- Complete-link agglomerative clustering
- Ward's method
- Hybrid divisive / agglomerative schemes

Document Clustering

- Typically want to cluster documents by topic
- Bag-of-words models usually do detect topic
- It's detecting deeper structure, syntax, etc. where it gets really tricky!
- All kinds of games to focus the clustering
 - Stopword lists
 - Term weighting schemes (from IR, more later)
 - Dimensionality reduction (more later)

Word Senses

- Words have multiple distinct meanings, or senses: Plant: living plant, manufacturing plant, ...
 - Title: name of a work, ownership document, form of address, material at the start of a film, ...
- Many levels of sense distinctions
 - Homonymy: totally unrelated meanings (river bank, money bank)
 - Polysemy: related meanings (star in sky, star on tv)
 - Systematic polysemy: productive meaning extensions (metonymy such as organizations to their buildings) or metaphor Sense distinctions can be extremely subtle (or not)
- Granularity of senses needed depends a lot on the task
- Why is it important to model word senses? Translation, parsing, information retrieval?

Word Sense Disambiguation

- Example: living plant vs. manufacturing plant
- How do we tell these senses apart? "context"
 - The manufacturing plant which had previously sustained the town's economy shut down after an extended labor strike.
 - Maybe it's just text categorization
 - Each word sense represents a topic
 - Run a naive-bayes classifier?
- Bag-of-words classification works ok for noun senses
 - 90% on classic, shockingly easy examples (line, interest, star)
 - 80% on senseval-1 nouns
 - 70% on senseval-1 verbs

Various Approaches to WSD

- Unsupervised learning
 - Bootstrapping (Yarowsky 95)
 - Clustering
- Indirect supervision
 - From thesauri
 - From WordNet From parallel corpora
- Supervised learning
 - Most systems do some kind of supervised learning
- Most systems to some time of supervises reaching
 Many competing classification technologies perform about the same (it's all about the knowledge sources you tap)
- Problem: training data available for only a few words

Resources

WordNet

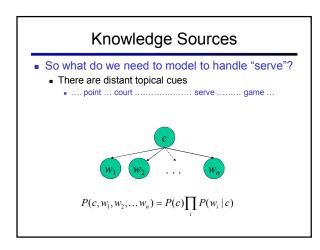
- Hand-build (but large) hierarchy of word senses
- Basically a hierarchical thesaurus
- SensEval -> SemEval
 - A WSD competition, of which there have been 3+3 iterations Training / test sets for a wide range of words, difficulties, and parts-of-speech
 - Bake-off where lots of labs tried lots of competing approaches
- SemCor
 - A big chunk of the Brown corpus annotated with WordNet senses
- OtherResources
 - The Open Mind Word Expert
 - Parallel texts
 - Flat thesauri

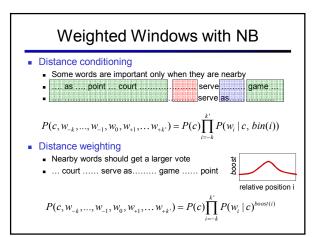
Verb WSD

- Why are verbs harder?
 - Verbal senses less topical
 - More sensitive to structure, argument choice

Verb Example: "Serve"

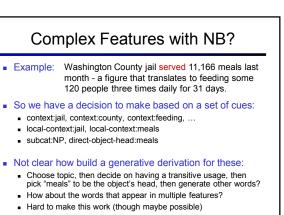
- [function] The tree stump serves as a table
- . [enable] The scandal served to increase his popularity
- [dish] We serve meals for the homeless
- [enlist] She served her country
- . [jail] He served six years for embezzlement
- . [tennis] It was Agassi's turn to serve
- [legal] He was served by the sheriff





Better Features

- There are smarter features:
 - Argument selectional preference: serve NP[meals] vs. serve NP[papers] vs. serve NP[country]
 - Subcategorization:
 - [function] serve PP[as]
 - [enable] serve VP[to]
 - [tennis] serve <intransitive>
 - [food] serve NP {PP[to]}
 - · Can capture poorly (but robustly) with local windows
 - ... but we can also use a parser and get these features explicitly
- Other constraints (Yarowsky 95)
 - One-sense-per-discourse (only true for broad topical distinctions)
 - One-sense-per-collocation (pretty reliable when it kicks in: manufacturing plant, flowering plant)



No real reason to try