
1

Statistical NLP
Spring 2010

Lecture 5: WSD / Maxent

Dan Klein – UC Berkeley

Unsupervised Learning with EM

� Goal, learn parameters without observing labels

x x x

y

x x x

y

x x x

y θ

2

EM: More Formally

� Hard EM:

� Improve completions

� Improve parameters

� Each step either does nothing or increases the
objective

Soft EM for Naïve-Bayes

� Procedure: (1) calculate posteriors (soft completions):

� (2) compute expected counts under those posteriors:

� (3) compute new parameters from these counts (divide)

� (4) repeat until convergence

3

EM in General

� We’ll use EM over and over again to fill in missing data

� Convenience Scenario: we want P(x), including y just makes the model
simpler (e.g. mixing weights for language models)

� Induction Scenario: we actually want to know y (e.g. clustering)

� NLP differs from much of statistics / machine learning in that we often
want to interpret or use the induced variables (which is tricky at best)

� General approach: alternately update y and θ

� E-step: compute posteriors P(y|x,θ)
� This means scoring all completions with the current parameters

� Usually, we do this implicitly with dynamic programming

� M-step: fit θ to these completions
� This is usually the easy part – treat the completions as (fractional) complete
data

� Initialization: start with some noisy labelings and the noise adjusts into
patterns based on the data and the model

� We’ll see lots of examples in this course

� EM is only locally optimal (why?)

Problem: Word Senses

� Words have multiple distinct meanings, or senses:

� Plant: living plant, manufacturing plant, …

� Title: name of a work, ownership document, form of address,
material at the start of a film, …

� Many levels of sense distinctions

� Homonymy: totally unrelated meanings (river bank, money bank)

� Polysemy: related meanings (star in sky, star on tv)

� Systematic polysemy: productive meaning extensions
(metonymy such as organizations to their buildings) or metaphor

� Sense distinctions can be extremely subtle (or not)

� Granularity of senses needed depends a lot on the task

� Why is it important to model word senses?

� Translation, parsing, information retrieval?

4

Word Sense Disambiguation

� Example: living plant vs. manufacturing plant

� How do we tell these senses apart?
� “context”

� Maybe it’s just text categorization

� Each word sense represents a topic

� Run the naive-bayes classifier from last class?

� Bag-of-words classification works ok for noun senses
� 90% on classic, shockingly easy examples (line, interest, star)

� 80% on senseval-1 nouns

� 70% on senseval-1 verbs

The manufacturing plant which had previously sustained the

town’s economy shut down after an extended labor strike.

Various Approaches to WSD

� Unsupervised learning
� Bootstrapping (Yarowsky 95)

� Clustering

� Indirect supervision
� From thesauri

� From WordNet

� From parallel corpora

� Supervised learning
� Most systems do some kind of supervised learning

� Many competing classification technologies perform about the
same (it’s all about the knowledge sources you tap)

� Problem: training data available for only a few words

5

Resources

� WordNet
� Hand-build (but large) hierarchy of word senses

� Basically a hierarchical thesaurus

� SensEval -> SemEval
� A WSD competition, of which there have been 3+3 iterations

� Training / test sets for a wide range of words, difficulties, and
parts-of-speech

� Bake-off where lots of labs tried lots of competing approaches

� SemCor
� A big chunk of the Brown corpus annotated with WordNet
senses

� OtherResources
� The Open Mind Word Expert

� Parallel texts

� Flat thesauri

Verb WSD

� Why are verbs harder?

� Verbal senses less topical

� More sensitive to structure, argument choice

� Verb Example: “Serve”

� [function] The tree stump serves as a table

� [enable] The scandal served to increase his popularity

� [dish] We serve meals for the homeless

� [enlist] She served her country

� [jail] He served six years for embezzlement

� [tennis] It was Agassi's turn to serve

� [legal] He was served by the sheriff

6

Knowledge Sources

� So what do we need to model to handle “serve”?

� There are distant topical cues

� …. point … court ………………… serve ……… game …

∏=
i

in cwPcPwwwcP)|()(),,,(21 K

c

w1 w2 wn. . .

Weighted Windows with NB

� Distance conditioning

� Some words are important only when they are nearby

� …. as …. point … court ………………… serve ……… game …

� …. ………………………………………… serve as……………..

� Distance weighting

� Nearby words should get a larger vote

� … court …… serve as……… game …… point

'

1 0 1 '(, ,..., , , ,) () (| , ())
k

k k i

i k

P c w w w w w P c P w c bin i
− − + +

=−

= ∏K

'
()

1 0 1 '(, ,..., , , ,) () (|)
k

boost i

k k i

i k

P c w w w w w P c P w c
− − + +

=−

= ∏K

b
o
o
s
t

relative position i

7

Better Features

� There are smarter features:

� Argument selectional preference:

� serve NP[meals] vs. serve NP[papers] vs. serve NP[country]

� Subcategorization:

� [function] serve PP[as]

� [enable] serve VP[to]

� [tennis] serve <intransitive>

� [food] serve NP {PP[to]}

� Can capture poorly (but robustly) with local windows

� … but we can also use a parser and get these features explicitly

� Other constraints (Yarowsky 95)

� One-sense-per-discourse (only true for broad topical distinctions)

� One-sense-per-collocation (pretty reliable when it kicks in:
manufacturing plant, flowering plant)

Complex Features with NB?

� Example:

� So we have a decision to make based on a set of cues:

� context:jail, context:county, context:feeding, …

� local-context:jail, local-context:meals

� subcat:NP, direct-object-head:meals

� Not clear how build a generative derivation for these:

� Choose topic, then decide on having a transitive usage, then
pick “meals” to be the object’s head, then generate other words?

� How about the words that appear in multiple features?

� Hard to make this work (though maybe possible)

� No real reason to try (though people do)

Washington County jail served 11,166 meals last

month - a figure that translates to feeding some

120 people three times daily for 31 days.

8

A Discriminative Approach

� View WSD as a discrimination task (regression, really)

� Have to estimate multinomial (over senses) where there
are a huge number of things to condition on

� History is too complex to think about this as a smoothing / back-
off problem

� Many feature-based classification techniques out there

� We tend to need ones that output distributions over
classes (why?)

P(sense | context:jail, context:county,

context:feeding, …

local-context:jail, local-context:meals

subcat:NP, direct-object-head:meals, ….)

Feature Representations

� Features are indicator functions fi
which count the occurrences of
certain patterns in the input

� We map each input to a vector of
feature predicate counts

Washington County jail served

11,166 meals last month - a

figure that translates to feeding

some 120 people three times

daily for 31 days.

context:jail = 1

context:county = 1

context:feeding = 1

context:game = 0

…

local-context:jail = 1

local-context:meals = 1

…

subcat:NP = 1

subcat:PP = 0

…

object-head:meals = 1

object-head:ball = 0

{ ()}if dd

9

Example: Text Classification

� We want to classify documents into categories

� Classically, do this on the basis of words in the document, but
other information sources are potentially relevant:
� Document length

� Average word length

� Document’s source

� Document layout

… win the election…

… win the game…

… see a movie…

SPORTS

POLITICS

OTHER

DOCUMENT CATEGORY

Some Definitions

INPUTS

OUTPUTS

FEATURE

VECTORS

… win the election…

SPORTS, POLITICS, OTHER
OUTPUT

SPACE

SPORTS

SPORTS ∧ “win” POLITICS ∧ “election”

POLITICS ∧ “win”

TRUE

OUTPUTS

POLITICS

Either x is implicit,

or y contains x

Sometimes, we want Y

to depend on x

10

Block Feature Vectors

� Sometimes, we think of the input as having features,
which are multiplied by outputs to form the candidates

… win the election …

“win” “election”

Non-Block Feature Vectors

� Sometimes the features of candidates cannot be
decomposed in this regular way

� Example: a parse tree’s features may be the
productions present in the tree

� Different candidates will thus often share features

� We’ll return to the non-block case later

S

NP VP

VN N

S

NP VP

N V N

S

NP VP

NP

N N

VP

V

NP

N

VP

V N

11

Linear Models: Scoring

� In a linear model, each feature gets a weight w

� We compare hypotheses on the basis of their linear scores:

Linear Models: Prediction Rule

� The linear prediction rule:

� We’ve said nothing about where weights come from!

12

Multiclass Decision Rule

� If more than two classes:

� Highest score wins

� Boundaries are more
complex

� Harder to visualize

� There are other ways: e.g. reconcile pairwise decisions

Learning Classifier Weights

� Two broad approaches to learning weights

� Generative: work with a probabilistic model of the data,
weights are (log) local conditional probabilities

� Advantages: learning weights is easy, smoothing is well-
understood, backed by understanding of modeling

� Discriminative: set weights based on some error-
related criterion

� Advantages: error-driven, often weights which are good for
classification aren’t the ones which best describe the data

� Both are heavily used, different advantages

13

How to pick weights?

� Goal: choose “best” vector w given training data
� For now, we mean “best for classification”

� The ideal: the weights which have greatest test set
accuracy / F1 / whatever
� But, don’t have the test set

� Must compute weights from training set

� Maybe we want weights which give best training set
accuracy?
� Hard discontinuous optimization problem

� May not (does not) generalize to test set

� Easy to overfit
Though, min-error

training for MT

does exactly this.

Linear Models: Perceptron

� The perceptron algorithm

� Iteratively processes the training set, reacting to training errors

� Can be thought of as trying to drive down training error

� The (online) perceptron algorithm:

� Start with zero weights

� Visit training instances one by one

� Try to classify

� If correct, no change!

� If wrong: adjust weights

14

Linear Models: Maximum Entropy

� Maximum entropy (logistic regression)

� Use the scores as probabilities:

� Maximize the (log) conditional likelihood of training data

Make positive

Normalize

Derivative for Maximum Entropy

Total count of feature n

in correct candidates

Expected count of

feature n in predicted

candidates

15

Expected Counts

� The optimum parameters are the ones for which each feature’s
predicted expectation equals its empirical expectation. The
optimum distribution is:

� Always unique (but parameters may not be unique)

� Always exists (if feature counts are from actual data).

xi’s

yi P(y | xi, w)

meal, jail, …

jail, term, …

food

prison .8

.4

The weight for the “context-

word:jail and cat:prison” feature: actual = 1 empirical = 1.2

Maximum Entropy II

� Motivation for maximum entropy:

� Connection to maximum entropy principle (sort of)

� Might want to do a good job of being uncertain on noisy cases…

� … in practice, though, posteriors are pretty peaked

� Regularization (compare to smoothing)

16

Example: NER Smoothing

Feature Type Feature PERS LOC

Previous word at -0.73 0.94

Current word Grace 0.03 0.00

Beginning bigram <G 0.45 -0.04

Current POS tag NNP 0.47 0.45

Prev and cur tags IN NNP -0.10 0.14

Previous state Other -0.70 -0.92

Current signature Xx 0.80 0.46

Prev state, cur sig O-Xx 0.68 0.37

Prev-cur-next sig x-Xx-Xx -0.69 0.37

P. state - p-cur sig O-x-Xx -0.20 0.82

…

Total: -0.58 2.68

Prev Cur Next

State Other ??? ???

Word at Grace Road

Tag IN NNP NNP

Sig x Xx Xx

Local Context

Feature Weights
Because of smoothing,
the more common
prefixes have larger
weights even though
entire-word features are
more specific.

Derivative for Maximum Entropy

Big weights are bad

Total count of feature n

in correct candidates

Expected count of

feature n in predicted

candidates

17

Unconstrained Optimization

� The maxent objective is an unconstrained optimization problem

� Basic idea: move uphill from current guess

� Gradient ascent / descent follows the gradient incrementally

� At local optimum, derivative vector is zero

� Will converge if step sizes are small enough, but not efficient

� All we need is to be able to evaluate the function and its derivative

Unconstrained Optimization

� Once we have a function f, we can find a local optimum by
iteratively following the gradient

� For convex functions, a local optimum will be global

� Basic gradient ascent isn’t very efficient, but there are
simple enhancements which take into account previous
gradients: conjugate gradient, L-BFGs

� There are special-purpose optimization techniques for
maxent, like iterative scaling, but they aren’t better

