Statistical NLP Spring 2010

Lecture 6: Parts-of-Speech

Dan Klein - UC Berkeley

Parts-of-Speech (English)

- One basic kind of linguistic structure: syntactic word classes

CC	conjunction, coordinating	and both but either or
CD	numeral, cardinal	mid-1890 nine-thirty 0.5 one
DT	determiner	a all an every no that the
EX	existential there	there
FW	foreign word	gemeinschaft hund ich jeux
IN	preposition or conjunction, subordinating	among whether out on by if
JJ	adjective or numeral, ordinal	third ill-mannered regrettable
JJR	adjective, comparative	braver cheaper taller
JJS	adjective, superlative	bravest cheapest tallest
MD	modal auxiliary	can may might will would
NN	noun, common, singular or mass	cabbage thermostat investment subhumanity
NNP	noun, proper, singular	Motown Cougar Yvette Liverpool
NNPS	noun, proper, plural	Americans Materials States
NNS	noun, common, plural	undergraduates bric-a-brac averages
POS	genitive marker	's
PRP	pronoun, personal	hers himself it we them
PRP\$	pronoun, possessive	adverb
RB	adverb, comparative	her his mine my our ours their thy your
RBR	adverb, superlative	occasionally maddeningly adventurously
RBS	particle	further gloomier heavier less-perfectly
RP	best biggest nearest worst	

Part-of-Speech Ambiguity

- Words can have multiple parts of speech

VBD		VB			
VBN	VBZ	VBP	VBZ		
NNP	NNS	NN	NNS	CD	NN

Fed raises interest rates 0.5 percent

Mrs./NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

- Two basic sources of constraint:
- Grammatical environment
- Identity of the current word
- Many more possible features:
- Suffixes, capitalization, name databases (gazetteers), etc...

Why POS Tagging?

- Useful in and of itself (more than you'd think)
- Text-to-speech: record, lead
- Lemmatization: saw[v] \rightarrow see, saw[n$] \rightarrow$ saw
- Quick-and-dirty NP-chunk detection: grep \{JJ | NN\}* \{NN | NNS\}
- Useful as a pre-processing step for parsing
- Less tag ambiguity means fewer parses
- However, some tag choices are better decided by parsers

IN
DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...
VDN
DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

Classic Solution: HMMs

- We want a model of sequences s and observations w

$$
P(\mathbf{s}, \mathbf{w})=\prod_{i} P\left(s_{i} \mid s_{i-1}\right) P\left(w_{i} \mid s_{i}\right)
$$

- Assumptions:
- States are tag n-grams
- Usually a dedicated start and end state / word
- Tag/state sequence is generated by a markov model
- Words are chosen independently, conditioned only on the tag/state
- These are totally broken assumptions: why?

States

- States encode what is relevant about the past
- Transitions P(s|s') encode well-formed tag sequences
- In a bigram tagger, states = tags

- In a trigram tagger, states = tag pairs

Estimating Transitions

- Use standard smoothing methods to estimate transitions:

$$
P\left(t_{i} \mid t_{i-1}, t_{i-2}\right)=\lambda_{2} \hat{P}\left(t_{i} \mid t_{i-1}, t_{i-2}\right)+\lambda_{1} \hat{P}\left(t_{i} \mid t_{i-1}\right)+\left(1-\lambda_{1}-\lambda_{2}\right) \hat{P}\left(t_{i}\right)
$$

- Can get a lot fancier (e.g. KN smoothing) or use higher orders, but in this case it doesn't buy much
- One option: encode more into the state, e.g. whether the previous word was capitalized (Brants 00)
- BIG IDEA: The basic approach of state-splitting turns out to be very important in a range of tasks

Estimating Emissions

$$
P(\mathbf{s}, \mathbf{w})=\prod_{i} P\left(s_{i} \mid s_{i-1}\right) P\left(w_{i} \mid s_{i}\right)
$$

- Emissions are trickier:
- Words we've never seen before
- Words which occur with tags we've never seen them with
- One option: break out the Good-Turning smoothing
- Issue: unknown words aren't black boxes:

343,127.23 11-year Minteria reintroducibly

- Solution: unknown words classes (affixes or shapes)
$\mathrm{D}^{+}, \mathrm{D}^{+} . \mathrm{D}^{+}$
$\mathrm{D}^{+}-\mathrm{x}^{+}$
$X x^{+}$
x+""ly"
- [Brants 00] used a suffix trie as its emission model

Disambiguation (Inference)

- Problem: find the most likely (Viterbi) sequence under the model

$$
\mathbf{t}^{*}=\underset{\mathbf{t}}{\arg \max } \mathrm{P}(\mathbf{t} \mid \mathbf{w})
$$

- Given model parameters, we can score any tag sequence
< ৫ > < , NNP> <NNP, VBZ> <VBZ, NN> <NN, NNS> <NNS, CD> <CD, NN> <STOP>
NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent. $\mathrm{P}($ NNP $\mid<\bullet, \star>) \mathrm{P}($ Fed $\mid N N P) \mathrm{P}(V B Z \mid<N N P, \star>) \mathrm{P}($ raises $\mid V B Z) \mathrm{P}($ NN $\mid V B Z, N N P) \ldots$.

- In principle, we're done - list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)

NNP VBZ NN NNS CD NN		$\log P=-23$
NNP NNS NN NNS CD NN	\triangleleft	$\log P=-29$
NNP VBZ VB NNS CD NN	\triangleleft	$\log P=-27$

Finding the Best Trajectory

- Too many trajectories (state sequences) to list
- Option 1: Beam Search

- A beam is a set of partial hypotheses
- Start with just the single empty trajectory
- At each derivation step:
- Consider all continuations of previous hypotheses
- Discard most, keep top k, or those within a factor of the best
- Beam search works ok in practice
- ... but sometimes you want the optimal answer
- ... and you need optimal answers to validate your beam search
- ... and there's usually a better option than naïve beams

The State Lattice / Trellis

\because	\bigcirc	\cdots	\cdots	\bigcirc	\bigcirc
(N)	(N)	(N)	(N)	(N)	(N)
(V)	(V)	V	V	(V)	(V)
(J)	(J)	(J)	(J)	(J)	(J)
(D)	(D)	(D)	(D)	(D)	(D)
(\$)	(\$)	$\$$	(\$)	(\$)	(\$)
START	Fed	raises	interest	rates	END

The Viterbi Algorithm

- Dynamic program for computing

$$
\delta_{i}(s)=\max _{s_{0} \ldots s_{i-1} s} P\left(s_{0} \ldots s_{i-1} s, w_{1} \ldots w_{i-1}\right)
$$

- The score of a best path up to position i ending in state s

$$
\begin{aligned}
& \delta_{0}(s)=\left\{\begin{array}{lc}
1 & \text { if } s=<\bullet, \bullet> \\
0 & \text { otherwise }
\end{array}\right. \\
& \delta_{i}(s)=\max _{s^{\prime}} P\left(s \mid s^{\prime}\right) P\left(w \mid s^{\prime}\right) \delta_{i-1}\left(s^{\prime}\right)
\end{aligned}
$$

- Also store a backtrace

$$
\psi_{i}(s)=\underset{s^{\prime}}{\arg \max } P\left(s \mid s^{\prime}\right) P\left(w \mid s^{\prime}\right) \delta_{i-1}\left(s^{\prime}\right)
$$

- Memoized solution
- Iterative solution

So How Well Does It Work?

- Choose the most common tag
- 90.3% with a bad unknown word model
- 93.7% with a good one
- TnT (Brants, 2000):
- A carefully smoothed trigram tagger
- Suffix trees for emissions
- 96.7% on WSJ text (SOA is $\sim 97.5 \%$)
- Noise in the data
- Many errors in the training and test corpora

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

- Probably about 2\% guaranteed error

JJ JJ NN chief executive officer

NN JJ NN chief executive officer
JJ NN NN chief executive officer NN NN NN chief executive officer

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
- Most freq tag: $\sim 90 \% / \sim 50 \%$
- Trigram HMM: ~95\% / ~ 55
- TnT (HMM++): 96.2\% / 86.0\% $\quad \begin{gathered}\text { On unknown } \\ \text { words }\end{gathered}$
- Maxent P(t|w): 93.7\% / 82.6\%
- MEMM tagger: $96.9 \% / 86.9 \%$
- Cyclic tagger: $\quad 97.2 \% / 89.0 \%$
- Upper bound: ~98\%

Common Errors

- Common errors [from Toutanova \& Manning 00]

Better Features

- Can do surprisingly well just looking at a word by itself:
- Word
the: the \rightarrow DT
- Lowercased word
- Prefixes
- Suffixes
- Capitalization
- Word shapes

Importantly: importantly \rightarrow RB
unfathomable: un- $\rightarrow \mathrm{JJ}$
Surprisingly: -ly \rightarrow RB
Meridian: CAP \rightarrow NNP
35-year: $\mathrm{d}-\mathrm{x} \rightarrow \mathrm{JJ}$

- Then build a maxent (or whatever) model to predict tag
- Maxent P(t|w): 93.7\% / 82.6\%

Why Linear Context is Useful

- Lots of rich local information!

RB
PRP VBD IN RB IN PRP VBD
They left as soon as he arrived.

- We could fix this with a feature that looked at the next word

JJ
NNP NNS VBD VBN
Intrinsic flaws remained undetected.

- We could fix this by linking capitalized words to their lowercase versions
- Solution: discriminative sequence models (MEMMs, CRFs)
- Reality check:
- Taggers are already pretty good on WSJ journal text...
- What the world needs is taggers that work on other text!
- Though: other tasks like IE have used the same methods to good effect

Sequence-Free Tagging?

- What about looking at a word and its environment, but no sequence information?
- Add in previous / next word
the \qquad

- Previous / next word shapes \qquad
- Occurrence pattern features
[$\mathrm{X}: \mathrm{x}$ X occurs]
- Crude entity detection
- Phrasal verb in sentence?
__..... (Inc.|Co.)
put -
- Conjunctions of these things
- All features except sequence: 96.6\% / 86.8\%
- Uses lots of features: > 200K
- Why isn't this the standard approach?

MEMM Taggers

- One step up: also condition on previous tags

$$
P(\mathbf{t} \mid \mathbf{w})=\prod_{i} P_{\mathrm{ME}}\left(t_{i} \mid \mathbf{w}, t_{i-1}, t_{i-2}\right)
$$

- Train up $\mathrm{P}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{w}, \mathrm{t}_{\mathrm{i}-1}, \mathrm{t}_{\mathrm{i}-2}\right)$ as a normal maxent model, then use to score sequences
- This is referred to as an MEMM tagger [Ratnaparkhi 96]
- Beam search effective! (Why?)
- What's the advantage of beam size 1 ?

Decoding

- Decoding maxent taggers:
- Just like decoding HMMs
- Viterbi, beam search, posterior decoding
- Viterbi algorithm (HMMs):

$$
\delta_{i}(s)=\underset{s^{\prime}}{\arg \max } P\left(s \mid s^{\prime}\right) P\left(w_{i-1} \mid s^{\prime}\right) \delta_{i-1}\left(s^{\prime}\right)
$$

- Viterbi algorithm (Maxent):

$$
\delta_{i}(s)=\underset{s^{\prime}}{\arg \max } P\left(s \mid s^{\prime}, \mathbf{w}\right) \delta_{i-1}\left(s^{\prime}\right)
$$

TBL Tagger

- [Brill 95] presents a transformation-based tagger
- Label the training set with most frequent tags

DT MD VBD VBD .
The can was rusted.

- Add transformation rules which reduce training mistakes
- MD \rightarrow NN: DT
- VBD \rightarrow VBN : VBD \qquad .
- Stop when no transformations do sufficient good
- Does this remind anyone of anything?
- Probably the most widely used tagger (esp. outside NLP)
- ... but definitely not the most accurate: 96.6% / 82.0%

TBL Tagger II

- What gets learned? [from Brill 95]

	Change Tag		
$\#$	From	To	Condition
1	NN	VB	Previous tag is $T O$
2	VBP	VB	One of the previous three tags is $M D$
3	NN	VB	One of the previous two tags is $M D$
4	VB	NN	One of the previous two tags is $D T$
5	VBD	VBN	One of the previous three tags is $V B Z$
6	VBN	VBD	Previous tag is $P R P$
7	VBN	VBD	Previous tag is $N N P$
8	VBD	VBN	Previous tag is $V B D$
9	VBP	VB	Previous tag is $T O$
10	POS	VBZ	Previous tag is $P R P$
11	VB	VBP	Previous tag is $N N S$
12	VBD	VBN	One of previous three tags is $V B P$
13	IN	WDT	One of next two tags is $V B$
14	VBD	VBN	One of previous two tags is $V B$
15	VB	VBP	Previous tag is $P R P$
16	IN	WDT	Next tag is $V B Z$
17	IN	DT	Next tag is $N N$
18	JJ	NNP	Next tag is $N N P$
19	IN	WDT	Next tag is $V B D$
20	JJR	RBR	Next tag is $J J$

	Change Tag		
$\#$	From	To	Condition
1	NN	NNS	Has suffix -s
2	NN	CD	Has character .
3	NN	JJ	Has character -
4	NN	VBN	Has suffix -ed
5	NN	VBG	Has suffix -ing
6	$? ?$	RB	Has suffix -ly
7	??	JJ	Adding suffix -ly results in a word.
8	NN	CD	The word \$ can appear to the left.
9	NN	JJ	Has suffix -al
10	NN	VB	The word would can appear to the left.
11	NN	CD	Has character 0
12	NN	JJ	The word be can appear to the left.
13	NNS	JJ	Has suffix -us
14	NNS	VBZ	The word it can appear to the left.
15	NN	JJ	Has suffix -ble
16	NN	JJ	Has suffix -ic
17	NN	CD	Has character 1
18	NNS	NN	Has suffix -ss
19	??	JJ	Deleting the prefix un- results in a word
20	NN	JJ	Has suffix -ive

EngCG Tagger

- English constraint grammar tagger
- [Tapanainen and Voutilainen 94]
- Something else you should know about
- Hand-written and knowledge driven
- "Don't guess if you know" (general point about modeling more structure!)
- Tag set doesn't make all of the hard distinctions as the standard tag set
walk
walk <SV> <SVO> V SUBJUNCTIVE VFIN walk <SV> <SVO> V IMP VFIN
walk <SV> <SVO> V INF
walk <SV> <SVO> V PRES -SG3 VFIN walk <SV> <SVO (e.g. JJ/NN)
- They get stellar accuracies: 99% on their tag set
- Linguistic representation matters...
- ... but it's easier to win when you make up the rules

Global Discriminative Taggers

- Newer, higher-powered discriminative sequence models
- CRFs (also perceptrons, M3Ns)
- Do not decompose training into independent local regions
- Can be deathly slow to train - require repeated inference on training set
- Differences tend not to be too important for POS tagging
- Differences more substantial on other sequence tasks
- However: one issue worth knowing about in local models
- "Label bias" and other explaining away effects
- MEMM taggers' local scores can be near one without having both good "transitions" and "emissions"
- This means that often evidence doesn't flow properly
- Why isn't this a big deal for POS tagging?
- Also: in decoding, condition on predicted, not gold, histories

Perceptron Taggers

- Linear models:

$$
\operatorname{score}(\mathbf{t} \mid \mathbf{w})=\lambda^{\top} f(\mathbf{t}, \mathbf{w})
$$

- ... that decompose along the sequence

$$
=\lambda^{\top} \sum_{i} f\left(t_{i}, t_{i-1}, \mathbf{w}, i\right)
$$

- ... allow us to predict with the Viterbi algorithm

$$
\mathbf{t}^{*}=\underset{\mathbf{t}}{\arg \max } \operatorname{score}(\mathbf{t} \mid \mathbf{w})
$$

- ... which means we can train with the perceptron algorithm (or related updates, like MIRA)

CRFs

- Make a maxent model over entire taggings
- MEMM

$$
P(\mathbf{t} \mid \mathbf{w})=\prod_{i} \frac{1}{Z(i)} \exp \left(\lambda^{\top} f\left(t_{i}, t_{i-1}, \mathbf{w}, i\right)\right)
$$

- CRF

$$
\begin{aligned}
P(\mathbf{t} \mid \mathbf{w}) & =\frac{1}{Z(\mathbf{w})} \exp \left(\lambda^{\top} f(\mathbf{t}, \mathbf{w})\right) \\
& =\frac{1}{Z(\mathbf{w})} \exp \left(\lambda^{\top} \sum_{i} f\left(t_{i}, t_{i-1}, \mathbf{w}, i\right)\right) \\
& =\frac{1}{Z(\mathbf{w})} \prod_{i} \phi_{i}\left(t_{i}, t_{i-1}\right)
\end{aligned}
$$

CRFs

- Like any maxent model, derivative is:

$$
\frac{\partial L(\lambda)}{\partial \lambda}=\sum_{k}\left(\mathbf{f}_{k}\left(\mathbf{t}^{k}\right)-\sum_{\mathrm{t}} P\left(\mathrm{t} \mid \mathbf{w}_{k}\right) \mathbf{f}_{k}(\mathrm{t})\right)
$$

- So all we need is to be able to compute the expectation each feature, for example the number of times the label pair DT-NN occurs, or the number of times NN -interest occurs in a sentence
- How many times does, say, DT-NN occur at position 10? The ratio of the scores of trajectories with that configuration to the score of all
- This requires exactly the same forward-backward score ratios as for EM, but using the local potentials phi instead of the local probabilities

Domain Effects

- Accuracies degrade outside of domain
- Up to triple error rate
- Usually make the most errors on the things you care about in the domain (e.g. protein names)
- Open questions
- How to effectively exploit unlabeled data from a new domain (what could we gain?)
- How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
- Raw sentences in
- Tagged sentences out
- Obvious thing to do:
- Start with a (mostly) uniform HMM
- Run EM
- Inspect results

EM for HMMs: Process

- Alternate between recomputing distributions over hidden variables (the tags) and reestimating parameters
- Crucial step: we want to tally up how many (fractional) counts of each kind of transition and emission we have under current params:

$$
\begin{aligned}
& \operatorname{count}\left(s \rightarrow s^{\prime}\right)=\sum_{i} P\left(t_{i-1}=s, t_{i}=s^{\prime} \mid \mathbf{w}\right) \\
& \operatorname{count}(w, s)=\sum_{i: w_{i}=w} P\left(t_{i}=s \mid \mathbf{w}\right)
\end{aligned}
$$

- But we need a dynamic program to help, because there are too many sequences to sum over to compute these marginals

EM for HMMs: Quantities

- Cache total path values:

$$
\begin{aligned}
\alpha_{i}(s) & =P\left(w_{0} \ldots w_{i}, s_{i}\right) \\
& =\sum_{s_{i-1}} P\left(s_{i} \mid s_{i-1}\right) P\left(w_{i} \mid s_{i}\right) \alpha_{i-1}\left(s_{i-1}\right) \\
\beta_{i}(s) & =P\left(w_{i}+1 \ldots w_{n} \mid s_{i}\right) \\
& =\sum_{s_{i+1}} P\left(s_{i+1} \mid s_{i}\right) P\left(w_{i+1} \mid s_{i+1}\right) \beta_{i+1}\left(s_{i+1}\right)
\end{aligned}
$$

- Can calculate in $\mathrm{O}\left(\mathrm{s}^{2} \mathrm{n}\right)$ time (why?)

The State Lattice / Trellis					
\bigcirc	\bigcirc	\bigcirc	(1)	\bigcirc	(1)
(1)	(1)	(1)	(1)	(1)	(1)
(v)	(v)	(v)	(v)	(v)	(V)
(1)	(1)	(1)	(1)	(1)	(1)
(D)	(D)	(D)	(D)	(D)	(D)
(\$)	(\$)	(\$)	(5)	(\$)	(\$)
Start	Fed	raises	interest	rates	End

EM for HMMs: Process

- From these quantities, can compute expected transitions:

$$
\operatorname{count}\left(s \rightarrow s^{\prime}\right)=\frac{\sum_{i} \alpha_{i}(s) P\left(s^{\prime} \mid s\right) P\left(w_{i} \mid s\right) \beta_{i+1}\left(s^{\prime}\right)}{P(\mathbf{w})}
$$

- And emissions:

$$
\operatorname{count}(w, s)=\frac{\sum_{i: w_{i}=w} \alpha_{i}(s) \beta_{i+1}(s)}{P(\mathbf{w})}
$$

Merialdo: Setup

- Some (discouraging) experiments [Merialdo 94]
- Setup:
- You know the set of allowable tags for each word
- Fix k training examples to their true labels
- Learn $P(w \mid t)$ on these examples
- Learn $\mathrm{P}\left(\mathrm{t} \mid \mathrm{t}_{-1}, \mathrm{t}_{-2}\right)$ on these examples
- On n examples, re-estimate with EM
- Note: we know allowed tags but not frequencies

Merialdo: Results

Number of tagged sentences used for the initial model																
0											$\mathbf{1 0 0}$	2000	5000	10000	20000	all
Iter	Correct tags (\% words)								after ML on 1M words							
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0									
$\mathbf{1}$	80.5	92.6	95.8	96.3	96.6	96.7	96.8									
2	81.8	93.0	95.7	96.1	96.3	96.4	96.4									
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2									
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0									
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8									
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7									
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5									
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4									
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3									
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2									

Distributional Clustering

[Finch and Chater 92, Shuetze 93, many others]

Distributional Clustering

- Three main variants on the same idea:
- Pairwise similarities and heuristic clustering
- E.g. [Finch and Chater 92]
- Produces dendrograms
- Vector space methods
- E.g. [Shuetze 93]
- Models of ambiguity
- Probabilistic methods
- Various formulations, e.g. [Lee and Pereira 99]

Nearest Neighbors

word	nearest neighbors
accompanied	submitted banned financed developed authorized headed canceled awarded barred
almost	virtually merely formally fully quite officially just nearly only less
causing	reflecting forcing providing creating producing becoming carrying particularly
classes	elections courses payments losses computers performances violations levels pictures
directors	professionals investigations materials competitors agreements papers transactions
goal	mood roof eye image tool song pool scene gap voice
japanese	chinese iraqi american western arab foreign european federal soviet indian
represent	reveal attend deliver reflect choose contain impose manage establish retain
think	believe wish know realize wonder assume feel say mean bet
york	angeles francisco sox rouge kong diego zone vegas inning layer
on	through in at over into with from for by across
must	might would could cannot will should can may does helps
they	we you i he she nobody who it everybody there

