

Feature	-Rie	ch S	Seq	uen	ce Models
 Problem: HN features of a 			hard to	o work	with arbitrary
Example: na	ime er	ntity ree	cogniti	on (NE	ER)
PER PER O O O	0 0	0 0	O ORO	3 O	0 0 0 0 LOC LOC 0
Tim Boon has signed a	a contract e	extension w	ith Leiceste	ershire whic	ch will keep him at Grace Road .
	1	ocal (Conte	xt	
	-				1
		Prev	Cur	Next	
	State	Other	???	???	
	Word	at	Grace	Road	
	Tag	IN	NNP	NNP	
	Sig	x	Xx	Xx	

MEMM Taggers

 Idea: left-to-right local decisions, condition on previous tags and also entire input

$$P(\mathbf{t}|\mathbf{w}) = \prod_{i} P_{\mathsf{ME}}(l_i|\mathbf{w}, l_{i-1}, l_{i-2})$$

- Train up $\mathsf{P}(t_i|w,t_{i+1},t_{i+2})$ as a normal maxent model, then use to score sequences
- This is referred to as an MEMM tagger [Ratnaparkhi 96]
- Beam search effective! (Why?)
- What about beam size 1?

$$\begin{array}{l} \textbf{Decoding}\\ \bullet \ \textbf{Decoding MEMM taggers:}\\ \bullet \ \textbf{Just like decoding HMMs, different local scores}\\ \bullet \ \textbf{Viterbi, beam search, posterior decoding}\\ \bullet \ \textbf{Viterbi algorithm (HMMs):}\\ \delta_i(s) = \arg\max_{s'} P(s|s') P(w_{i-1}|s') \delta_{i-1}(s')\\ \bullet \ \textbf{Viterbi algorithm (MEMMs):}\\ \delta_i(s) = \arg\max_{s'} P(s|s', \mathbf{w}) \delta_{i-1}(s')\\ \bullet \ \textbf{General:}\\ \delta_i(s) = \arg\max_{s'} \phi_i(s', s) \delta_{i-1}(s') \end{array}$$

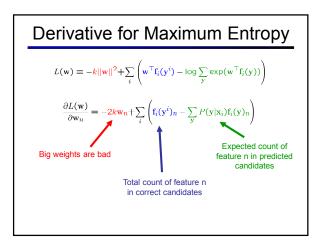
Maximum Entropy II

Remember: maximum entropy objective

$$L(\mathbf{w}) = \sum_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\mathsf{T}} \mathbf{f}_{i}(\mathbf{y})) \right)$$

- Problem: lots of features allow perfect fit to training set
- Regularization (compare to smoothing)

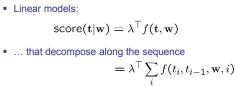
$$\max_{\mathbf{w}} \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) - k ||\mathbf{w}||^{2}$$



	Exa	mp		IER Regu			1				
Because of regularization				Feature Weights							
	, the mo			Feature Type	Feature	PERS	LOC				
	xes hav			Previous word	at	-0.73	0.94				
	hts ever			Current word	Grace	0.03	0.00				
entire-word features are more specific. Local Context			are	Beginning bigram	▲ <g< td=""><td>0.45</td><td>-0.04</td></g<>	0.45	-0.04				
				Current POS tag	NNP	0.47	0.45				
				Prev and cur tags	IN NNP	-0.10	0.14				
	Local	onte	xt	Previous state	Other	-0.70	-0.92				
	Prev	Cur	Next	Current signature	Xx	0.80	0.46				
State	Other	222	222	Prev state, cur sig	O-Xx	0.68	0.37				
Word	at	Grace	Road	Prev-cur-next sig	x-Xx-Xx	-0.69	0.37				
Tag	IN	NNP	NNP	P. state - p-cur sig	O-x-Xx	-0.20	0.82				
Sig	x	Xx	Xx								
Sig	^	~~~	~~~	Total:		-0.58	2.68				

Perceptron Taggers

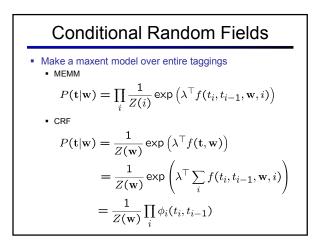
[Collins 01]



• ... allow us to predict with the Viterbi algorithm

 $\mathbf{t}^* = \underset{\mathbf{t}}{\text{arg max score}}(\mathbf{t}|\mathbf{w})$

 ... which means we can train with the perceptron algorithm (or related updates, like MIRA)



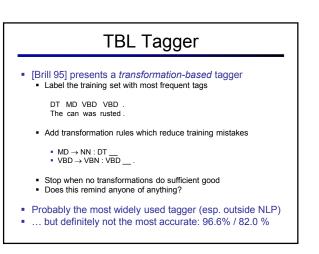
· Like any maxent model, derivative is:

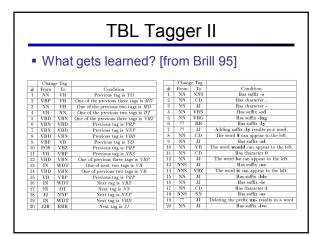
$$\frac{\partial L(\lambda)}{\partial \lambda} = \sum_{k} \left(\mathbf{f}_{k}(\mathbf{t}^{k}) - \sum_{\mathbf{t}} P(\mathbf{t}|\mathbf{w}_{k}) \mathbf{f}_{k}(\mathbf{t}) \right)$$

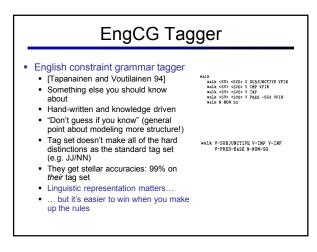
- So all we need is to be able to compute the expectation of each feature (for example the number of times the label pair DT-NN occurs, or the number of times NN-interest occurs)
- Critical quantity: counts of posterior marginals:

$$count(w,s) = \sum_{i:w_i=w} P(t_i = s | \mathbf{w})$$
$$count(s \to s') = \sum_i P(t_{i-1} = s, t_i = s' | \mathbf{w})$$

Со	m	ıρι	utir	ng	Po	ste	rior Marginals
 How 	v m	any	(exp	ecte	d) tin	nes is i	word w tagged with s?
	С	ou	nt(u	v,s)		$\sum_{w_i=w}$	$P(t_i = s \mathbf{w})$
 How 	v to	cor	nput	e that	t mai	rginal?	$\alpha_i(s) = \sum_{s'} \phi_i(s',s) \alpha_{i-1}(s')$
Õ)	0	٥	\odot	\odot	٢	$\beta_i(s) = \sum_{i}^{s'} \phi_{i+1}(s, s') \beta_{i+1}(s')$
)	N	N	\otimes	\mathbb{N}	\mathbb{N}	8
Ø)	\odot	\odot	\odot	\odot	\odot	$P(t_i = s \mathbf{w}) = \frac{\alpha_i(s)\beta_i(s)}{\alpha_N(END)}$
Q)	J	J	J	J	J	
0)	0	ø	ø	0	ø	
\$)	\$	\$	\$	\$	\$	
STA	ART	Fed	raises	interest	rates	END	







Domain Effects

- Accuracies degrade outside of domain
 - Up to triple error rate
 - Usually make the most errors on the things you care about in the domain (e.g. protein names)
- Open guestions
 - How to effectively exploit unlabeled data from a new domain (what could we gain?)
 - How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)

- AKA part-of-speech induction
- Task:
 - Raw sentences in
 - Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM

 $\alpha_i($

Inspect results

EM for HMMs: Process

- Alternate between recomputing distributions over hidden variables (the tags) and reestimating parameters Crucial step: we want to tally up how many (fractional) counts of each kind of transition and emission we have under current params: .

$$\operatorname{count}(w,s) = \sum_{i:w_i=w} P(t_i = s | \mathbf{w})$$

$$\operatorname{count}(s \to s') = \sum_{i} P(t_{i-1} = s, t_i = s' | \mathbf{w})$$

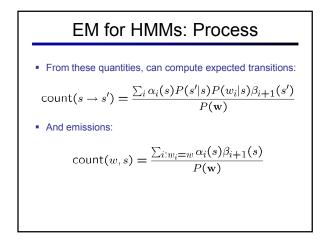
Same quantities we needed to train a CRF!

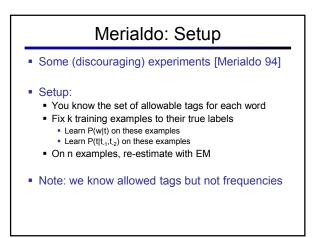
EM for HMMs: Quantities

Total path values (correspond to probabilities here):

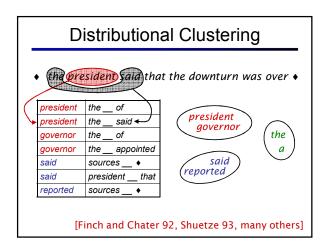
$$s) = P(w_0 \dots w_i, s_i) \\ = \sum_{s_{i-1}} P(s_i | s_{i-1}) P(w_i | s_i) \alpha_{i-1}(s_{i-1})$$

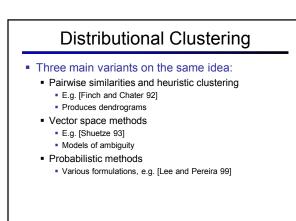
$$\beta_i(s) = P(w_i + 1 \dots w_n | s_i) = \sum_{s_{i+1}} P(s_{i+1} | s_i) P(w_{i+1} | s_{i+1}) \beta_{i+1}(s_{i+1})$$

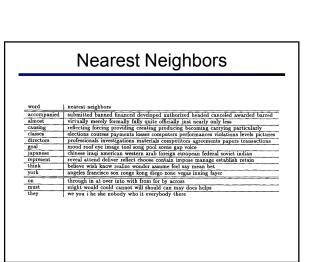


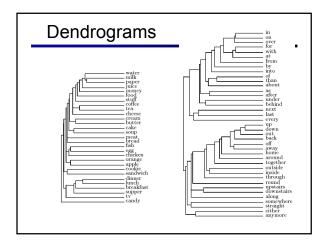


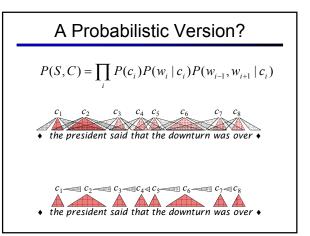
Nı	umber o	of tagge	ed sente	nces use	ed for the	e initial n	ıodel	
	0	100	2000	5000	10000	20000	all	
Iter	Correct tags (% words) after ML on 1M words							
0	77.0	90.0	95.4	96.2	96.6	96.9	97.	
1	80.5	92.6	95.8	96.3	96.6	96.7	96.	
2	81.8	93.0	95.7	96.1	96.3	96.4	96.	
3	83.0	93.1	95.4	95.8	96.1	96.2	96.	
4	84.0	93.0	95.2	95.5	95.8	96.0	96.	
5	84.8	92.9	95.1	95.4	95.6	95.8	95.	
6	85.3	92.8	94.9	95.2	95.5	95.6	95.	
7	85.8	92.8	94.7	95.1	95.3	95.5	95.	
8	86.1	92.7	94.6	95.0	95.2	95.4	95.	
9	86.3	92.6	94.5	94.9	95.1	95.3	95.	
10	86.6	92.6	94.4	94.8	95.0	95.2	95.	











What Else?

Various newer ideas:

- Context distributional clustering [Clark 00]
- Morphology-driven models [Clark 03]
- Contrastive estimation [Smith and Eisner 05]
- Feature-rich induction [Haghighi and Klein 06]

Also:

- What about ambiguous words?
- Using wider context signatures has been used for learning synonyms (what's wrong with this approach?)
- Can extend these ideas for grammar induction (later)