
1

Statistical NLP
Spring 2010

Lecture 7: POS / NER Tagging

Dan Klein – UC Berkeley

Feature-Rich Sequence Models

� Problem: HMMs make it hard to work with arbitrary
features of a sentence

� Example: name entity recognition (NER)

Prev Cur Next

State Other ??? ???

Word at Grace Road

Tag IN NNP NNP

Sig x Xx Xx

Local Context

Tim Boon has signed a contract extension with Leicestershire which will keep him at Grace Road .

PER PER O O O O O O ORG O O O O O LOC LOC O

MEMM Taggers

� Idea: left-to-right local decisions, condition on previous
tags and also entire input

� Train up P(ti|w,ti-1,ti-2) as a normal maxent model, then use to
score sequences

� This is referred to as an MEMM tagger [Ratnaparkhi 96]

� Beam search effective! (Why?)

� What about beam size 1?

Decoding

� Decoding MEMM taggers:
� Just like decoding HMMs, different local scores

� Viterbi, beam search, posterior decoding

� Viterbi algorithm (HMMs):

� Viterbi algorithm (MEMMs):

� General:

Maximum Entropy II

� Remember: maximum entropy objective

� Problem: lots of features allow perfect fit to training set

� Regularization (compare to smoothing)

Derivative for Maximum Entropy

Big weights are bad

Total count of feature n
in correct candidates

Expected count of
feature n in predicted

candidates

2

Example: NER Regularization

Feature Type Feature PERS LOC

Previous word at -0.73 0.94

Current word Grace 0.03 0.00

Beginning bigram <G 0.45 -0.04

Current POS tag NNP 0.47 0.45

Prev and cur tags IN NNP -0.10 0.14

Previous state Other -0.70 -0.92

Current signature Xx 0.80 0.46

Prev state, cur sig O-Xx 0.68 0.37

Prev-cur-next sig x-Xx-Xx -0.69 0.37

P. state - p-cur sig O-x-Xx -0.20 0.82

…

Total: -0.58 2.68

Prev Cur Next

State Other ??? ???

Word at Grace Road

Tag IN NNP NNP

Sig x Xx Xx

Local Context

Feature Weights
Because of regularization
term, the more common
prefixes have larger
weights even though
entire-word features are
more specific.

Perceptron Taggers

� Linear models:

� … that decompose along the sequence

� … allow us to predict with the Viterbi algorithm

� … which means we can train with the perceptron
algorithm (or related updates, like MIRA)

[Collins 01]

Conditional Random Fields

� Make a maxent model over entire taggings
� MEMM

� CRF

CRFs

� Like any maxent model, derivative is:

� So all we need is to be able to compute the expectation of each
feature (for example the number of times the label pair DT-NN
occurs, or the number of times NN-interest occurs)

� Critical quantity: counts of posterior marginals:

Computing Posterior Marginals

� How many (expected) times is word w tagged with s?

� How to compute that marginal?

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

TBL Tagger

� [Brill 95] presents a transformation-based tagger
� Label the training set with most frequent tags

DT MD VBD VBD .
The can was rusted .

� Add transformation rules which reduce training mistakes

� MD → NN : DT __
� VBD → VBN : VBD __ .

� Stop when no transformations do sufficient good
� Does this remind anyone of anything?

� Probably the most widely used tagger (esp. outside NLP)
� … but definitely not the most accurate: 96.6% / 82.0 %

3

TBL Tagger II

� What gets learned? [from Brill 95]

EngCG Tagger

� English constraint grammar tagger
� [Tapanainen and Voutilainen 94]

� Something else you should know
about

� Hand-written and knowledge driven

� “Don’t guess if you know” (general
point about modeling more structure!)

� Tag set doesn’t make all of the hard
distinctions as the standard tag set
(e.g. JJ/NN)

� They get stellar accuracies: 99% on
their tag set

� Linguistic representation matters…

� … but it’s easier to win when you make
up the rules

Domain Effects

� Accuracies degrade outside of domain

� Up to triple error rate

� Usually make the most errors on the things you care
about in the domain (e.g. protein names)

� Open questions

� How to effectively exploit unlabeled data from a new
domain (what could we gain?)

� How to best incorporate domain lexica in a principled
way (e.g. UMLS specialist lexicon, ontologies)

Unsupervised Tagging?

� AKA part-of-speech induction

� Task:

� Raw sentences in

� Tagged sentences out

� Obvious thing to do:

� Start with a (mostly) uniform HMM

� Run EM

� Inspect results

EM for HMMs: Process

� Alternate between recomputing distributions over hidden variables
(the tags) and reestimating parameters

� Crucial step: we want to tally up how many (fractional) counts of
each kind of transition and emission we have under current params:

� Same quantities we needed to train a CRF!

EM for HMMs: Quantities

� Total path values (correspond to probabilities here):

4

EM for HMMs: Process

� From these quantities, can compute expected transitions:

� And emissions:

Merialdo: Setup

� Some (discouraging) experiments [Merialdo 94]

� Setup:
� You know the set of allowable tags for each word

� Fix k training examples to their true labels
� Learn P(w|t) on these examples

� Learn P(t|t-1,t-2) on these examples

� On n examples, re-estimate with EM

� Note: we know allowed tags but not frequencies

Merialdo: Results Distributional Clustering

president the __ of

president the __ said

governor the __ of

governor the __ appointed

said sources __ ♦

said president __ that

reported sources __ ♦

president
governor

said
reported

the

a

♦ the president said that the downturn was over ♦

[Finch and Chater 92, Shuetze 93, many others]

Distributional Clustering

� Three main variants on the same idea:

� Pairwise similarities and heuristic clustering
� E.g. [Finch and Chater 92]

� Produces dendrograms

� Vector space methods
� E.g. [Shuetze 93]

� Models of ambiguity

� Probabilistic methods
� Various formulations, e.g. [Lee and Pereira 99]

Nearest Neighbors

5

Dendrograms _

∏ −
=

i

iiii
ccPcwPCSP)|()|(),(1

∏ +−
=

i

iiiiii
cwwPcwPcPCSP)|,()|()(),(11

A Probabilistic Version?

♦ the president said that the downturn was over ♦

c1 c2 c6c5 c7c3 c4 c8

♦ the president said that the downturn was over ♦

c1 c2 c6c5 c7c3 c4 c8

What Else?

� Various newer ideas:
� Context distributional clustering [Clark 00]

� Morphology-driven models [Clark 03]

� Contrastive estimation [Smith and Eisner 05]

� Feature-rich induction [Haghighi and Klein 06]

� Also:
� What about ambiguous words?

� Using wider context signatures has been used for
learning synonyms (what’s wrong with this
approach?)

� Can extend these ideas for grammar induction (later)

