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Statistical NLP
Spring 2010

Lecture 9: Acoustic Models

Dan Klein – UC Berkeley

The Noisy Channel Model

Acoustic model: HMMs over 

word positions with mixtures 

of Gaussians as emissions

Language model: 

Distributions over sequences 

of words (sentences)
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Speech Recognition Architecture

Digitizing Speech
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Frame Extraction

� A frame (25 ms wide) extracted every 10 ms

25 ms

10ms

. . .

a1      a2      a3
Figure from Simon Arnfield

Mel Freq. Cepstral Coefficients

� Do FFT to get spectral information

� Like the spectrogram/spectrum we 

saw earlier

� Apply Mel scaling

� Models human ear; more 

sensitivity in lower freqs

� Approx linear below 1kHz, log 

above, equal samples above and 

below 1kHz

� Plus discrete cosine transform

[Graph from Wikipedia]
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Final Feature Vector

� 39 (real) features per 10 ms frame:

� 12 MFCC features

� 12 delta MFCC features

� 12 delta-delta MFCC features

� 1 (log) frame energy

� 1 delta (log) frame energy

� 1 delta-delta (log frame energy)

� So each frame is represented by a 39D vector

HMMs for Continuous Observations

� Before: discrete set of observations

� Now: feature vectors are real-valued

� Solution 1: discretization

� Solution 2: continuous emissions
� Gaussians

� Multivariate Gaussians

� Mixtures of multivariate Gaussians

� A state is progressively
� Context independent subphone (~3 
per phone)

� Context dependent phone (triphones)

� State tying of CD phone
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Vector Quantization

� Idea: discretization

� Map MFCC vectors 
onto discrete symbols 

� Compute probabilities 
just by counting

� This is called vector 
quantization or VQ

� Not used for ASR any 
more; too simple

� But: useful to consider 
as a starting point

Gaussian Emissions

� VQ is insufficient for real 

ASR

� Hard to cover high-

dimensional space with 

codebook

� What about our 

perception of low-

dimensional phonemes?

� Instead: assume the 

possible values of the 

observation vectors are 

normally distributed.

� Represent the 

observation likelihood 

function as a Gaussian?

From bartus.org/akustyk
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Gaussians for Acoustic Modeling

� P(x):

P(x)

x

P(o) is highest here at mean

P(o) is low here, far from mean

A Gaussian is parameterized by a mean and a variance:

Multivariate Gaussians

� Instead of a single mean µ and variance σ2:

� Vector of means µ and covariance matrix Σ

� Usually assume diagonal covariance (!)
� This isn’t very true for FFT features, but is often OK for MFCC 
features
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Gaussians: Size of Σ

� µ = [0 0]           µ = [0 0]          µ = [0 0] 

� Σ = I Σ = 0.6I Σ = 2I

� As Σ becomes larger, Gaussian becomes more 
spread out; as Σ becomes smaller, Gaussian 
more compressed

Text and figures from Andrew Ng

Gaussians: Shape of Σ

� As we increase the off diagonal entries, more correlation 
between value of x and value of y

Text and figures from Andrew Ng
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But we’re not there yet

� Single Gaussians may do 

a bad job of modeling a 

complex distribution in 

any dimension

� Even worse for diagonal 

covariances

� Solution: mixtures of 

Gaussians

From openlearn.open.ac.uk

Mixtures of Gaussians

� M mixtures of Gaussians:

From robots.ox.ac.uk http://www.itee.uq.edu.au/~comp4702
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GMMs

� Summary: each state has an emission distribution P(x|s) 

(likelihood function) parameterized by:

� M mixture weights

� M mean vectors of dimensionality D

� Either M covariance matrices of DxD or M Dx1 diagonal variance vectors

HMMs for Speech
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Phones Aren’t Homogeneous
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A Word with Subphones

Modeling phonetic context

w iy r iy m iy n iy
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“Need” with triphone models

ASR Lexicon: Markov Models
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Markov Process with Bigrams

Figure from Huang et al page 618

Training Mixture Models

� Input: wav files with unaligned transcriptions

� Forced alignment

� Computing the “Viterbi path” over the training data (where the 

transcription is known) is called “forced alignment”

� We know which word string to assign to each observation 

sequence.

� We just don’t know the state sequence.

� So we constrain the path to go through the correct words (by 

using a special example-specific language model)

� And otherwise run the Viterbi algorithm

� Result: aligned state sequence
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Lots of Triphones

� Possible triphones: 50x50x50=125,000

� How many triphone types actually occur?

� 20K word WSJ Task (from Bryan Pellom)
� Word internal models:  need 14,300 triphones

� Cross word models: need 54,400 triphones

� Need to generalize models, tie triphones

State Tying / Clustering

� [Young, Odell, 
Woodland 1994]

� How do we decide 
which triphones to 
cluster together?

� Use phonetic features
(or ‘broad phonetic 
classes’)
� Stop

� Nasal

� Fricative

� Sibilant

� Vowel

� lateral
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State Tying

� Creating CD phones:

� Start with monophone, do 

EM training

� Clone Gaussians into 

triphones

� Build decision tree and 

cluster Gaussians

� Clone and train mixtures 

(GMMs)

� General idea:

� Introduce complexity 

gradually

� Interleave constraint with 

flexibility

Standard subphone/mixture HMM

Temporal 

Structure

Gaussian

Mixtures

Model Error rate

HMM Baseline 25.1%
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An Induced Model

Standard Model

Single 

Gaussians

Fully 

Connected

[Petrov, Pauls, and Klein, 07]

Hierarchical Split Training with EM

32.1%

28.7%

25.6%

HMM Baseline 25.1%

5 Split rounds 21.4%

23 .9%
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Refinement of the /ih/-phone

Refinement of the /ih/-phone
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Inference

� State sequence:  
d1-d6-d6-d4-ae5-ae2-ae3-ae0-d2-d2-d3-d7-d5

� Phone sequence:

d - d - d -d -ae - ae - ae - ae - d - d -d - d - d

� Transcription

d       - ae            - d

Viterbi

Variational

???


