Statistical N

LP

Spring 2010

University of /
California A/

§o
N © @)

Berkeley

Lecture 9: Acoustic

Models

Dan Klein — UC Berkeley

The Noisy Channel Model
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?Alice was beginning to get.
?Every happy family.
?In a hole in the ground.
?1f music be the food of love...
?If music be the foot of dove..
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Acoustic model: HMMs over Language model:
word positions with mixtures Distributions over sequences

of Gaussians as emissions

of words (sentences)




Speech Recognition Architecture

Continuous Microphone

Sound Discrete
pressure Digital

wave Samples

Thanks to Bryan Pellom for this slide!
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Frame Extraction

» Aframe (25 ms wide) extracted every 10 ms

LTM

L

10ms

a1 a2 a3 Figure from Simon Arnfield

Mel Freq. Cepstral Coefficients

Frequency(Hz)

= Do FFT to get spectral information

= Like the spectrogram/spectrum we
saw earlier

= Apply Mel scaling : e
= Models human ear; more 2 e

sensitivity in lower freqs o

= Approx linear below 1kHz, log s

above, equal samples above and | /

below 1kHz 1co0 .

/
00
I3

= Plus discrete cosine transform P

!

/
1 L

o 100 2000 3000 4000 5200

[Graph from Wikipedia]




Final Feature Vector

» 39 (real) features per 10 ms frame:
= 12 MFCC features

12 delta MFCC features

12 delta-delta MFCC features

1 (log) frame energy

1 delta (log) frame energy

1 delta-delta (log frame energy)

» So each frame is represented by a39D vector

HMMs for Continuous Observations

= Before: discrete set of observations
= Now: feature vectors are real-valued

= Solution 1: discretization

=  Solution 2: continuous emissions £ ol
= Gaussians
= Multivariate Gaussians
= Mixtures of multivariate Gaussians

= A state is progressively oo

= Context independent subphone (~3
per phone)

= Context dependent phone (triphones)
= State tying of CD phone 0




= Not used for ASR any

= But: useful to consider

Vector Quantization

Codebook ol 256
L TR
2

= |dea: discretization

= Map MFCC vectors LIy >
; 3
onto discrete symbols Input Feature Vector [T 4

= Compute probabilities
just by counting

= This is called vector Compare to Codebaok m Output index

quantization or VQ

more; too simple

as a starting point

Gaussian Emissions

VQ is insufficient for real

ASR
= Hard to cover high- 308.3
dimensional space with
codebook
=  What about our 608.9

perception of low-
dimensional phonemes?

F| (Hz)

909.6

Instead: assume the

possible values of the
observation vectors are 210
normally distributed. 3040 2188 1337 4853

F, (Hz)
= Represent the
observation likelihood
function as a Gaussian?

From bartus.org/akustyk




Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and a variance:

P(z|p, o) = ﬁexp <—($2_(f2t) )

" P(X): P(0) is highest here at mean

P(o) is low here, far from mean
P(x)

Multivariate Gaussians

» Instead of a single mean p and variance ¢

_ 1 (z—p)?
P(z|p, o) = o/an OXP <_ 202 )
= Vector of means p and covariance matrix £

P(z|p,X) = W exp (—%(33 — ) 2z~ M))

= Usually assume diagonal covariance (!)
= This isn’'t very true for FFT features, but is often OK for MFCC
features




Gaussians: Size of X

" u=[00] n=[00] n=1[00]
= Y= > =0.6l > =2l
= As X becomes larger, Gaussian becomes more

spread out; as £ becomes smaller, Gaussian
more compressed

Text and figures from Andrew Ng

Gaussians: Shape of X

z

=

1 0 1 0.5 1 08
E_[O 1]’ E_[O.F) 1 ]’ 'E_[().E% 1 ]
= As we increase the off diagonal entries, more correlation

between value of x and value of y

Text and figures from Andrew Ng




But we're not there yet

= Single Gaussians may do o
a bad job of modeling a il
complex distribution in ol
any dimension i
E 20001
= Even worse for diagonal s
covariances
= Solution: mixtures of i
Gaussians N W o

From openlearn.open.ac.uk

Mixtures of Gaussians

= M mixtures of Gaussians:

P(z|p;, X;) = W oxp (=5 (2 — pa) T2 (@ — i)

P(Cl?‘,u, E,C) - ZZ Czp(x‘umzz)

From robots.ox.ac.uk http://www.itee.uq.edu.au/~comp4702




GMMs

= Summary: each state has an emission distribution P(x|s)
(likelihood function) parameterized by:
= M mixture weights
= M mean vectors of dimensionality D
= Either M covariance matrices of DxD or M Dx1 diagonal variance vectors
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HMMs for Speech

Word Model

Observation
Sequence
(spectral feature
vectors)
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Phones Aren’'t Homogeneous

Frequency (Hz)

il

0 i
0.48152 ay k 0.937203
Time (s)

Need to Use Subphones

Phone Model
b,(o,) /' \byloy) bz{uﬂ}" I "bz(os:' | bs(o,)
yooy R Y
Observation e BB B E Ol
Sequence
(spectral feature
vectors)

0, o, 0; 0, O 04
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A Word with Subphones

Modeling phonetic context

1 RTINS, | B T T
L e
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“Need” with triphone models

#—-n+iy n—iy+d iy—d+#

ASR Lexicon: Markov Models
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Word model for "the"

Qﬁ‘

Word model for® dedlf i
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Markov Process with Bigrams

POW, | W)
PIW, | W)

(W, | W)

B(W,, | W,)

Figure from Huang et al page 618

Training Mixture Models

= |nput: wav files with unaligned transcriptions

= Forced alignment

= Computing the “Viterbi path” over the training data (where the
transcription is known) is called “forced alignment”

= We know which word string to assign to each observation
sequence.

= We just don’t know the state sequence.

= So we constrain the path to go through the correct words (by
using a special example-specific language model)

= And otherwise run the Viterbi algorithm

= Result: aligned state sequence
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Lots of Triphones

Possible triphones: 50x50x50=125,000

How many triphone types actually occur?

20K word WSJ Task (from Bryan Pellom)
= Word internal models: need 14,300 triphones
= Cross word models: need 54,400 triphones

Need to generalize models, tie triphones

State Tying / Clustering

[Young, Odell,

Woodland 1994]

How do we decide
which triphones to
cluster together?

Use phonetic features
(or ‘broad phonetic
classes’)

Initial set of untied states

R-Liquid?

Stop
Nasal
Fricative
Sibilant
Vowel
lateral

Tie states in each leaf node
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State Tying -§88.
» Creating CD phones: // \\

= Start with monophone, do tiy+n tiysng FiyHl =iy

EM training (| 1)
= Clone Gaussians into ....”...”...”...'
iphones lll AT lll lll

= Build decision tree and
cluster Gaussians

= Clone and train mixtures
(GMMs)

= General idea:

= Introduce complexity
gradually

= Interleave constraint with
flexibility

Standard subphone/mixture HMM
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Model Error rate

HMM Baseline 25.1%
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An Induced Model

Standard Model

Fully AR AR AR
Connected
s \le
v oY vy
AGNARIN Single
Gaussians

[Petrov, Pauls, and Klein, 07]

Hierarchical Split Training with EM

32.1%
"\‘ 28.7%

@l X T,

, 25.6%
S %jx
Vo B9Y%

ORORO!

@8 "
HMM Baseline 251%

5 Split rounds | 21.4% @
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Refinement of the /ih/-phone
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Refinement of the /ih/-phone
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Refinement of the /ih/-phone

previous
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HMM states per phone

aaaaaaaa
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Inference

= State sequence:
d,-dg-dg-d,-aes-ae,-aez-aey-d,-d,-d,-d,-ds

= Phone sequence:
d-d-d-d-ae-ae-ae-ae-d-d-d-d-d

= Transcription
d - ae - d

Viterbi

Variational

?2?7?
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