
cs294-5: Statistical Natural Language Processing
Assignment 5: A Treebank Parser

Due: Nov 18th

Setup: The code for assignment 5 is in /home/ff/cs294-5/src, or /work/cs294-
5/src, as usual. The data is in /home/ff/cs294-5/corpora/assignment5, or
/work/cs294-5/corpora/assignment5, and consists only of the parsed WSJ section of
the Penn Treebank (it’s actually the same data that you used for assignment 3).

The starting file for this assignment is

 .../assignments/PCFGParserTester.java

Make sure you can compile and run the main method of the PCFGParserTester class.
You can either run it from the data directory, or pass that directory in as the sole
command line parameter to the class:

java –server –mx500m edu.berkeley.nlp.assignments.PCFGParserTester
-path .../assignment5

Description: In this project, you will build a broad-coverage parser. You may either
build an agenda-driven PCFG parser, or an array-based CKY parser. I will first list the
data flow, then describe the support classes that are provided. You are free to use these
classes, or not, as you see fit.

Currently, files 200 to 2199 of the Treebank are read in as training data. Depending on
whether you run with –validate or –test, either files 2200 to 2299 are read in
(validation), or 2300 to 2399 are read in (test) data. You can look in the data directory if
you’re curious about the native format of these files, but all I/O is taken care of by the
provided code. You can certainly run on fewer files to speed up your preliminary
experiments.

Next, the code constructs a BaselineParser, which implements the Parser interface
(with only one method: getBestParse()). The parser is then used to predict trees for the
sentences in the test set. You can control the maximum length of training and testing
sentences with the parameters –maxTrainLength and –maxTestLength. The standard
setup is to train on sentences of all lengths and test on sentences of length less than or
equal to 40 words. Your final parser should work on sentences of at least length 20 in a
reasonable time (5 seconds per 20-word sentence should be achievable without too much
optimization).

This baseline parser is really terrible – it takes a sentence, tags each word with its most
likely tag (i.e. runs a unigram tagger), then looks for that exact tag sequence in the
training set. If it finds an exact match, it answers with a known parse for that tag

sequence. If no match is found, it constructs a right-branching tree, with nodes’ labels
chosen independently, conditioned only on the length of the span of a node. If this seems
like a strange way to parse, it should. You’re going to provide a better solution.

You should familiarize yourself with these basic classes:

 Tree CFG tree structures, (pretty-print with

Trees.PennTreeRenderer)
 UnaryRule/BinaryRule/Grammar CFG rules and accessors

You will be using these classes no matter what kind of parser you build. If you choose to
build an agenda-based parser, you will find util.GeneralPriorityQueue useful. If
you choose to build an array-based CKY parser, you will instead find the UnaryClosure
class (also in the harness file) useful. It computes the reflexive, transitive closure of the
unary subset of a grammar, and also maps closure rules to their best backing paths.

I have provided a basic lexicon (Lexicon). This lexicon is minimal, but handles rare and
unknown words adequately for the present purposes. If you want to employ your tagger
from assignment 2 instead of using this lexicon, that is perfectly acceptable.

The first thing you should do is scan through a few of the training trees to get a sense of
the format and range of inputs. Something you’ll notice is that the grammar has
relatively few non-terminal symbols (27 plus part-of-speech tags) but thousands of rules,
many trinary-branching or longer. As we discussed in class, most parsers (including
yours) require grammars in which the rules are at most binary branching. You can
binarize and unbinarize trees using the TreeAnnotations class. The default
implementation binarizes the trees in a way that doesn’t generalize the n-ary grammar at
all (convince yourself of this). You should run some trees through the binarization
process and look at the results to get an idea of what’s going on. If you annotate/binarize
the training trees, you should be able to construct a Grammar out of them, using the
constructor provided. This grammar is composed of binary and unary rules, each bearing
its relative frequency estimated probability from the training trees you provide on
construction. It therefore encodes a PCFG, and your goal is to build a parser which
parses novel sentences using that PCFG. Building this parser is expected to be the bulk
of the work for this assignment.

Once you’ve got a parser which, given a test sentence, returns a parse of that sentence
using the grammar from the training trees, you have several choices in how to proceed
with this assignment. One choice is to focus on the grammar, using better annotation
techniques like horizontal and vertical markovization to improve the accuracy of your
parser. The current representation is equivalent to a 1st-order vertical process with an
infinite-order horizontal process. Everyone should at least try out a 2nd-order / 2nd-order
grammar, meaning using parent annotation (symbols like NP^S instead of NP) and
forgetful binarization (symbols like @VP->…NP_PP which omit details of the horizontal
history, instead of @VP->_VBD_RB_NP_PP which record the entire history). If you choose

to focus on this aspect, however, you should do more exploration of various kinds of
annotation.

Another choice is to focus on efficiency of the parser. You could, for example, compare
a beam method with an exact parsing method, or implement a pruning technique like an
A* heuristic or a figure-of-merit and compare it to an exhaustive approach.

Still another choice is to investigate some other aspect of parsing that can be easily tested
in your existing code. For example, you might investigate whether some compact subset
of the grammar gives nearly the same accuracy. Or if you’re interested in cognitive
issues, you could study whether correct trees really do tend to have bounded stack depths
in one direction or the other (and whether incorrect trees perhaps have different profiles).
Or you could do a substantial error analysis of the mistakes your parser makes.

To summarize my expectations in this assignment, I expect that the bulk of your time will
go into understanding the setup and building a basic PCFG parser (agenda-driven or
CKY). Once that is working, I expect you to be able to try out a 2nd-order / 2nd-order
grammar with a very small amount of additional work; this grammar should work much
better. You should also report at least some errors that you parser seems to make often,
though you need not do a detailed data analysis unless you want to focus on that. Finally,
I expect you to very briefly do some other kind of experiment that you find interesting. I
do NOT expect this last part of the assignment to be as much work as building the parser
in the first place. Not all of the extensions I mentioned are possible unless you do want
to spend substantial additional time coding.

Coding Tips: Whenever you run the java VM, you should invoke it with as much
memory as you need, and in server mode:

 java –server –mx500m package.ClassName

You’ll get much faster performance than just running with no options.

If your parser is running very slowly, run the VM with the –Xprof command line option.
This will result in a flat profile being output after your process completes. If you see that
your program is spending a lot of time in hash map, hash code, or equals methods, you
might be able to speed up your computation substantially by backing your sets, maps, and
counters with IdentityHashMap instead of HashMap. This requires the use of something
like a util.Interner for canonicalization… ask around if you’re not sure what that
would entail, some people in the class already know this trick.

