

IBM Models 3/4/5

[Al-Onaizan and Knight, 1998]

Phrase Movement

The HMM Model

- Model 2 preferred global monotonicity
- We want local monotonicity:
- Most jumps are small
- HMM model (Vogel 96)

- Re-estimate using the forward-backward algorithm
- Handling nulls requires some care
- What are we still missing?

Example: Morphology

should			
f	$t(f \mid e)$	ϕ	$n(\phi \mid e)$
devrait	0.330	1	0.649
devraient	0.123	0	0.336
devrions	0.109	2	0.014
faudrait	0.073		
faut	0.058		
doit	0.058		
aurait	0.041		
doivent	0.024		
devons	0.017		
devrais	0.013		

Alignment Error Rate

$$
\begin{aligned}
& \text { - Alignment Error Rate } \\
& \square=\text { Sure } \\
& \square=\text { Possible } \\
& \square=\text { Predicted }
\end{aligned}
$$

$$
A E R(A, S, P)=\left(1-\frac{|A \cap S|+|A \cap P|}{|A|+|S|}\right)
$$

$$
=\left(1-\frac{3+3}{3+4}\right)=\frac{1}{7}
$$

Decoding

- In these word-to-word models
- Finding best alignments is easy
- Finding translations is hard (why?)

Some Results

- [Och and Ney 03]

Model	Training scheme	0.5 K	8 K	128 K	1.47 M
Dice		50.9	43.4	39.6	38.9
Dice+C		46.3	37.6	35.0	34.0
Model 1	1^{5}	40.6	33.6	28.6	25.9
Model 2	$1^{5} 2^{5}$	46.7	29.3	22.0	19.5
HMM	$1^{5} H^{5}$	26.3	23.3	15.0	10.8
Model 3	$1^{5} 5^{5} 3^{3}$	43.6	27.5	20.5	18.0
	$1^{5} H^{5} 3^{3}$	27.5	22.5	16.6	13.2
Model 4	$1^{5} 2^{5} 3^{3} 4^{3}$	41.7	25.1	17.3	14.1
	$1^{5} H^{5} 3^{3} 4^{3}$	26.1	20.2	13.1	9.4
	$1^{5} H^{5} 4^{3}$	26.3	21.8	13.3	9.3
Model 5	$1^{5} H^{5} 4^{3} 5^{3}$	26.5	21.5	13.7	9.6
	$1^{5} H^{5} 3^{3} 4^{3} 5^{3}$	26.5	20.4	13.4	9.4
Model 6	$1^{5} H^{5} 4^{3} 6^{3}$	26.0	21.6	12.8	8.8
	$1^{5} H^{5} 3^{3} 4^{3} 6^{3}$	25.9	20.3	12.5	8.7

Bag "Generation" (Decoding)

Exact reconstruction (24 of 38)
Please give me your response as soon as possible.
$\Rightarrow \quad$ Please give me your response as soon as possible.
Reconstruction preserving meaning (8 of 38)
Now let me mention some of the disadvantages.
$\Rightarrow \quad$ Let me mention some of the disadvantages now.
Garbage reconstruction (6 of 38)
In our organization research has two missions.
\Rightarrow In our missions research organization has two.

Bag Generation as a TSP

- Imagine bag generation with a bigram LM
- Words are nodes
- Edge weights are P(w|w')
- Valid sentences are Hamiltonian paths
- Not the best news for word-based MT!

(clear)

IBM Decoding as a TSP

Decoding, Anyway

- Simplest possible decoder:
- Enumerate sentences, score each with TM and LM
- Greedy decoding:
- Assign each French word it's most likely English translation
- Operators:
- Change a translation
- Insert a word into the English (zero-fertile French)
- Remove a word from the English (null-generated French)
- Swap two adjacent English words
- Do hill-climbing (or annealing)

Greedy Decoding

NULL well heard, it talks a great victory
bien entendu, il parle de une belle victire
NULL well understood, it
translateOneWord(4,he)
bien entendu, il parle de une belle victore .
NULL well understood, he talks about a great victory .
$\left.\right|_{\text {bien }}| | \mid / / / 1$ translateTwoWords(1,quite,2,naturally)
bien entendu, il parle de une belle victoire .
NULL quite naturally
bien entendu, il parie de une belle victoire

Stack Decoding

- Stack decoding:
- Beam search
- Usually A* estimates for completion cost
- One stack per candidate sentence length
- Other methods:
- Dynamic programming decoders possible if we make assumptions about the set of allowable permutations

WSD?

- Remember when we discussed WSD?
- Word-based MT systems rarely have a WSD step
- Why not?

oil			
\mathbf{f}	$t(f \mid e)$	ϕ	$\boldsymbol{n}(\phi \mid e)$
pétrole	0.558	1	0.760
pétrolières	0.138	0	0.181
pétrolière	0.109	2	0.057
le	0.054		
pétrolier	0.030		
pétroliers	0.024		
huile	0.020		
Oil	0.013		

