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CS 294-5: Statistical
Natural Language Processing

Lexicalized Parsing, Etc.
Lecture 16: 10/29/05

Uses figures from Collins, Manning, Chiang, 
Hockenmaier, Jager and Michaelis, NLTK tutorial

Problems with PCFGs?

If we do no annotation, these trees differ only in one rule:
VP → VP PP
NP → NP PP

Parse will go one way or the other, regardless of words
We addressed this in one way with unlexicalized grammars (how?)
Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

What’s different between basic PCFG scores here?
What (lexical) correlations need to be scored?

Problems with PCFGs

Another example of PCFG indifference
Left structure far more common
How to model this?
Really structural: “chicken with potatoes with gravy”
Lexical parsers model this effect, but not by virtue of being lexical

Lexicalized Trees

Add “headwords” to 
each phrasal node

Syntactic vs. semantic 
heads
Headship not in (most) 
treebanks
Usually use head rules, 
e.g.:

NP:
Take leftmost NP
Take rightmost N*
Take rightmost JJ
Take right child

VP:
Take leftmost VB*
Take leftmost VP
Take left child

Lexicalized PCFGs?
Problem: we now have to estimate probabilities like

Never going to get these atomically off of a treebank

Solution: break up derivation into smaller steps
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Derivational Representations

Generative derivational models:

How is a PCFG a generative derivational model?

Distinction between parses and parse derivations.

How could there be multiple derivations?

Lexical Derivation Steps
Simple derivation of a local tree [simplified Charniak 97]

VP[saw]

VBD[saw] NP[her] NP[today] PP[on]

VBD[saw]

(VP->VBD •)[saw]

NP[today]

(VP->VBD...NP •)[saw]

NP[her]

(VP->VBD...NP •)[saw]

(VP->VBD...PP •)[saw]

PP[on]

VP[saw]

Still have to smooth 
with mono- and non-

lexical backoffs

Lexical Derivation Steps

Another derivation of a local tree [Collins 99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Naïve Lexicalized Parsing

Can, in principle, use CKY on lexicalized PCFGs
O(Rn3) time and O(Sn2) memory
But R = rV2 and S = sV
Result is completely impractical (why?)
Memory: 10K rules * 50K words * (40 words)2 * 8 bytes ≈ 6TB

Can modify CKY to exploit lexical sparsity
Lexicalized symbols are a base grammar symbol and a pointer 
into the input sentence, not any arbitrary word
Result: O(rn5) time, O(sn3) 
Memory: 10K rules * (40 words)3 * 8 bytes ≈ 5GB

Lexicalized CKY

bestScore(X,i,j,h)
if (j = i+1)
return tagScore(X,s[i])

else
return 

max max score(X[h]->Y[h] Z[h’]) *
bestScore(Y,i,k,h) *
bestScore(Z,k,j,h’)

max score(X[h]->Y[h’] Z[h]) *
bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i           h          k         h’          j

k,X->YZ

k,X->YZ

(VP->VBD •)[saw] NP[her]

(VP->VBD...NP •)[saw]

Quartic Parsing
Turns out, you can do better [Eisner 99]

Gives an O(n4) algorithm
Still prohibitive in practice if not pruned

Y[h] Z[h’]

X[h]

i           h          k         h’          j

Y[h] Z

X[h]

i           h          k                     j
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Dependency Parsing
Lexicalized parsers can be seen as producing dependency trees

Each local binary tree corresponds to an attachment in the 
dependency graph

questioned

lawyer witness

the the

Dependency Parsing

Pure dependency parsing is only cubic [Eisner 99]

Some work on non-projective dependencies
Common in, e.g. Czech parsing
Can do with MST algorithms [McDonald and Pereira 05]

Y[h] Z[h’]

X[h]

i           h          k         h’          j

h h’

h

h          k         h’           

Pruning with Beams

The Collins parser prunes with 
per-cell beams [Collins 99]

Essentially, run the O(n5) CKY
Remember only a few hypotheses for 
each span <i,j>.
If we keep K hypotheses at each 
span, then we do at most O(nK2) 
work per span (why?)
Keeps things more or less cubic

Also: certain spans are forbidden 
entirely on the basis of 
punctuation (crucial for speed)

Y[h] Z[h’]

X[h]

i           h          k         h’          j

Pruning with a PCFG

The Charniak parser prunes using a two- pass 
approach [Charniak 97+]

First, parse with the base grammar
For each X:[i,j] calculate P(X|i,j,s)

This isn’t trivial, and there are clever speed ups
Second, do the full O(n5) CKY

Skip any X :[i,j] which had low (say, < 0.0001) posterior
Avoids almost all work in the second phase!
Currently the fastest lexicalized parser

Pruning with A*
You can also speed up 
the search without 
sacrificing optimality
For agenda- based 
parsers:

Can select which items to 
process first
Can do with any “figure of 
merit” [Charniak 98]
If your figure-of-merit is a 
valid A* heuristic, no loss 
of optimiality [Klein and 
Manning 03]

X

n0 i j

Projection-Based A*

Factory  payrolls   fell    in    Sept.

NP PP

VP

S

Factory  payrolls   fell    in    Sept.

payrolls in

fell

fellFactory  payrolls   fell    in    Sept.

NP:payrolls PP:in

VP:fell

S:fellSYNTACTICπ SEMANTICπ



4

A* Speedup

Total time dominated by calculation of A* tables in each 
projection… O(n3)
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Some Results

Lexicalized parsers
Collins 99 – 88.6 F1
Charniak 00 – 90.1 F1

However
Bilexical counts rarely make a difference (why?)
Gildea 01 – Removing bilexical counts costs < 0.5 F1

Bilexical vs. monolexical vs. smart smoothing

Parse Reranking

Assume the number of parses is very small
We can represent each parse T as an arbitrary feature vector ϕ(T)

Typically, all local rules are features
Also non-local features, like how right-branching the overall tree is
[Charniak and Johnson 05] gives a rich set of features

Parse Reranking

Since the number of parses is no longer huge
Can enumerate all parses efficiently
Can use simple machine learning methods to score trees
E.g. maxent reranking: learn a binary classifier over trees where:

The top candidates are positive
All others are negative
Rank trees by P(+|T)

The best parsing numbers are from reranking systems
Collins 05: 90.3 
Charniak and Johnson 05: 91.0 (!)

Shift-Reduce Parsers

Another way to derive a tree:

Parsing
No useful dynamic programming search
Can still use beam search [Ratnaparkhi 97]

Data-oriented parsing:
Rewrite large (possibly lexicalized) subtrees in a single step

Formally, a tree-insertion grammar
Derivational ambiguity whether subtrees were generated 
atomically or compositionally
Most probable parse is NP-complete
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TIG: Insertion Tree-adjoining grammars

Start with local trees
Can insert structure 
with adjunction 
operators
Mildly context-
sensitive
Models long-
distance 
dependencies 
naturally
… as well as other 
weird stuff that 
CFGs don’t capture 
well (e.g. cross-
serial dependencies)

TAG: Adjunction TAG: Long Distance

CCG Parsing

Combinatory 
Categorial
Grammar

Fully (mono-) 
lexicalized 
grammar
Categories encode 
argument 
sequences
Very closely 
related to the 
lambda calculus 
(more later)
Can have spurious 
ambiguities (why?)

Digression: Is NL a CFG?

Cross-serial dependencies in Dutch


