

Just a Code?

- "Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized methods in cryptography—methods which I believe succeed even when one does not know what language has been coded—one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.' "
 - Warren Weaver (1955:18, quoting a letter he wrote in 1947)

Linear Interpolation

- One way to ease the sparsity problem for ngrams is to use less-sparse n-1-gram estimates
- General linear interpolation:

 $P(w | w_{-1}) = [1 - \lambda(w, w_{-1})]\hat{P}(w | w_{-1}) + [\lambda(w, w_{-1})]P(w)$

 Having a single global mixing constant is generally not ideal:

 $P(w | w_{-1}) = [1 - \lambda] \hat{P}(w | w_{-1}) + [\lambda] P(w)$

- Solution: have different constant buckets
 - Buckets by count
 - Buckets by average count (better)

What's wrong with unigram-prior smoothing? Let's look at some real bigram counts [Church and Gale 91]:			
1	0.448	2/7e-10	~1
2	1.25	3/7e-10	~2
3	2.24	4/7e-10	~3
4	3.23	5/7e-10	~4
5	4.21	6/7e-10	~5
Mass on New	9.2%	~100%	9.2%
Ratio of 2/1	2.8	1.5	~2

- Add-one vastly overestimates the fraction of new bigrams
 Add-0.0000027 still underestimates the ratio 2*/1*
- One solution: use held-out data to predict the map of c to c*

Beyond N-Gram LMs

Caching Models

Recent words more likely to appear again

 $P_{CACHE}(w \mid history) = \lambda P(w \mid w_{-1}w_{-2}) + (1-\lambda) \frac{c(w \in history)}{|history|}$ • Can be disastrous in practice for speech (why?)

- Skipping Models
- Trigget Models: bondition ได้หชือง อาการเช่าง (maxente)
 Structured Models: use parse structure (we'll see these later)

- For Next Time
 Readings: M+S 6, J+M 6, Chen &
- Goodman (on web page)
- Assignment 1 is out!
- Next up: More smoothing, EM