
1

CS 294-5: Statistical
Natural Language Processing

N-Grams and Smoothing
Lecture 2: 8/31/05

Speech in a Slide (or Three)

Speech input is an acoustic wave form

s p ee ch l a b

Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:
http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

Some later bits from Joshua Goodman’s LM tutorial

“l” to “a”
transition:

Frequency gives pitch; amplitude gives volume
sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

Fourier transform of wave displayed as a spectrogram
darkness indicates energy at each frequency

s p ee ch l a b

fre
qu

en
cy

am
pl

it u
de

Spectral Analysis Acoustic Feature Sequence
Time slices are translated into acoustic feature vectors
(~15 real numbers per slice)

Now we have to figure out a mapping from sequences of
acoustic observations to words.

fre
qu

en
cy

……………………………………………..a12a13a12a14a14………..

The Speech Recognition Problem
We want to predict a sentence given an acoustic sequence:

The noisy channel approach:
Build a generative model of production (encoding)

To decode, we use Bayes’ rule to write

Now, we have to find a sentence maximizing this product

Why is this progress?

)|(maxarg* AsPs
s

=

)|()(),(sAPsPsAP =

)|(maxarg* AsPs
s

=

)(/)|()(maxarg APsAPsP
s

=

)|()(maxarg sAPsP
s

=

Other Noisy-Channel Processes
Handwriting recognition

OCR

Spelling Correction

Translation?

)|()()|(textstrokesPtextPstrokestextP ∝

)|()()|(textpixelsPtextPpixelstextP ∝

)|()()|(texttyposPtextPtypostextP ∝

)|()()|(englishfrenchPenglishPfrenchenglishP ∝

2

Just a Code?

“Also knowing nothing official about, but having
guessed and inferred considerable about, the
powerful new mechanized methods in
cryptography—methods which I believe succeed
even when one does not know what language has
been coded—one naturally wonders if the problem
of translation could conceivably be treated as a
problem in cryptography. When I look at an article
in Russian, I say: ‘This is really written in English,
but it has been coded in some strange symbols. I
will now proceed to decode.’ ”

Warren Weaver (1955:18, quoting a letter he wrote in 1947)

MT System Components

source
P(e)

e f

decoder
observed

argmax P(e|f) = argmax P(f|e)P(e)
e e

e f
best

channel
P(f|e)

Language Model Translation Model

Levels of Transfer

Interlingua

Semantic
Structure

Semantic
Structure

Syntactic
Structure

Syntactic
Structure

Word
Structure

Word
Structure

Source Text Target Text

Semantic
Composition

Semantic
Decomposition

Semantic
Analysis

Semantic
Generation

Syntactic
Analysis

Syntactic
Generation

Morphological
Analysis

Morphological
Generation

Semantic
Transfer

Syntactic
Transfer

Direct

(Vauquois
triangle)

Probabilistic Language Models
Want to build models which assign scores to sentences.

P(I saw a van) >> P(eyes awe of an)
Not really grammaticality: P(artichokes intimidate zippers) ≈ 0

One option: empirical distribution over sentences?
Problem: doesn’t generalize (at all)

Two ways of generalizing
Decomposition: sentences generated in small steps which can
be recombined in other ways
Smoothing: allow for the possibility of unseen events

N-Gram Language Models
No loss of generality to break sentence probability down
with the chain rule

Too many histories!

N-gram solution: assume each word depends only on a
short linear history

∏ −=
i

iin wwwwPwwwP)|()(12121 KK

∏ −−=
i

ikiin wwwPwwwP)|()(121 KK

Regular Languages?
N-gram models are (weighted) regular
processes

Why can’t we model language like this?
Linguists have many arguments why language can’t be
merely regular.
Long-distance effects:
“The computer which I had just put into the machine room on
the fifth floor crashed.”

Why CAN we often get away with n-gram models?

3

Unigram Models
Simplest case: unigrams

Generative process: pick a word, pick a word, …
As a graphical model:

To make this a proper distribution over sentences, we have to generate a
special STOP symbol last. (Why?)
Examples:

[fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]
[thrift, did, eighty, said, hard, 'm, july, bullish]
[that, or, limited, the]
[]
[after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed,
mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further,
board, a, details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a,
they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay,
however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers,
advancers, half, between, nasdaq]

∏=
i

in wPwwwP)()(21 K

w1 w2 wn-1 STOP………….

Bigram Models
Big problem with unigrams: P(the the the the) >> P(I like ice cream)!
Condition on last word:

Any better?
[texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house,
said, mr., gurria, mexico, 's, motion, control, proposal, without, permission,
from, five, hundred, fifty, five, yen]
[outside, new, car, parking, lot, of, the, agreement, reached]
[although, common, shares, rose, forty, six, point, four, hundred, dollars,
from, thirty, seconds, at, the, greatest, play, disingenuous, to, be, reset,
annually, the, buy, out, of, american, brands, vying, for, mr., womack,
currently, sharedata, incorporated, believe, chemical, prices, undoubtedly,
will, be, as, much, is, scheduled, to, conscientious, teaching]
[this, would, be, a, record, november]

∏ −=
i

iin wwPwwwP)|()(121 K

w1 w2 wn-1 STOPSTART

Is This Working?

The game isn’t to pound out fake
sentences!

What we really want to know is:
Will our model prefer good sentences to bad
ones?
Bad ≠ ungrammatical!
Bad ≈ unlikely
Bad = sentences that our acoustic model
really likes but aren’t the correct answer

Measuring Model Quality
Word Error Rate (WER)

The “right” measure:
Task error driven
For speech recognition
For a specific recognizer!

For general evaluation, we want a measure which
references only good text, not mistake text

Correct answer: Andy saw a part of the movie

Recognizer output: And he saw apart of the movie

insertions + deletions + substitutions
true sentence size

WER: 4/7
= 57%

Measuring Model Quality
The Shannon Game:

How well can we predict the next word?

Unigrams are terrible at this game. (Why?)

The “Entropy” Measure
Really: average cross-entropy of a text according to a model

When I order pizza, I wipe off the ____

Many children are allergic to ____

I saw a ____

∑
∑

==

i
i

i
iM

M

s

sP

S
SPMSH

||

)(log

||
)(log)|(

2
2

grease 0.5

sauce 0.4

dust 0.05

….

mice 0.0001

….

the 1e-100

∑ −
j

jjM wwP)|(log 12

Measuring Model Quality
Problem with entropy:

0.1 bits of improvement doesn’t sound so good
Solution: perplexity

Note that even though our models require a stop step,
we typically don’t count it as a symbol when taking
these averages.

n
n

i
iM

MSH

hwP
MSP

∏
=

==

1

)|(

)|(

12)|(

4

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1000000

Number of Words

Fr
ac

tio
n

Se
en

Unigrams

Bigrams

Rules

Sparsity
Problems with n-gram models:

New words appear all the time:
Synaptitute
132,701.03
fuzzificational

New bigrams: even more often
Trigrams or more – still worse!

Zipf’s Law
Types (words) vs. tokens (word occurences)
Broadly: most word types are rare
Specifically:

Rank word types by token frequency
Frequency inversely proportional to rank

Not special to language: randomly generated character strings
have this property

Smoothing
We often want to make estimates from sparse statistics:

Smoothing flattens spiky distributions so they generalize better

Very important all over NLP, but easy to do badly!
We’ll illustrate with bigrams today (h = previous word, could be anything).

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

al
le

ga
tio

ns

at
ta

ck

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

at
ta

ck

re
qu

es
t

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

re
qu

es
t

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Smoothing
Estimating multinomials

We want to know what words follow some history h
There’s some true distribution P(w | h)
We saw some small sample of N words from P(w | h)
We want to reconstruct a useful approximation of P(w | h)
Counts of events we didn’t see are always too low (0 < N P(w | h))
Counts of events we did see are in aggregate to high

Example:

Two issues:
Discounting: how to reserve mass what we haven’t seen
Interpolation: how to allocate that mass amongst unseen events

P(w | denied the)
3 allegations
2 reports
1 claims
1 speculation
…
1 request
13 total

P(w | affirmed the)
1 award

Add-One Estimation
Idea: pretend we saw every word once more than we actually did
[Laplace]

Corresponds to a uniform prior over vocabulary
Think of it as taking items with observed count r > 1 and treating them
as having count r* < r
Holds out V/(N+V) for “fake” events

N1+/N of which is distributed back to seen words
N0/(N+V) actually passed on to unseen words (nearly all!)
Actually tells us not only how much to hold out, but where to put it

Works astonishingly poorly in practice

Quick fix: add some small δ instead of 1 [Lidstone, Jefferys]
Slightly better, holds out less mass, still a bad idea

Vhc
hwchwP
+
+

=
)(

1),()|(

How Much Mass to Withhold?
Remember the key discounting problem:

What count should r* should we use for an event that occurred r
times in N samples?
r is too big

Idea: held-out data [Jelinek and Mercer]
Get another N samples
See what the average count of items occuring r times is (e.g.
doubletons on average might occur 1.78 times)
Use those averages as r*

Much better than add-one, etc.

Smoothing: Add-One, Etc.

One class of smoothing functions:
Add-one / delta: assumes a uniform prior

Better to assume a unigram prior
δ

δ
δ +

+
=

−

−
−−)(

)/1(),()|(
1

1
1 wc

VwwcwwPADD

δ
δ
+
+

=
−

−
−−)(

)(ˆ),()|(
1

1
1 wc

wPwwcwwP PRIORUNI

number of word tokens in training datac

number of word types with count kNk

total vocabulary sizeV
count of word w following word w-1c(w,w-1)
count of word w in training datac(w)

5

Linear Interpolation
One way to ease the sparsity problem for n-
grams is to use less-sparse n-1-gram estimates
General linear interpolation:

Having a single global mixing constant is generally
not ideal:

Solution: have different constant buckets
Buckets by count
Buckets by average count (better)

1 1 1 1
ˆ(|) [1 (,)] (|) [(,)] ()P w w w w P w w w w P wλ λ− − − −= − +

1 1
ˆ(|) [1] (|) [] ()P w w P w w P wλ λ− −= − +

Held-Out Data
Important tool for getting models to generalize:

When we have a small number of parameters that control the degree of
smoothing, we set them to maximize the (log-)likelihood of held-out data

Can use any optimization technique (line search or EM usually easiest)

Examples:

Training Data Held-Out
Data

Test
Data

∑ −=
i

iiMkn wwPMwwLL
k

)|(log))...(|...(1)...(11 1 λλλλ

)(ˆ)|(ˆ)|(2111),(21
wPwwPwwPLIN λλλλ += −−

δ
δ

δ +
+

=
−

−
−−)(

)(ˆ),()|(
1

1
1)(wc

wPwwcwwP PRIORUNI
δ

LL

Held-Out Reweighting
What’s wrong with unigram-prior smoothing?
Let’s look at some real bigram counts [Church and Gale 91]:

Big things to notice:
Add-one vastly overestimates the fraction of new bigrams
Add-0.0000027 still underestimates the ratio 2*/1*

One solution: use held-out data to predict the map of c to c*

6/7e-10

5/7e-10

4/7e-10

3/7e-10

2/7e-10

Add-one’s c*

4.21

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

~55

~44

~33

~22

~11

Add-0.0000027’s c*Count in 22M Words

1.5

~100%

2.8

9.2%

~2Ratio of 2/1

9.2%Mass on New

Good-Turing Reweighting I

We’d like to not need held-out data (why?)
Idea: leave-one-out validation

Take each of the c training words out in turn
c training sets of size c-1, held-out of size 1
What fraction of held-out words are unseen in
training?

N1/c
What fraction of held-out words are seen k
times in training?

(k+1)Nk+1/c
So in the future we expect (k+1)Nk+1/c of the
words to be those with training count k
There are Nk words with training count k
Each should occur with probability:

(k+1)Nk+1/c/Nk

…or expected count (k+1)Nk+1/Nk

N1

N2

N3

N4417

N3511

. .
 .

.

N0

N1

N2

N4416

N3510

. .
 .

.

Good-Turing Reweighting II
Problem: what about “the”? (say c=4417)

For small k, Nk > Nk+1

For large k, too jumpy, zeros wreck estimates

Simple Good-Turing [Gale and Sampson]:
replace empirical Nk with a best-fit power law
once count counts get unreliable

N1

N2

N3

N4417

N3511

. .
 .

.

N0

N1

N2

N4416

N3510

. .
 .

.

N1
N2 N3

N1
N2

Good-Turing Reweighting III
Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk

Katz Smoothing
Use GT discounted bigram counts (roughly – Katz left large counts alone)
Whatever mass is left goes to empirical unigram

)(ˆ)(
),(
),(*)|(1
1

1
1 wPw

wwc
wwcwwP

w

KATZ −
−

−
− +=

∑
α

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

3.244

2.243

1.262

0.4461

GT’s c*Count in 22M Words

9.2% 9.2%Mass on New

6

Kneser-Ney Smoothing I
Something’s been very broken all this time

Shannon game: There was an unexpected ____?
delay?
Francisco?

“Francisco” is more common than “delay”
… but “Francisco” always follows “San”

Solution: Kneser-Ney smoothing
In the back-off model, we don’t want the unigram probability of w
Instead, probability given that we are observing a novel continuation
Every bigram type was a novel continuation the first time it was seen

|0),(:),(|
|}0),(:{|)(

11

11

>
>

=
−−

−−

wwcww
wwcwwP ONCONTINUATI

Kneser-Ney Smoothing II
One more aspect to Kneser-Ney:

Look at the GT counts:

Absolute Discounting
Save ourselves some time and just subtract 0.75 (or some d)
Maybe have a separate value of d for very low counts

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

3.244

2.243

1.262

0.4461

GT’s c*Count in 22M Words

)()(
),'(

),()|(1

'
1

1
1 wPw

wwc
DwwcwwP ONCONTINUATI

w

KN −
−

−
− +

−
=
∑

α

What Actually Works?
Trigrams:

Unigrams, bigrams too little
context
Trigrams much better (when
there’s enough data)
4-, 5-grams usually not
worth the cost (which is
more than it seems, due to
how speech recognizers are
constructed)

Good-Turing-like methods for
count adjustment

Absolute discounting, Good-
Turing, held-out estimation,
Witten-Bell

Kneser-Ney equalization for
lower-order models
See [Chen+Goodman]
reading for tons of graphs!

[Graphs from
Joshua Goodman]

Data >> Method?
Having more data is always good…

… but so is picking a better smoothing mechanism!
N > 3 often not worth the cost (greater than you’d think)

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

En
tr

op
y

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Beyond N-Gram LMs
Caching Models

Recent words more likely to appear again

Can be disastrous in practice for speech (why?)

Skipping Models

Trigger Models: condition on bag of history words (e.g., maxent)
Structured Models: use parse structure (we’ll see these later)

||
)()1()|()|(21 history

historywcwwwPhistorywPCACHE
∈

−+= −− λλ

)__|(__)|()|(ˆ)|(231221121 −−−−−− ++= wwPwwPwwwPwwwPSKIP λλλ

For Next Time

Readings: M+S 6, J+M 6, Chen &
Goodman (on web page)

Assignment 1 is out!

Next up: More smoothing, EM

