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CS 294-5: Statistical
Natural Language Processing

N-Grams and Smoothing
Lecture 2: 8/31/05

Speech in a Slide (or Three)

Speech input is an acoustic wave form
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Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:
http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

Some later bits from Joshua Goodman’s LM tutorial

“l” to “a”
transition:

Frequency gives pitch; amplitude gives volume
sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

Fourier transform of wave displayed as a spectrogram
darkness indicates energy at each frequency
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Spectral Analysis Acoustic Feature Sequence
Time slices are translated into acoustic feature vectors 
(~15 real numbers per slice)

Now we have to figure out a mapping from sequences of 
acoustic observations to words.
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The Speech Recognition Problem
We want to predict a sentence given an acoustic sequence:

The noisy channel approach:
Build a generative model of production (encoding)

To decode, we use Bayes’ rule to write

Now, we have to find a sentence maximizing this product

Why is this progress?
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Other Noisy-Channel Processes
Handwriting recognition

OCR

Spelling Correction

Translation?

)|()()|( textstrokesPtextPstrokestextP ∝

)|()()|( textpixelsPtextPpixelstextP ∝

)|()()|( texttyposPtextPtypostextP ∝

)|()()|( englishfrenchPenglishPfrenchenglishP ∝



2

Just a Code?

“Also knowing nothing official about, but having 
guessed and inferred considerable about, the 
powerful new mechanized methods in 
cryptography—methods which I believe succeed 
even when one does not know what language has 
been coded—one naturally wonders if the problem 
of translation could conceivably be treated as a 
problem in cryptography.  When I look at an article 
in Russian, I say: ‘This is really written in English, 
but it has been coded in some strange symbols. I 
will now proceed to decode.’ ”

Warren Weaver (1955:18, quoting a letter he wrote in 1947)

MT System Components
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Probabilistic Language Models
Want to build models which assign scores to sentences.

P(I saw a van) >> P(eyes awe of an)
Not really grammaticality: P(artichokes intimidate zippers) ≈ 0

One option: empirical distribution over sentences?
Problem: doesn’t generalize (at all)

Two ways of generalizing
Decomposition: sentences generated in small steps which can 
be recombined in other ways
Smoothing: allow for the possibility of unseen events

N-Gram Language Models
No loss of generality to break sentence probability down 
with the chain rule

Too many histories!

N-gram solution: assume each word depends only on a 
short linear history
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Regular Languages?
N-gram models are (weighted) regular 
processes

Why can’t we model language like this?
Linguists have many arguments why language can’t be 
merely regular.
Long-distance effects:
“The computer which I had just put into the machine room on 
the fifth floor crashed.”

Why CAN we often get away with n-gram models?
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Unigram Models
Simplest case: unigrams

Generative process: pick a word, pick a word, …
As a graphical model:

To make this a proper distribution over sentences, we have to generate a 
special STOP symbol last.  (Why?)
Examples:

[fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]
[thrift, did, eighty, said, hard, 'm, july, bullish]
[that, or, limited, the]
[]
[after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed, 
mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further, 
board, a, details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a, 
they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay, 
however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers, 
advancers, half, between, nasdaq]
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Bigram Models
Big problem with unigrams: P(the the the the) >> P(I like ice cream)!
Condition on last word:

Any better?
[texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, 
said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, 
from, five, hundred, fifty, five, yen]
[outside, new, car, parking, lot, of, the, agreement, reached]
[although, common, shares, rose, forty, six, point, four, hundred, dollars, 
from, thirty, seconds, at, the, greatest, play, disingenuous, to, be, reset, 
annually, the, buy, out, of, american, brands, vying, for, mr., womack, 
currently, sharedata, incorporated, believe, chemical, prices, undoubtedly, 
will, be, as, much, is, scheduled, to, conscientious, teaching]
[this, would, be, a, record, november]
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Is This Working?

The game isn’t to pound out fake 
sentences!

What we really want to know is:
Will our model prefer good sentences to bad 
ones?
Bad ≠ ungrammatical!
Bad ≈ unlikely
Bad = sentences that our acoustic model 
really likes but aren’t the correct answer

Measuring Model Quality
Word Error Rate (WER)

The “right” measure:
Task error driven
For speech recognition
For a specific recognizer!

For general evaluation, we want a measure which 
references only good text, not mistake text

Correct answer: Andy saw a part of the movie

Recognizer output: And he saw apart of the movie

insertions + deletions + substitutions
true sentence size

WER: 4/7 
= 57%

Measuring Model Quality
The Shannon Game:

How well can we predict the next word?

Unigrams are terrible at this game.  (Why?)

The “Entropy” Measure
Really: average cross-entropy of a text according to a model

When I order pizza, I wipe off the ____

Many children are allergic to ____

I saw a ____
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Measuring Model Quality
Problem with entropy:

0.1 bits of improvement doesn’t sound so good
Solution: perplexity

Note that even though our models require a stop step, 
we typically don’t count it as a symbol when taking 
these averages.
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Sparsity
Problems with n-gram models:

New words appear all the time:
Synaptitute
132,701.03
fuzzificational

New bigrams: even more often
Trigrams or more – still worse!

Zipf’s Law
Types (words) vs. tokens (word occurences)
Broadly: most word types are rare
Specifically: 

Rank word types by token frequency
Frequency inversely proportional to rank

Not special to language: randomly generated character strings 
have this property

Smoothing
We often want to make estimates from sparse statistics:

Smoothing flattens spiky distributions so they generalize better

Very important all over NLP, but easy to do badly!
We’ll illustrate with bigrams today (h = previous word, could be anything).

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total
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P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Smoothing
Estimating multinomials

We want to know what words follow some history h
There’s some true distribution P(w | h)
We saw some small sample of N words from P(w | h)
We want to reconstruct a useful approximation of P(w | h)
Counts of events we didn’t see are always too low (0 < N P(w | h))
Counts of events we did see are in aggregate to high

Example:

Two issues:
Discounting: how to reserve mass what we haven’t seen
Interpolation: how to allocate that mass amongst unseen events

P(w | denied the)
3 allegations
2 reports
1 claims
1 speculation
…
1 request
13 total

P(w | affirmed the)
1 award

Add-One Estimation
Idea: pretend we saw every word once more than we actually did 
[Laplace]

Corresponds to a uniform prior over vocabulary
Think of it as taking items with observed count r > 1 and treating them 
as having count r* < r
Holds out V/(N+V) for “fake” events

N1+/N of which is distributed back to seen words
N0/(N+V) actually passed on to unseen words (nearly all!)
Actually tells us not only how much to hold out, but where to put it

Works astonishingly poorly in practice

Quick fix: add some small δ instead of 1 [Lidstone, Jefferys]
Slightly better, holds out less mass, still a bad idea
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How Much Mass to Withhold?
Remember the key discounting problem:

What count should r* should we use for an event that occurred r 
times in N samples?
r is too big

Idea: held-out data [Jelinek and Mercer]
Get another N samples
See what the average count of items occuring r times is (e.g. 
doubletons on average might occur 1.78 times)
Use those averages as r*

Much better than add-one, etc.

Smoothing: Add-One, Etc.

One class of smoothing functions:
Add-one / delta: assumes a uniform prior

Better to assume a unigram prior
δ

δ
δ +

+
=

−

−
−− )(

)/1(),()|(
1

1
1 wc

VwwcwwPADD

δ
δ
+
+

=
−

−
−− )(

)(ˆ),()|(
1

1
1 wc

wPwwcwwP PRIORUNI

number of word tokens in training datac

number of word types with count kNk

total vocabulary sizeV
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count of word w in training datac(w)
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Linear Interpolation
One way to ease the sparsity problem for n-
grams is to use less-sparse n-1-gram estimates
General linear interpolation:

Having a single global mixing constant is generally 
not ideal:

Solution: have different constant buckets
Buckets by count
Buckets by average count (better)
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Held-Out Data
Important tool for getting models to generalize:

When we have a small number of parameters that control the degree of 
smoothing, we set them to maximize the (log-)likelihood of held-out data

Can use any optimization technique (line search or EM usually easiest)

Examples:

Training Data Held-Out
Data

Test
Data
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Held-Out Reweighting
What’s wrong with unigram-prior smoothing?
Let’s look at some real bigram counts [Church and Gale 91]:

Big things to notice:
Add-one vastly overestimates the fraction of new bigrams
Add-0.0000027 still underestimates the ratio 2*/1*

One solution: use held-out data to predict the map of c to c*

6/7e-10

5/7e-10

4/7e-10

3/7e-10

2/7e-10

Add-one’s c*

4.21

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

~55

~44

~33

~22

~11

Add-0.0000027’s c*Count in 22M Words

1.5

~100%

2.8

9.2%

~2Ratio of 2/1

9.2%Mass on New 

Good-Turing Reweighting I

We’d like to not need held-out data (why?)
Idea: leave-one-out validation

Take each of the c training words out in turn
c training sets of size c-1, held-out of size 1
What fraction of held-out words are unseen in 
training? 

N1/c
What fraction of held-out words are seen k 
times in training?

(k+1)Nk+1/c
So in the future we expect (k+1)Nk+1/c of the 
words to be those with training count k
There are Nk words with training count k
Each should occur with probability:

(k+1)Nk+1/c/Nk

…or expected count (k+1)Nk+1/Nk

N1

N2

N3

N4417

N3511

. .
 . 

.
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N2

N4416

N3510

. .
 . 

.

Good-Turing Reweighting II
Problem: what about “the”?  (say c=4417)

For small k, Nk > Nk+1

For large k, too jumpy, zeros wreck estimates

Simple Good-Turing [Gale and Sampson]: 
replace empirical Nk with a best-fit power law 
once count counts get unreliable
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Good-Turing Reweighting III
Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk

Katz Smoothing
Use GT discounted bigram counts (roughly – Katz left large counts alone)
Whatever mass is left goes to empirical unigram
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GT’s c*Count in 22M Words
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Kneser-Ney Smoothing I
Something’s been very broken all this time

Shannon game:  There was an unexpected ____?
delay?
Francisco?

“Francisco” is more common than “delay”
… but “Francisco” always follows “San”

Solution: Kneser-Ney smoothing
In the back-off model, we don’t want the unigram probability of w
Instead, probability given that we are observing a novel continuation
Every bigram type was a novel continuation the first time it was seen
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Kneser-Ney Smoothing II
One more aspect to Kneser-Ney:

Look at the GT counts:

Absolute Discounting
Save ourselves some time and just subtract 0.75 (or some d)
Maybe have a separate value of d for very low counts

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

3.244
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0.4461

GT’s c*Count in 22M Words
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What Actually Works?
Trigrams:

Unigrams, bigrams too little 
context
Trigrams much better (when 
there’s enough data)
4-, 5-grams usually not 
worth the cost (which is 
more than it seems, due to 
how speech recognizers are 
constructed)

Good-Turing-like methods for 
count adjustment

Absolute discounting, Good-
Turing, held-out estimation, 
Witten-Bell

Kneser-Ney equalization for 
lower-order models
See [Chen+Goodman] 
reading for tons of graphs!

[Graphs from
Joshua Goodman]

Data >> Method?
Having more data is always good…

… but so is picking a better smoothing mechanism!
N > 3 often not worth the cost (greater than you’d think)
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Beyond N-Gram LMs
Caching Models

Recent words more likely to appear again

Can be disastrous in practice for speech (why?)

Skipping Models

Trigger Models: condition on bag of history words (e.g., maxent)
Structured Models: use parse structure (we’ll see these later)
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For Next Time

Readings: M+S 6, J+M 6, Chen & 
Goodman (on web page)

Assignment 1 is out!

Next up: More smoothing, EM


