CS 294-5: Statistical Natural Language Processing

Speech Recognition Lecture 20: 11/22/05

Slides directly from Dan Jurafsky, indirectly many others

Speech Recognition

- Overview:
 - Demo
 - Phonetics
 - Articulatory
 Acquetic
 - Acoustic
 Acoustic Models
 - HMM Lexicons
 - Gaussian MixturesSpeech Synthesis
- Proposal:
 - Nov 23, 28: Recognition
 - Nov 30, Dec 7: Project Presentations
 - Dec 5: Synthesis

ASR for Dialog Systems

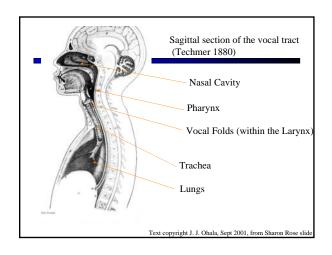
- Standard ASR maps sound to words
- But specific needs for dialogue systems
 - Language models (what can be said) could depend on where we are in the dialogue
 - Could make use of the fact that we are talking to the same human over time.
 - Barge-in (human will talk over the computer)
 - Confidence values: want to know if we misunderstood the human!

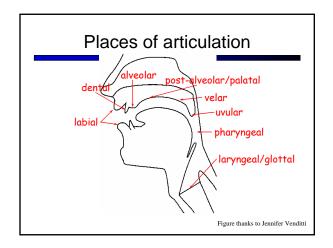
State-of-the-Art: Recognition

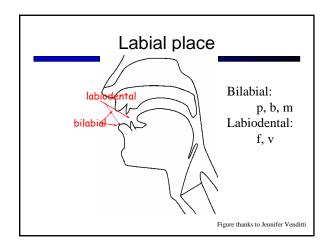
- Accuracy measured by word error rate (WER)
- Speaker independent:
 - Continuous digit strings, over the telephone: <0.3%
 - Continuous dictation: 3-5%
 - Continuous broadcast news: 5-7%
 - Continuous multispeaker conversations over the telephone: 50%+
 - Commercials: 80%+
- Speaker dependent:
 - 30 min training, good microphone, dictation: 2-3%

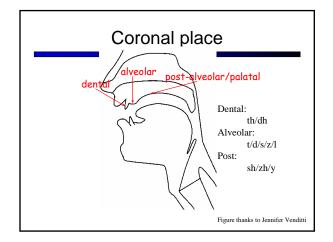
Databases

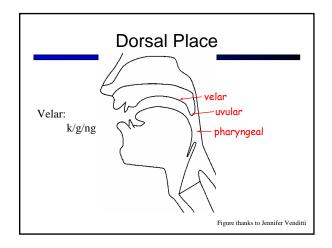
- Read speech (wideband, head-nounted mike)
 - Resource Management (RM)
 - 1000 word vocabulary, used in the 80s
 - WSJ (Wall Street Journal)
 - Reporters read the paper out loud
 - "Verbalized punctuation" or "non-verbalized punctuation"
- Broadcast Speech (wideband)
 - Broadcast News ("Hub 4")
 - English, Mandarin, Arabic
- Conversational Speech (telephone)
 - Switchboard
 - CallHome
 - Fisher





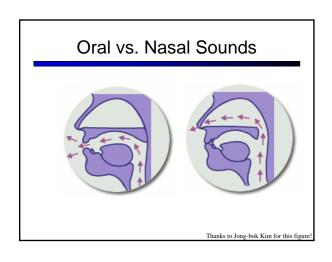


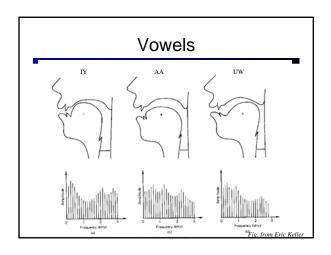


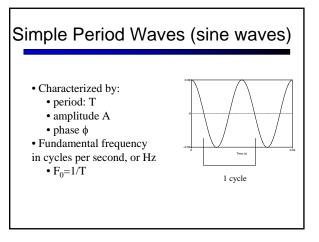


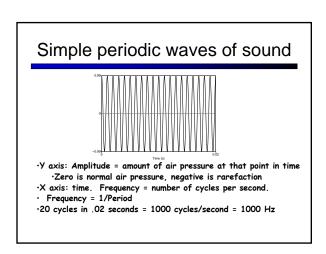
Manner of Articulation

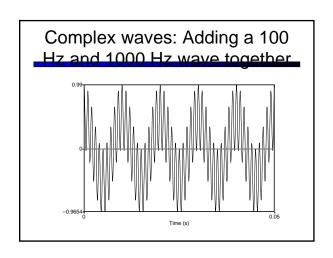
- Stop: complete closure of articulators, so no air escapes through mouth
- Oral stop: palate is raised, no air escapes through nose. Air pressure builds up behind closure, explodes when released
 - p, t, k, b, d, g
- Nasal stop: oral closure, but palate is lowered, air escapes through nose.
 - m, n, ng

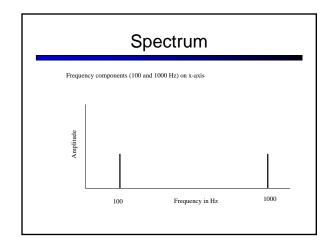


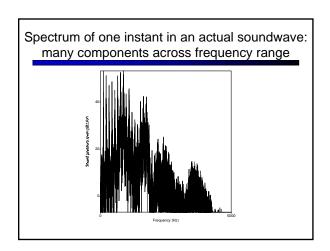








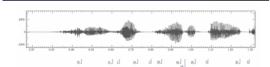




Waveforms for speech

- Waveform of the vowel [iy]
- Frequency: repetitions/second of a wave
- Above vowel has 28 reps in .11 secs
- So freq is 28/.11 = 255 Hz
- This is speed that vocal folds move, hence voicing
- Amplitude: y axis: amount of air pressure at that point in
- Zero is normal air pressure, negative is rarefaction

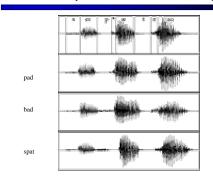
She just had a baby



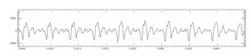
- What can we learn from a wavefile?
 - · Vowels are voiced, long, loud
 - Length in time = length in space in waveform picture
 - Voicing: regular peaks in amplitude When stops closed: no peaks: silence
 - Peaks = voicing: .46 to .56 (vowel [iy], from second .65 to .74 (vowel [ax]) and so on Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])

 - Fricatives like [sh] intense irregular pattern; see .33 to .46

Examples from Ladefoged



Part of [ae] waveform from "had"



- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large
- Large wave has frequency of 250 Hz (9 times in .036
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

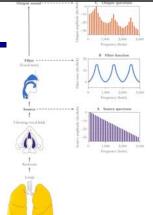
Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

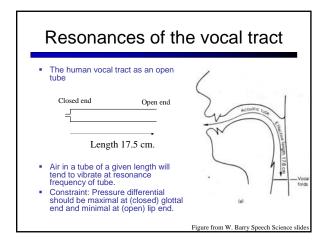
- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

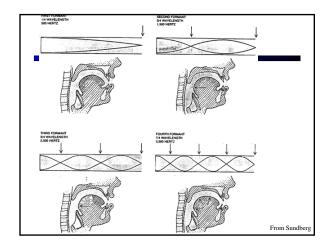
Why these Peaks?

- **Articulatory facts:**
 - The vocal cord vibrations create harmonics
 - The mouth is an
 - Depending on shape of mouth, some harmonics are amplified more than



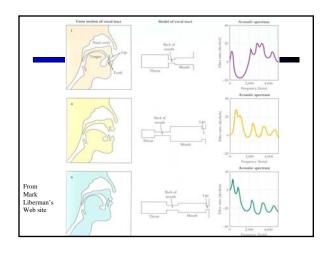
Deriving schwa: how shape of mouth (filter function) creates peaks! Reminder of basic facts about sound waves f = c/λ c = speed of sound (approx 35,000 cm/sec) A sound with λ=10 meters: f = 35 Hz (35,000/1000) A sound with λ=2 centimeters: f = 17,500 Hz (35,000/2)

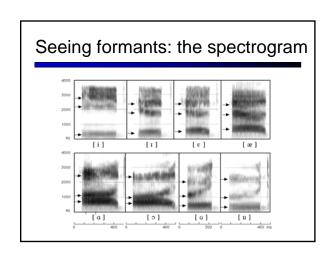


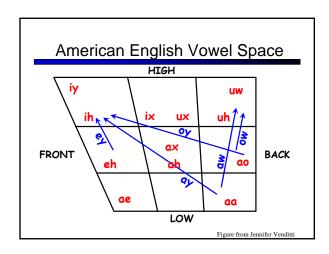


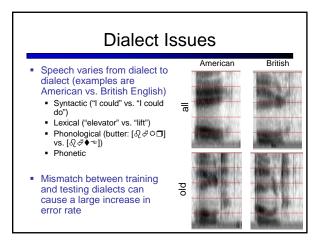
Computing the 3 Formants of Schwa

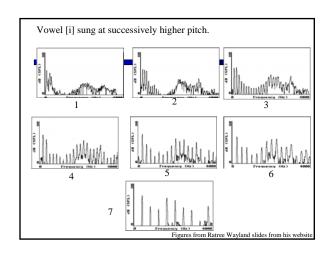
- Let the length of the tube be L
 - $F_1 = c/\lambda_1 = c/(4L) = 35,000/4*17.5 = 500Hz$
 - $F_2 = c/\lambda_2 = c/(4/3L) = 3c/4L = 3*35,000/4*17.5 = 1500Hz$
 - $F_1 = c/\lambda_2 = c/(4/5L) = 5c/4L = 5*35,000/4*17.5 = 2500Hz$
- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz
- These vowel resonances are called formants

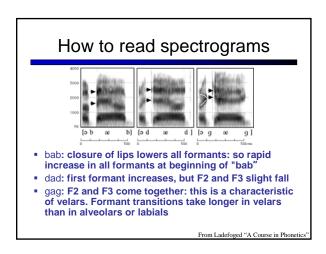


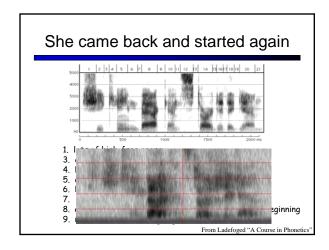


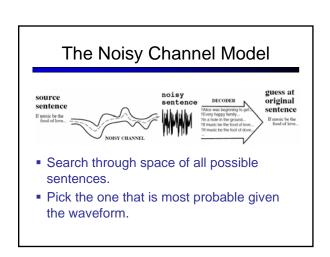




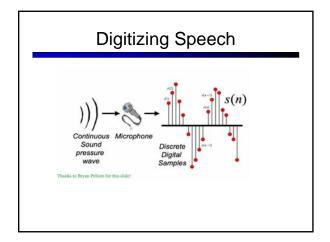






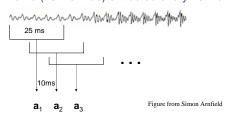


Speech Recognition Architecture



Frame Extraction

A frame (25 ms wide) extracted every 10 ms

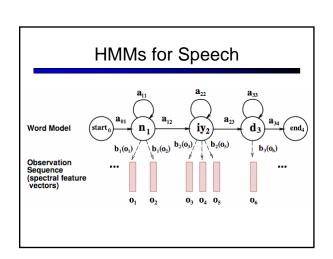


Mel Freq. Cepstral Coefficients

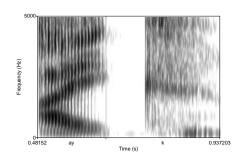
- Do FFT to get spectral information
 - Like the spectrogram/spectrum we saw earlier
- Apply Mel scaling
 - Linear below 1kHz, log above, equal samples above and below 1kHz
 - Models human ear; more sensitivity in lower freqs
- Plus Discrete Cosine Transformation

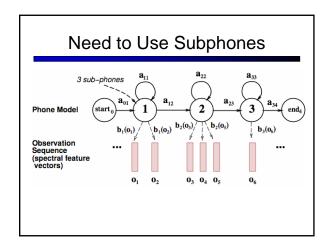
Final Feature Vector

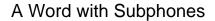
- 39 (real) features per 10 ms frame:
 - 12 MFCC features
 - 12 Delta MFCC features
 - 12 Delta Delta MFCC features
 - 1 (log) frame energy
 - 1 Delta (log) frame energy
 - 1 Delta Delta (log frame energy)
- So each frame is represented by a 39D vector

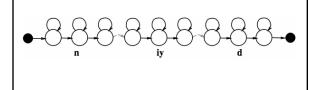


Phones Aren't Homogeneous

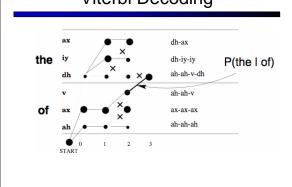




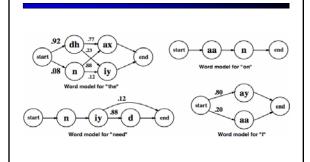




Viterbi Decoding



ASR Lexicon: Markov Models



HMMs for Continuous Observations?

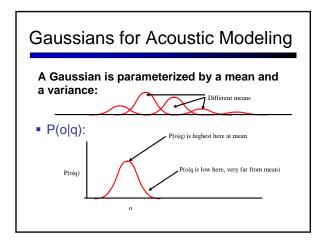
- Before: discrete, finite set of observations
- Now: spectral feature vectors are real-valued!
- Solution 1: discretization
- Solution 2: continuous emissions models
 - Gaussians
 - Multivariate Gaussians
 - Mixtures of Multivariate Gaussians
- A state is progressively:
 - Context independent subphone (~3 per phone)
 - Context dependent phone (=triphones)
 - State-tying of CD phone

Vector Quantization Idea: discretization Map MFCC vectors onto discrete symbols Compute probabilities just by counting This is called Vector Quantization or VQ Not used for ASR any more; too simple Useful to consider as a starting point

Gaussian Emissions

- VQ is insufficient for real ASR
- Instead: Assume the possible values of the observation vectors are normally distributed.
- Represent the observation likelihood function as a Gaussian with mean μ_i and variance σ_i^2

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x - \mu)^2}{2\sigma^2})$$



Multivariate Gaussians

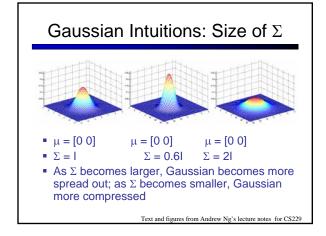
Instead of a single mean μ and variance σ:

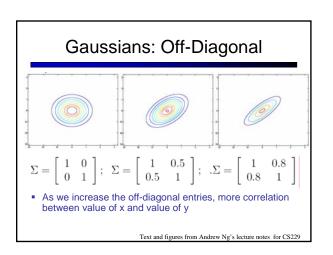
$$f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x - \mu)^2}{2\sigma^2})$$

• Vector of means μ and covariance matrix Σ

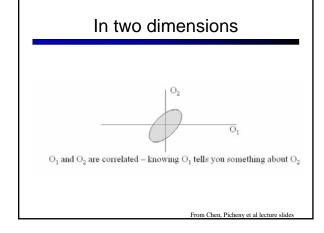
$$f(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^{T} \Sigma^{-1}(x - \mu)\right)$$

- Usually assume diagonal covariance
 - This isn't very true for FFT features, but is fine for MFCC features





In two dimensions O_1 and O_2 are uncorrelated – knowing O_1 tells you nothing about O_2 O_1 and O_2 can be uncorrelated without having equal variances From Chen, Picheny et al lecture slides



But we're not there yet Single Gaussian may do a bad job of modeling distribution in any dimension: Bad News!!! Solution: Mixtures of Gaussians

Mixtures of Gaussians: $f(x \mid \mu_{jk}, \Sigma_{jk}) = \sum_{k=1}^{M} c_{jk} N(x, \mu_{jk}, \Sigma_{jk})$ $b_{j}(o_{t}) = \sum_{k=1}^{M} c_{jk} N(o_{t}, \mu_{jk}, \Sigma_{jk})$ • For diagonal covariance:

 $b_{j}(o_{i}) = \sum_{k=1}^{M} \frac{c_{jk}}{2\pi^{D/2} \prod_{d=1}^{D} \sigma_{jkd}^{2}} \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_{jkd} - \mu_{jkd})^{2}}{\sigma_{jkd}^{2}})$

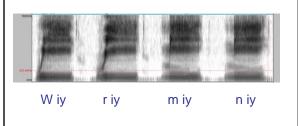
GMMs

- Summary: each state has a likelihood function parameterized by:
 - M Mixture weights
 - M Mean Vectors of dimensionality D
 - Either
 - M Covariance Matrices of DxD
 - Or more likely
 - M Diagonal Covariance Matrices of DxD which is equivalent to
 - M Variance Vectors of dimensionality D

Training Mixture Models

- Forced Alignment
 - Computing the "Viterbi path" over the training data is called "forced alignment"
 - We know which word string to assign to each observation sequence.
 - We just don't know the state sequence.
 - So we constrain the path to go through the correct words
 - And otherwise do normal Viterbi
- Result: state sequence!

Modeling phonetic context



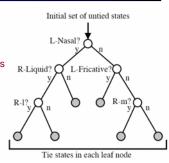
"Need" with triphone models

Implications of Cross-Word Triphones

- Possible triphones: 50x50x50=125,000
- How many triphone types actually occur?
- 20K word WSJ Task (from Bryan Pellom)
 - Word-internal models: need 14,300 triphones
 - Cross-word models: need 54,400 triphones
 - But in training data only 22,800 triphones occur!
- Need to generalize models.

State Tying / Clustering

- [Young, Odell, Woodland 1994]
- How do we decide which triphones to cluster together?
- Use phonetic features (or 'broad phonetic classes')
 - Stop
 - Nasal
 - FricativeSibilant
 - Vowel
 - latera



State Tying

Creating CD phones:

- Start with monophone, do EM training
- Clone Gaussians into triphones
- Build decision tree and cluster Gaussians
- Clone and train mixtures (GMMs

