CS 294-5: Statistical Natural Language Processing

Speech Recognition II Lecture 21: 11/29/05

Slides directly from Dan Jurafsky, indirectly many others

The Noisy Channel Model

- Search through space of all possible sentences.
- Pick the one that is most probable given the waveform.

Speech Recognition Architecture

Digitizing Speech

Frame Extraction

A frame (25 ms wide) extracted every 10 ms

Mel Freq. Cepstral Coefficients

- Do FFT to get spectral information
 - Like the spectrogram/spectrum we saw earlier
- Apply Mel scaling
 - Linear below 1kHz, log above, equal samples above and below 1kHz
 - Models human ear; more sensitivity in lower freqs
- Plus Discrete Cosine Transformation

Final Feature Vector

- 39 (real) features per 10 ms frame:
 - 12 MFCC features
 - 12 Delta MFCC features
 - 12 Delta Delta MFCC features
 - 1 (log) frame energy
 - 1 Delta (log) frame energy
 - 1 Delta Delta (log frame energy)
- So each frame is represented by a 39D vector

Phones Aren't Homogeneous

A Word with Subphones

HMMs for Continuous Observations?

- Before: discrete, finite set of observations
- Now: spectral feature vectors are real-valued!
- Solution 1: discretization
- Solution 2: continuous emissions models
 - Gaussians
 - Multivariate Gaussians
 - Mixtures of Multivariate Gaussians
- A state is progressively:
 - Context independent subphone (~3 per phone)
 - Context dependent phone (=triphones)
 - State-tying of CD phone

Vector Quantization Idea: discretization Map MFCC vectors onto discrete symbols Compute probabilities just by counting This is called Vector Quantization or VQ Not used for ASR anymore; too simple Useful to consider as a starting point

Gaussian Emissions

- VQ is insufficient for real ASR
- Instead: Assume the possible values of the observation vectors are normally distributed.
- Represent the observation likelihood function as a Gaussian with mean μ_i and variance σ_i^2

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x - \mu)^2}{2\sigma^2})$$

Multivariate Gaussians

Instead of a single mean μ and variance σ:

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x - \mu)^2}{2\sigma^2})$$

• Vector of means μ and covariance matrix Σ

$$f(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^{T} \Sigma^{-1}(x - \mu)\right)$$

- Usually assume diagonal covariance
 - This isn't very true for FFT features, but is fine for MFCC features

Gaussian Intuitions: Size of Σ • $\mu = [0\ 0]$ $\mu = [0\ 0]$ $\mu = [0\ 0]$ • $\Sigma = 1$ $\Sigma = 0.61$ $\Sigma = 21$ • As Σ becomes larger, Gaussian becomes more spread out; as Σ becomes smaller, Gaussian more compressed

But we're not there yet Single Gaussian may do a bad job of modeling distribution in any dimension: Bad News!!! Solution: Mixtures of Gaussians Figure from Chen, Picheney et al slides

■ M mixtures of Gaussians: $f(x \mid \mu_{jk}, \Sigma_{jk}) = \sum_{k=1}^{M} c_{jk} N(x, \mu_{jk}, \Sigma_{jk})$ $b_{j}(o_{t}) = \sum_{k=1}^{M} c_{jk} N(o_{t}, \mu_{jk}, \Sigma_{jk})$ ■ For diagonal covariance: $b_{j}(o_{t}) = \sum_{k=1}^{M} \frac{c_{jk}}{2\pi^{\frac{D}{2}} \prod_{j \neq k}^{D} \sigma_{jkd}^{2}} \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_{jkd} - \mu_{jkd})^{2}}{\sigma_{jkd}^{2}})$

Mixtures of Gaussians

GMMs

- Summary: each state has a likelihood function parameterized by:
 - M Mixture weights
 - M Mean Vectors of dimensionality D
 - Fither
 - M Covariance Matrices of DxD
 - Or more likely
 - M Diagonal Covariance Matrices of DxD which is equivalent to
 - M Variance Vectors of dimensionality D

Training Mixture Models

- Forced Alignment
 - Computing the "Viterbi path" over the training data is called "forced alignment"
 - We know which word string to assign to each observation sequence.
 - We just don't know the state sequence.
 - So we constrain the path to go through the correct words
 - And otherwise do normal Viterbi
- Result: state sequence!

Modeling phonetic context

"Need" with triphone models

Implications of Cross-Word Triphones

- Possible triphones: 50x50x50=125,000
- How many triphone types actually occur?
- 20K word WSJ Task (from Bryan Pellom)
 - Word-internal models: need 14,300 triphones
 - Cross-word models: need 54,400 triphones
 - But in training data only 22,800 triphones occur!
- Need to generalize models.

State Tying / Clustering

- [Young, Odell, Woodland 1994]
- How do we decide which triphones to cluster together?
- Use phonetic features (or 'broad phonetic classes')
 - Stop
 - NasalFricative
 - Sibilant
 - SibilarVowel
 - Vowellateral

Speeding things up

- Viterbi is O(N²T), where N is total number of HMM states, and T is length
- This is too large for real-time search
- A ton of work in ASR search is just to make search faster:
 - Beam search (pruning)
 - Fast match
 - Tree based lexicons

Beam Search

- Most common strategy (still!)
- Just like earlier in the term
- Instead of retaining all candidates at every time frame
 - Use a threshold T to keep subset
 - At each time t

 - Identify state with lowest cost D_{min}
 Each state with cost > D_{min}+ T is discarded ("pruned") before moving on to time t+1
- Empirically, beam size of 5-10% of search space
- 90-95% of HMM states don't have to be considered
- Vast savings in time

N-best list 1. I will tell you would I think in my office 2. I will tell you what I think in my office 3. I will tell you when I think in my office 4. I would sell you would I think in my office 5. I would sell you what I think in my office 6. I would sell you when I think in my office 7. I will tell you would I think in my office 8. I will tell you why I think in my office 9. I will tell you what I think on my office 10. I Wilson you I think on my office

One-pass vs. multipass

- Potential problems with multipass
 - Can't use for real-time (need end of sentence)
 - (But can keep successive passes really fast)
 - Each pass can introduce inadmissible pruning
 - (But one-pass does the same w/beam pruning and fastmatch)
- · Why multipass
 - Very expensive KSs. (NL parsing,higher-order n-gram, etc)
 Spoken language understanding: N-best perfect interface

 - Research: N-best list very powerful offline tools for algorithm development
 - N-best lists needed for discriminant training (MMIE, MCE) to get rival hypotheses