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CS 294-5: Statistical
Natural Language Processing

Speech Recognition II
Lecture 21: 11/29/05

Slides directly from Dan Jurafsky, indirectly many others

The Noisy Channel Model

Search through space of all possible 
sentences.
Pick the one that is most probable given 
the waveform.

Speech Recognition Architecture Digitizing Speech

Frame Extraction

A frame (25 ms wide) extracted every 10 ms

25 ms

10ms

. . .

a1      a2      a3
Figure from Simon Arnfield

Mel Freq. Cepstral Coefficients

Do FFT to get spectral information
Like the spectrogram/spectrum we saw earlier

Apply Mel scaling
Linear below 1kHz, log above, equal samples above 
and below 1kHz
Models human ear; more sensitivity in lower freqs

Plus Discrete Cosine Transformation
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Final Feature Vector

39 (real) features per 10 ms frame:
12 MFCC features
12 Delta MFCC features
12 Delta- Delta MFCC features
1 (log) frame energy
1 Delta (log) frame energy
1 Delta- Delta (log frame energy)

So each frame is represented by a 39D 
vector

HMMs for Speech

Phones Aren’t Homogeneous

Time (s)
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Need to Use Subphones

A Word with Subphones Viterbi Decoding
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ASR Lexicon: Markov Models HMMs for Continuous Observations?

Before: discrete, finite set of observations
Now: spectral feature vectors are real- valued!
Solution 1: discretization
Solution 2: continuous emissions models

Gaussians
Multivariate Gaussians
Mixtures of Multivariate Gaussians

A state is progressively:
Context independent subphone (~3 per phone)
Context dependent phone (=triphones)
State-tying of CD phone

Vector Quantization
Idea: discretization

Map MFCC vectors 
onto discrete symbols 
Compute probabilities 
just by counting

This is called Vector 
Quantization or VQ

Not used for ASR 
anymore; too simple

Useful to consider as a 
starting point

Gaussian Emissions

VQ is insufficient for real ASR
Instead: Assume the possible values of the 
observation vectors are normally distributed.
Represent the observation likelihood function as 
a Gaussian with mean µj and variance σj

2

f (x | µ,σ ) =
1

σ 2π
exp(− (x − µ)2

2σ 2 )

Gaussians for Acoustic Modeling

P(o|q):

P(o|q)

o

P(o|q) is highest here at mean

P(o|q is low here, very far from mean)

A Gaussian is parameterized by a mean and 
a variance:

Different means

Multivariate Gaussians

Instead of a single mean µ and variance σ:

Vector of means µ and covariance matrix Σ

Usually assume diagonal covariance
This isn’t very true for FFT features, but is fine for 
MFCC features

f (x | µ,σ ) =
1

σ 2π
exp(− (x − µ)2

2σ 2 )

f (x | µ,Σ) =
1

(2π )n / 2 | Σ |1/ 2 exp −
1
2

(x − µ)T Σ−1(x − µ)
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
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Gaussian Intuitions: Size of Σ

µ = [0 0]           µ = [0 0]          µ = [0 0] 
Σ = I Σ = 0.6I Σ = 2I
As Σ becomes larger, Gaussian becomes more 
spread out; as Σ becomes smaller, Gaussian 
more compressed

Text and figures from Andrew Ng’s lecture notes  for CS229

Gaussians: Off-Diagonal 

As we increase the off-diagonal entries, more correlation 
between value of x and value of y

Text and figures from Andrew Ng’s lecture notes  for CS229

In two dimensions

From Chen, Picheny et al lecture slides

In two dimensions

From Chen, Picheny et al lecture slides

But we’re not there yet

Single Gaussian may do a bad job of modeling 
distribution in any dimension:

Solution: Mixtures of Gaussians
Figure from Chen, Picheney et al slides

Mixtures of Gaussians

M mixtures of Gaussians:

For diagonal covariance:

bj (ot ) =
c jk

2π
D

2 σ jkd
2

d =1

D

∏
exp(− 1

2
(x jkd − µ jkd )2

σ jkd
2

d =1

D

∑ )
k=1

M

∑

f (x | µ jk,Σ jk ) = c jkN(x,µ jk,Σ jk )
k=1

M

∑

bj (ot ) = c jkN(ot ,µ jk,Σ jk )
k=1

M

∑
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GMMs

Summary: each state has a likelihood function 
parameterized by:

M Mixture weights
M Mean Vectors of dimensionality D
Either

M Covariance Matrices of DxD

Or more likely
M Diagonal Covariance Matrices of DxD

which is equivalent to
M Variance Vectors of dimensionality D

Training Mixture Models

Forced Alignment
Computing the “Viterbi path” over the training data is 
called “forced alignment”
We know which word string to assign to each 
observation sequence.
We just don’t know the state sequence.
So we constrain the path to go through the correct 
words
And otherwise do normal Viterbi

Result: state sequence!

Modeling phonetic context

W iy r iy m iy n iy

“Need” with triphone models

Implications of Cross-Word Triphones

Possible triphones: 50x50x50=125,000

How many triphone types actually occur?

20K word WSJ Task (from Bryan Pellom)
Word-internal models:  need 14,300 triphones
Cross-word models: need 54,400 triphones
But in training data only 22,800 triphones occur!

Need to generalize models.

State Tying / Clustering
[Young, Odell, 
Woodland 1994]
How do we decide 
which triphones to 
cluster together?
Use phonetic features
(or ‘broad phonetic 
classes’)

Stop
Nasal
Fricative
Sibilant
Vowel
lateral



6

State Tying

Creating CD phones:
Start with monophone, 
do EM training
Clone Gaussians into 
triphones
Build decision tree and 
cluster Gaussians
Clone and train 
mixtures (GMMs

Viterbi with 2 Words + Unif. LM

Null 
transition 
from the 
end- state 
of each 
word to 
start- state 
of all 
(both) 
words.

Figure from Huang et al page 612

Search space for unigram LM

Figure from Huang et al page 617

Search space with bigrams

Figure from Huang et al page 618

Speeding things up

Viterbi is O(N2T), where N is total number 
of HMM states, and T is length
This is too large for real-time search
A ton of work in ASR search is just to 
make search faster:

Beam search (pruning)
Fast match
Tree- based lexicons

Beam Search 
Most common strategy (still!)
Just like earlier in the term
Instead of retaining all candidates at every time frame

Use a threshold T to keep subset
At each time t

Identify state with lowest cost Dmin
Each state with cost > Dmin+ T is discarded (“pruned”) before 
moving on to time t+1

Empirically, beam size of 5-10% of search space
90-95% of HMM states don’t have to be considered
Vast savings in time
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A* Decoding (2) A* Decoding (cont.)

Tree structured lexicon Multipass Search

N-best list

From Huang et al, page 664

Word Graph

From Huang et al, page 665
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One-pass vs. multipass
• Potential problems with multipass

• Can’t use for real-time (need end of sentence)
• (But can keep successive passes really fast)

• Each pass can introduce inadmissible pruning
• (But one-pass does the same w/beam pruning and 

fastmatch)
• Why multipass

• Very expensive KSs. (NL parsing,higher-order n-gram, etc)
• Spoken language understanding: N-best perfect interface
• Research: N-best list very powerful offline tools for algorithm 

development
• N-best lists needed for discriminant training (MMIE, MCE) to get 

rival hypotheses


