CS 294-5: Statistical
Natural Language Processing

Speech Recognition 11
Lecture 21: 11/29/05

Slides directly from Dan Jurafsky, indirectly many others

The Noisy Channel Model
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= Search through space of all possible
sentences.

= Pick the one that is most probable given
the waveform.
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Speech Recognition Architecture

T et M SR

EELREE RN L

Tipied Fratern 1 asainm

BEEEEEEEEE

Larveasu Maswds Yol
FEE R R EEE
) MM Lo
BEE e E R ErE "
- 'r M prem Cramma |

Digitizing Speech
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Frame Extraction

= A frame (25 ms wide) extracted every 10 ms
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Mel Freq. Cepstral Coefficients

= Do FFT to get spectral information
= Like the spectrogram/spectrum we saw earlier

= Apply Mel scaling
= Linear below 1kHz, log above, equal samples above
and below 1kHz

= Models human ear; more sensitivity in lower freqs

= Plus Discrete Cosine Transformation




Final Feature Vector

= 39 (real) features per 10 ms frame:
= 12 MFCC features
= 12 Delta MFCC features
= 12 Delta [ta MFCC features
= 1 (log) frame energy
= 1 Delta (log) frame energy
= 1 Delta [dta (log frame energy)
= So each frame is represented by a 39D
vector

Phones Aren’t Homogeneous
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HMMs for Speech
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Need to Use Subphones

A Word with Subphones
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ASR Lexicon: Markov Models
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HMMs for Continuous Observations?

—
= Before: discrete, finite set of observations
= Now: spectral feature vectors are reat \dued!
= Solution 1: discretization
= Solution 2: continuous emissions models

= Gaussians

= Multivariate Gaussians

= Mixtures of Multivariate Gaussians
= A state is progressively:

= Context independent subphone (~3 per phone)

= Context dependent phone (=triphones)

= State-tying of CD phone

Vector Quantization

= |dea: discretization
= Map MFCC vectors
onto discrete symbols
= Compute probabilities |
just by counting
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= This is called Vector
Quantization or VQ I
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= Useful to consider as a
starting point

Gaussian Emissions

= VQ is insufficient for real ASR

= Instead: Assume the possible values of the
observation vectors are normally distributed.

= Represent the observation likelihood function as
a Gaussian with mean y; and variance o2
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Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and

a variance:
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Multivariate Gaussians

= Instead of a single mean p and variance o:
(x—u)*
f(X|p0)=——exp(-
(x| 0) U’\/E p( 252
= Vector of means p and covariance matrix

eXp(—%(X—u)T 2’1(X—u)J

1
fX|p2)=—>—>
(x| ) Qn) 2|27
= Usually assume diagonal covariance

= This isn’t very true for FFT features, but is fine for
MFCC features




Gaussian Intuitions: Size of X

= pn=[00] pn=[00] n=1[00]
= Y= > =0.6l > =2l
= As X becomes larger, Gaussian becomes more

spread out; as X becomes smaller, Gaussian
more compressed

Text and figures from Andrew Ng’s lecture notes for CS229
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Gaussians: Off-Diagonal

= As we increase the off-diagonal entries, more correlation
between value of x and value of y

Text and figures from Andrew Ng’s lecture notes for CS229

In two dimensions

O, and O, are uncorrelated - knowing O, tells vou nothing about O

0, and O, can be uncorrelated withont having equal vaniances

From Chen, Picheny et al lecture slides

In two dimensions

Oy and O are correlated - knowing O tells vou something about O,

From Chen, Picheny et al lecture slides

But we’re not there yet

= Single Gaussian may do a bad job of modeling
distribution in any dimension:

Bad News!!!

= Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slides

Mixtures of Gaussians
= M mixtures of Gaussians:
M
FOX g Z4) = chkN(Xnujk’zjk)
k=1

M
b;(0) = zcjkN(Ot!ﬂjk'ij)
k=1

= For diagonal covariance:
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d=1




GMMs

= Summary: each state has a likelihood function
parameterized by:
= M Mixture weights
= M Mean Vectors of dimensionality D
= Either
= M Covariance Matrices of DxD
= Or more likely
= M Diagonal Covariance Matrices of DxD
which is equivalent to
= M Variance Vectors of dimensionality D

Training Mixture Models

= Forced Alignment

Computing the “Viterbi path” over the training data is
called “forced alignment”

We know which word string to assign to each
observation sequence.

We just don’t know the state sequence.

So we constrain the path to go through the correct
words

And otherwise do normal Viterbi
= Result: state sequence!

Modeling phonetic context

“Need” with triphone models
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Implications of Cross-Word Triphones
]

= Possible triphones: 50x50x50=125,000
= How many triphone types actually occur?

= 20K word WSJ Task (from Bryan Pellom)
= Word-internal models: need 14,300 triphones
= Cross-word models: need 54,400 triphones
= But in training data only 22,800 triphones occur!

= Need to generalize models.

State Tying / Clustering

= [Young, Odell,
Woodland 1994]
= How do we decide
which triphones to
cluster together?
= Use phonetic features
(or ‘broad phonetic
classes’)
= Stop
= Nasal
Fricative
Sibilant
Vowel
lateral

Initial set of untied states

Tie states in each leaf node




State Tying 588,
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= Creating CD phones:
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Viterbi with 2 Words + Unif. LM

= Null
transition
fromthe &
end date
of each
word to
start date
of all
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e & & o o o

000.000.

R
o

Figure from Huang et al page 6.

Search space for unigram LM

Figure from Huang et al page 617

Search space with bigrams
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Speeding things up

= Viterbi is O(N?T), where N is total number
of HMM states, and T is length

= This is too large for real-time search

= A ton of work in ASR search is just to
make search faster:
= Beam search (pruning)
= Fast match
= Tree I=sed lexicons

Beam Search

= Most common strategy (still!)
= Just like earlier in the term
= Instead of retaining all candidates at every time frame
= Use athreshold T to keep subset
= Ateachtimet
= Identify state with lowest cost D, ;,

= Each state with cost > D + T is discarded (“pruned”) before
moving on to time t+1

= Empirically, beam size of 5-10% of search space
= 90-95% of HMM states don’t have to be considered
= Vast savings in time




A* Decoding (2)
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A* Decoding (cont.)

P(acoustics! "if" ) =
forward probability

P( "if" ISTART)

Tree structured lexicon

AW(BN) |~ N(AW.DD) DIXNF) | ABOUND

:

ABOUT

[ AHIB.Y) H VIAHX) ABOVE

AKX

B{AX AH)

BAKE

\ KD(EY.TD) R TINKD #) BAKED

KEY IX) IX(ENG) NG(IX#) | BAKING

AXRIKIY)

BAKER

IYIAXR#) | BAKERY

Multipass Search

Simple Smarter
Knowledge Knowledge

Source Source
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N-best list

1. 1T will tell you would I think in my office
2. 1 will tell you what I think in my office

3.1 will tell you when [ think in my office

'y

. I'would sell you would I think in my office
5. 1 would sell you what | think in my office
6. 1 would sell you when 1 think in my office
7. 1 will tell you would I think in my office
8.1 will tell yvou why I think in my office

9. 1 will tell you what I think on my office

10. T Wilson you | think on my office

From Huang et al, page 664

Word Graph

From Huang et al, page 665




One-pass vs. multipass

« Potential problems with multipass
« Can't use for real-time (need end of sentence)
« (But can keep successive passes really fast)
« Each pass can introduce inadmissible pruning
« (But one-pass does the same w/beam pruning and
fastmatch)
¢ Why multipass
« Very expensive KSs. (NL parsing,higher-order n-gram, etc)
Spoken language understanding: N-best perfect interface

Research: N-best list very powerful offline tools for algorithm
development

N-best lists needed for discriminant training (MMIE, MCE) to get
rival hypotheses




