CS 294-5: Statistical
Natural Language Processing

Smoothing Methods
Lecture 3: 9/6/05

Recap: Language Models

= Why are language models useful?

= Why did | show samples of generated
text?

= What are the main challenges in building
n-gram language models?

Smoothing

= We often want to make estimates from sparse statistics:

P(w | denied the)]

3 allegations "
2 reports i

3 o
1 claims ug} g . 2
1 request = ;ni':' E § E < g
7 total S|lg| B g 3

= Smoothing flattens spiky distributions so they generalize better

P(w | denied the)
2.5 allegations
1.5 reports

| —
= [
0.5 claims ,‘gﬂ ” . g
0.5 request o £ S < 3
3 5] = - s 5 £
2 other | &l Bl E| £]
2|5 g © 5

7 total S e e]

= Very important all over NLP, but easy to do badly!
= We'll illustrate with bigrams today (h = previous word, could be anything).

Vocabulary Size

= Key issue for language models: open or closed vocabulary?
= When would you want an open vocabulary?
= When would you want a closed vocabulary?

= How to set the vocabulary size V?
= By external factors (e.g. speech recognizers)
= Using statistical estimates?
= Difference between estimating unknown token rate and probability of a
given unknown word

= For the homework:
= OK to assume there is only one unknown word type UNK
= UNK be quite common in new text!
= UNK stands for all unknown word type

Smoothing: Add-One, Etc.

c number of word tokens in training data
c(w) count of word w in training data
c(w,w,) | count of word w following word w,

\% total vocabulary size

N, number of word types with count k

= One class of smoothing functions:
= Add-one / delta: assumes a uniform prior

c(w,w_)+0(1/V)

PADDfd(Wlw—l) = C(W)+5
-1

= Better to assume a unigram prior

Held-Out Data

= |mportant tool for getting models to generalize:

Held-Out Test

Training Data Data Data

= When we have a small number of parameters that control the degree of
smoothing, we set them to maximize the (log-)likelihood of held-out data

LL(W,.. W, [M (4...4)) = ZIOg Puay. /lk)(Wi (W ;)
i
= Can use any optimization technique (line search or EM usually easiest)

= Examples:
P (WIWL) = APWIW) + 4,P(w)
(W, w_,) + 5P(w)
C(W—l) + 5 3

PUNI—PRIOR(J) (W | W—l) =

Held-Out Reweighting

= What's wrong with unigram-prior smoothing?
= Let's look at some real bigram counts [Church and Gale 91]:

Countin 22M Words | Actual ¢* (Next 22M) | Add aw's c* Add (0000027’ c*

1 0.448 2/7e+10 -1

2 1.25 3/7e+10 -2

3 224 4/7e+10 -3

4 3.23 5/7e+10 -4

5 421 6/7e+10 -5
[Mass on New [9.2% [~100% J9.2%]
| Ratio of 2/1 |28 |15 [-2 |

= Big things to notice:
= Add-one vastly overestimates the fraction of new bigrams
= Add-0.0000027 still underestimates the ratio 2*/1*
= Issue: which distribution are we smoothing?
= One solution: use held-out data to predict the map of c to c*

Good-Turing Reweighting |

= We'd like to not need held-out data (why?)
= Idea: leave-one-out validation

= Take each of the c training words out in turn
c training sets of size c-1, held-out of size 1

What fraction of held-out words are unseen in
training? N,

= Ny/c
What fraction of held-out words are seen k
times in training?

= (k+1)Ny./c
So in the future we expect (k+1)N,,,/c of the
words to be those with training count k .
There are N, words with training count k .
Each should occur with probability:

= (K+1)Nya/CIN,

= ...or expected count (k+1)N, /N,

7l

Good-Turing Reweighting I

= Problem: what about “the"? (say c=4417)
= Forsmallk, N, >N,
= For large k, too jumpy, zeros wreck estimates N, N,

Nl

N

[e
= Simple Good-Turing [Gale and Sampson]:

replace empirical N, with a best-fit power law . .
once count counts get unreliable - .

y]
[—

Good-Turing Reweighting Ili

= Hypothesis: counts of k should be k* = (k+1)N,,,/N,

Countin 22M Words | Actual c* (Next 22M) | GT’s ¢*
1 0.448 0.446
2 1.25 1.26
3 2.24 2.24
4 3.23 3.24
[ass on New [9.2% [9.2%]

= Katz Smoothing
= Use GT discounted bigram counts (roughly — Katz left large counts alone)
= Whatever mass is left goes to empirical unigram

c*(w, W)

> c(w,w)

Pearz (W] W) = +a(w,y) Ia(W)

Kneser-Ney Smoothing |

= Something’s been very broken all this time
= Shannon game: There was an unexpected ____ ?
= delay?
= Francisco?
= “Francisco” is more common than “delay”
= ... but “Francisco” always follows “San”

= Solution: Kneser-Ney smoothing
= In the back-off model, we don’t want the unigram probability of w
= Instead, probability given that we are observing a novel continuation
= Every bigram type was a novel continuation the first time it was seen

[{w,; c(w,w,) >0}
[(w,w,)rc(w,w,)>0]

Peontinuation (W) =

Kneser-Ney Smoothing Il

= One more aspect to Kneser-Ney:
= Look at the GT counts:

Count in 22M Words Actual c* (Next 22M) GT'sc*
1 0.448 0.446
2 1.25 1.26

3 2.24 2.24

4 3.23 3.24

= Absolute Discounting
= Save ourselves some time and just subtract 0.75 (or some d)
= Maybe have a separate value of d for very low counts

c(w,w_,)-D

>e(w',w,)

PKN (W | Wfl) = + a(Wfl)PCONTINUATION (W)

Higher-Order Models

Expectation-Maximization

What Actually Works?

= Trigrams:
= Unigrams, bigrams too little
context
= Trigrams much better (when
there’s enough data)
= 4-, 5-grams usually not
worth the cost (which is
more than it seems, due to
how speech recognizers are
constructed)
= Good-Turing-like methods for
count adjustment
= Absolute discounting, Good-
Turing, held-out estimation,
Witten-Bell
= Kneser-Ney equalization for
lower-order models
= See [Chen+Goodman] [Graphs from
reading for tons of graphs! Joshua Goodman]

relative perf:

il in It ross-smtropy from hascling (bits bk

Data >> Method?

= Having more data is always good...

—-100,000 Katz
-=-100,000 KN
1,000,000 Katz
~-1,000,000 KN
10,000,000 Katz
-=-10,000,000 KN
——all Katz

—all KN

55 T T T T T
123 456 7 8 9102
n-gramorder
= ... but sois picking a better smoothing mechanism!
= N > 3 often not worth the cost (greater than you’d think)

Beyond N-Gram LMs

= Caching Models
= Recent words more likely to appear again

c(w e history)

Pepcne (W history) = AP(w|w_w_,) + (1-4) [history |

= Can be disastrous in practice for speech (why?)
= Skipping Models

Poip (W W W) = ’US(W [WaW_,) + A,P(Wlw,)+ A4P(w|__w.,)

Clustering Models: condition on word classes when words are too
sparse

Trigger Models: condition on bag of history words (e.g., maxent)
Structured Models: use parse structure (we'll see these later)

For Next Time

= Readings: M+S 6, J+M 6, Chen &
Goodman (on web page)

= Next up: Text Categorization, Naive-Bayes

