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CS 294-5: Statistical
Natural Language Processing

Smoothing Methods
Lecture 3: 9/6/05

Recap: Language Models

Why are language models useful?

Why did I show samples of generated 
text?

What are the main challenges in building 
n-gram language models?

Smoothing
We often want to make estimates from sparse statistics:

Smoothing flattens spiky distributions so they generalize better

Very important all over NLP, but easy to do badly!
We’ll illustrate with bigrams today (h = previous word, could be anything).
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P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Vocabulary Size

Key issue for language models: open or closed vocabulary?
When would you want an open vocabulary?
When would you want a closed vocabulary?

How to set the vocabulary size V?
By external factors (e.g. speech recognizers)
Using statistical estimates?
Difference between estimating unknown token rate and probability of a 
given unknown word

For the homework:
OK to assume there is only one unknown word type UNK
UNK be quite common in new text!
UNK stands for all unknown word type

Smoothing: Add-One, Etc.

One class of smoothing functions:
Add-one / delta: assumes a uniform prior

Better to assume a unigram prior
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number of word tokens in training datac

number of word types with count kNk

total vocabulary sizeV
count of word w following word w-1c(w,w-1)
count of word w in training datac(w)

Held-Out Data
Important tool for getting models to generalize:

When we have a small number of parameters that control the degree of 
smoothing, we set them to maximize the (log-)likelihood of held-out data

Can use any optimization technique (line search or EM usually easiest)

Examples:

Training Data Held-Out
Data

Test
Data
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Held-Out Reweighting
What’s wrong with unigram-prior smoothing?
Let’s look at some real bigram counts [Church and Gale 91]:

Big things to notice:
Add-one vastly overestimates the fraction of new bigrams
Add-0.0000027 still underestimates the ratio 2*/1*
Issue: which distribution are we smoothing?

One solution: use held-out data to predict the map of c to c*
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Good-Turing Reweighting I

We’d like to not need held-out data (why?)
Idea: leave-one-out validation

Take each of the c training words out in turn
c training sets of size c-1, held-out of size 1
What fraction of held-out words are unseen in 
training? 

N1/c
What fraction of held-out words are seen k 
times in training?

(k+1)Nk+1/c
So in the future we expect (k+1)Nk+1/c of the 
words to be those with training count k
There are Nk words with training count k
Each should occur with probability:

(k+1)Nk+1/c/Nk

…or expected count (k+1)Nk+1/Nk
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Good-Turing Reweighting II
Problem: what about “the”?  (say c=4417)

For small k, Nk > Nk+1

For large k, too jumpy, zeros wreck estimates

Simple Good-Turing [Gale and Sampson]: 
replace empirical Nk with a best-fit power law 
once count counts get unreliable
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Good-Turing Reweighting III
Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk

Katz Smoothing
Use GT discounted bigram counts (roughly – Katz left large counts alone)
Whatever mass is left goes to empirical unigram
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Kneser-Ney Smoothing I
Something’s been very broken all this time

Shannon game:  There was an unexpected ____?
delay?
Francisco?

“Francisco” is more common than “delay”
… but “Francisco” always follows “San”

Solution: Kneser-Ney smoothing
In the back-off model, we don’t want the unigram probability of w
Instead, probability given that we are observing a novel continuation
Every bigram type was a novel continuation the first time it was seen
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Kneser-Ney Smoothing II
One more aspect to Kneser-Ney:

Look at the GT counts:

Absolute Discounting
Save ourselves some time and just subtract 0.75 (or some d)
Maybe have a separate value of d for very low counts
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Higher-Order Models Expectation-Maximization

What Actually Works?
Trigrams:

Unigrams, bigrams too little 
context
Trigrams much better (when 
there’s enough data)
4-, 5-grams usually not 
worth the cost (which is 
more than it seems, due to 
how speech recognizers are 
constructed)

Good-Turing-like methods for 
count adjustment

Absolute discounting, Good-
Turing, held-out estimation, 
Witten-Bell

Kneser-Ney equalization for 
lower-order models
See [Chen+Goodman] 
reading for tons of graphs!

[Graphs from
Joshua Goodman]

Data >> Method?
Having more data is always good…

… but so is picking a better smoothing mechanism!
N > 3 often not worth the cost (greater than you’d think)
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Beyond N-Gram LMs
Caching Models

Recent words more likely to appear again

Can be disastrous in practice for speech (why?)

Skipping Models

Clustering Models: condition on word classes when words are too 
sparse
Trigger Models: condition on bag of history words (e.g., maxent)
Structured Models: use parse structure (we’ll see these later)
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For Next Time

Readings: M+S 6, J+M 6, Chen & 
Goodman (on web page)

Next up: Text Categorization, Naïve-Bayes


