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CS 294-5: Statistical
Natural Language Processing

POS Tagging II
Lecture 8: 9/26/05

Recap: POS Ambiguity
Words are syntactically ambiguous:

Two sources of information:
Clues from the input (current word, next word, 
capitalization, suffixes, word shape)
Clues from adjacent hidden labels (connectivity)
What of this could HMMs capture?

Remember: POS sequence models will be the 
basis of information extraction methods later

Fed raises interest rates 0.5 percent
NNP    NNS        NN         NNS    CD      NN
VBN    VBZ        VBP        VBZ
VBD                    VB            

Recap: Accuracies

Roadmap of (known / unknown) accuracies:
Most freq tag: ~90% / ~50%

Trigram HMM: ~95% / ~55%

Maxent P(t|w): 93.7% / 82.6%
TnT (HMM++): 96.2% / 86.0%
Maxent tagger: 96.9% / 86.9%
Cyclic tagger: 97.2% / 89.0%
Upper bound: ~98%

Most errors 
on unknown 

words

Recap: Errors

Common errors [from Toutanova & Manning 00]

NN/JJ NN

official knowledge

VBD RP/IN DT NN

made  up   the story

RB   VBD/VBN NNS

recently   sold   shares

Better Features
Can do surprisingly well just looking at a word by itself:

Word the: the → DT
Lowercased word Importantly: importantly → RB
Prefixes unfathomable: un- → JJ
Suffixes Importantly: -ly → RB
Capitalization Meridian: CAP → NNP
Word shapes 35-year: d-x → JJ

Then build a maxent (or whatever) model to predict tag
Maxent P(t|w): 93.7% / 82.6%

Sequence-Free Tagging?
What about looking at a word and it’s environment, but 
no sequence information?

Add in previous / next word the __
Previous / next word shapes X __ X
Occurrence pattern features [X: x X occurs]
Crude entity detection __ ….. (Inc.|Co.)
Phrasal verb in sentence? put …… __
Conjunctions of these things

All features except sequence: 96.6% / 86.8%
Uses lots of features: > 200K
Why isn’t this the standard approach?
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Maxent Taggers

One step up: also condition on previous tags

Train up P(ti|w,ti-1,ti-2) as a normal maxent problem, 
then use to score sequences
This is referred to as a maxent tagger [Ratnaparkhi
96]
Beam search effective!  (Why?)
What’s the advantage of beam size 1?

Feature Templates

We’ve been sloppy:
Features: <w0=future, t0=JJ>
Feature templates: <w0, t0>

In maxent taggers:
Can now add edge feature templates:

< t-1, t0> 
< t-2, t-1, t0> 

Also, mixed feature templates:
< t-1, w0 , t0 > 

Decoding

Decoding maxent taggers:
Just like decoding HMMs
Viterbi, beam search, posterior decoding

Viterbi algorithm (HMMs):

Viterbi algorithm (Maxent):

TBL Tagger
[Brill 95] presents a transformation-based tagger

Label the training set with most frequent tags

DT   MD  VBD   VBD .
The  can  was  rusted .

Add transformation rules which reduce training mistakes

MD → NN : DT __
VBD → VBN : VBD __ .

Stop when no transformations do sufficient good
Does this remind anyone of anything?

Probably the most widely used tagger (esp. outside NLP)
… but not the most accurate: 96.6% / 82.0 %

TBL Tagger II

What gets learned? [from Brill 95]

EngCG Tagger
English constraint grammar tagger

[Tapanainen and Voutilainen 94]
Something else you should know about
Hand-written and knowledge driven
“Don’t guess if you know” (general point about 
modeling more structure!)
Tag set doesn’t make all of the hard distinctions as 
the standard tag set (e.g. JJ/NN)
They get stellar accuracies: 98.5% on their tag set
Linguistic representation matters…
… but it’s easier to win when you make up the rules
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CRF Taggers
Newer, higher-powered discriminative sequence models

CRFs (also voted perceptrons, M3Ns)
Do not decompose training into independent local regions
Can be deathly slow to train – require repeated inference on 
training set

Differences tend not to be too important for POS tagging
However: one issue worth knowing about in local models

“Label bias” and other explaining away effects
Maxent taggers’ local scores can be near one without having 
both good “transitions” and “emissions”
This means that often evidence doesn’t flow properly
Why isn’t this a big deal for POS tagging?

Domain Effects

Accuracies degrade outside of domain
Up to triple error rate
Usually make the most errors on the things you care 
about in the domain (e.g. protein names)

Open questions
How to effectively exploit unlabeled data from a new 
domain (what could we gain?)
How to best incorporate domain lexica in a principled 
way (e.g. UMLS specialist lexicon, ontologies)

Unsupervised Tagging?

AKA part-of-speech induction
Task:

Raw sentences in
Tagged sentences out

Obvious thing to do:
Start with a (mostly) uniform HMM
Run EM
Inspect results

EM for HMMs: Quantities

Remember from last time:

Can calculate in O(s2n) time (why?)

EM for HMMs: Process
From these quantities, we can re-estimate transitions:

And emissions:

If you don’t get these formulas immediately, just think 
about hard EM instead, where were re-estimate from the 
Viterbi sequences

Merialdo: Setup
Some (discouraging) experiments [Merialdo 94]

Setup:
You know the set of allowable tags for each word
Fix k training examples to their true labels

Set P(w|t) on these examples
Set P(t|t-1,t-2) on these examples

Re-estimate with EM for n iterations

Note: we know allowed tags but not frequencies
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Merialdo: Results So How to Fix It?

Lots of progress in learning parts-of-speech
Distributional word clustering methods
Morphology- driven models
Contrastive estimation
Other ideas!

Stay tuned…


