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Abstract

Hardware and Software Support for
Managed-Language Workloads in Data Centers

by

Martin Christoph Maas

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Krste Asanović, Chair

An increasing number of workloads are moving to cloud data centers, including large-scale
machine learning, big data analytics and back-ends for the Internet of Things. Many of these
workloads are written in managed languages such as Java, Python or Scala. The performance
and efficiency of managed-language workloads are therefore crucial in terms of hardware cost,
energy efficiency and quality of service for these data centers.

While managed-language issues such as garbage collection (GC) and JIT compilation
have seen a significant amount of research on single-node deployments, data center workloads
run across a large number of independent language virtual machines and face new systems
challenges that were not previously addressed. At the same time, there has been a large
amount of work on specialized systems software and custom hardware for data centers, but
most of this work does not fundamentally address managed languages and does not modify
the language runtime system, effectively treating it as a black box.

In this thesis, we argue that we can substantially improve the performance, efficiency
and responsiveness of managed applications in cloud data centers by treating the language
runtime system as a fundamental part of the data center stack and co-designing it with both
the software systems layer and the hardware layer. In particular, we argue that the cloud
operators’ full control over the software and hardware stack enables them to co-design these
different layers to a degree that would be difficult to achieve in other settings. To support
this thesis, we investigate two examples of co-designing the language runtime system with
the remainder of the stack, spanning both the hardware and software layers.

On the software side, we show how to better support distributed managed-language
applications through a “Holistic” Language Runtime System, which treats the runtimes
underpinning a distributed application as a distributed system itself. We first introduce the
concept of a Holistic Runtime System. We then present Taurus, a prototype implementation of
such a system, based on the OpenJDK Hotspot JVM. By applying Taurus to two representative
real-world workloads, we show that it is effective both in reducing the overall runtime and
resource consumption, as well as improving long tail-latencies.
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On the hardware side, we describe how custom data center SoCs provide an opportunity
to revisit the old idea of hardware support for garbage collection. We first show that garbage
collection is a suitable workload to be offloaded from the CPU to data-parallel accelerators, by
demonstrating how integrated GPUs can be used to perform garbage collection for applications
running on the CPU. We then generalize these ideas into a custom hardware accelerator
for garbage collection that performs GC more efficiently than running the operation on a
traditional CPU. We show this design in the context of a stop-the-world garbage collector,
and describe how it could be extended to a fully concurrent, pause-free GC.

Finally, we discuss how hardware-software research on managed languages requires new
research infrastructure to achieve a higher degree of realism and industry adoption. We then
present the foundation of a new research platform for this type of work, using open-source
hardware based on the free and open RISC-V ISA combined with the Jikes Research Virtual
Machine. Using this research infrastructure, we evaluate the performance and efficiency of
our proposed hardware-assisted garbage collector design.
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Chapter 1

Introduction

This chapter describes current trends in cloud data centers and how these trends change the
role of the language runtime system in the data center stack. We first highlight challenges
that current and future language runtime systems face in this setting. We then introduce the
research contributions of this thesis, and how they address these challenges.

1.1 Trends in Cloud Data Centers

An increasing number of server workloads are moving to the public cloud. Cisco’s Global
Cloud Index estimates that by 2020, 92% of data center workloads will run in cloud data
centers [52], and the market size for public cloud resources is estimated to increase to an
annual $162B [57]. Much of this growth comes from the major cloud vendors (Amazon Web
Services, Microsoft Azure and Google Cloud Platform), with increases of year-over-year sales
ranging from 43% to 93% [139] in 2016-2017. Further, surveys among businesses [1] indicate
that cloud adoption is seen as one of the most important shifts by business leaders.

As its adoption is growing, the public cloud’s deployment model is moving from an
Infrastructure-as-a-Service (IaaS) model to a Platform-as-a-Service (PaaS) model. With
IaaS, customers buy cloud resources from the cloud operator, such as compute (i.e., virtual
CPUs and machine VMs), network bandwidth or storage. They then deploy their own
software stack, such as computation frameworks, storage layers or application-level logic
(Figure 1.1). In the PaaS model, the cloud operator provides high-level services such as
databases, machine-learning frameworks or speech recognition, and customers access these
services through high-level APIs [55]. This model is currently being adopted by all major
cloud providers, including Amazon (e.g., Amazon Polly [7], Amazon Aurora [5]), Google (e.g.,
BigQuery [32], Machine Learning Engine [182], Cloud Speech API [205]) and Microsoft (e.g.,
Speech API [34], Face API [70]).

This trend decouples the application from the underlying infrastructure and brings a unique
opportunity for cloud operators to replace any part of the stack, including hardware, operating
system, and language runtime system. Emerging data center designs are already taking
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Figure 1.1: Comparing Infrastructure as a Service (IaaS) and Platform as a Service (PaaS).
Blue indicates parts of the data center stack managed by the cloud operator, green parts are
managed by the customer. With IaaS, customers rent hardware resources from the cloud
operator and run their own software stack. In the PaaS model, the cloud operator runs
applications directly and sells services such as machine-learning resources or databases.

advantage of this, through custom hardware [46, 174] and a shift to resource disaggregation in
server racks [77]. One example is TensorFlow [2]: While users can rent TensorFlow resources
from Google and program against a high-level Python API, computation can run on CPUs,
GPUs or custom hardware called Tensor Processing Unit (TPUs [125]).

In the PaaS setting, application developers increasingly focus on high-level functionality
such as application logic, processing pipelines and mathematical models, while performance-
critical components such as machine-learning infrastructure or data stores are managed by the
cloud operator. This is especially true with the emergence of serverless frameworks such as
Amazon Lambda [19], Azure Functions [20] or Google AppEngine [84], where cloud customers
implement their application logic as high-level functions in languages such as Python, and
the cloud operator deploys and scales these applications transparently.

As a result of these trends, applications are increasingly written in high-level managed
languages such as Java, JavaScript, Python, or Scala, while the underlying services are
provided by the cloud platform. This shift gives the cloud provider the freedom to implement
these services and frameworks using any language (including C/C++, Go, or Rust), co-design
them with the platform they are running on, or even deploy custom hardware.

1.2 Role of the Managed-Language Runtime System

The trend towards PaaS elevates the role of the language runtime system. It now becomes the
component that connects applications to the services they are using, is responsible for reliably
executing a large number of potentially latency-sensitive serverless functions, and is targeting
new hardware such as resource-disaggregated systems or custom hardware accelerators.
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At the same time, managed runtime systems have not fundamentally changed over the past
10 years, although they were originally designed for very different scenarios. It is therefore
unsurprising that problems have been reported in connection with managed languages in the
cloud setting. These problems range from performance overheads and unpredictability from
garbage collection (GC) [80, 150] to memory bloat [164] and long startup times [143].

Meanwhile, the PaaS model also decouples the application from the underlying data
center stack, including the language runtime system, operating system, distributed system
infrastructure and hardware. This new flexibility provides an opportunity to rethink the
language runtime system and how it interacts with the rest of the data center stack: As
long as the language-level programming interface remains unchanged, the cloud operator can
replace any layer underneath it. In particular, they can now co-design the language runtime
system with the rest of the software stack, and even the data center hardware.

Despite these opportunities, most work on managed runtimes has only investigated the
language runtime system in isolation, without taking into account the data center environment.
In contrast, there exists little research that spans the boundary to other parts of the data
center stack, such as the distributed systems layer or the hardware. Instead, most research
on managed runtime systems considers the hardware and operating system as fixed. The
reverse is true as well: most systems and hardware research considers the language runtime
as part of the application, essentially treating it as a black box.

1.3 Summary of Contributions

In this thesis, we argue that the rapidly evolving data center environment introduces both an
opportunity and a necessity to look at the managed runtime system not in isolation, but to
co-design it with the hardware and the systems software layers.

We first discuss a general approach to redesigning the language runtime system for future
cloud data centers. We then demonstrate the necessity of working across the boundary of the
language runtime system through two examples that both address a specific problem: the
pause times and overheads introduced by the garbage collector, which is an integral part of
any managed runtime system. Specifically, this thesis makes the following contributions:

1. Holistic Runtime Systems: We introduce the concept of a Holistic Language Run-
time System to better support managed data center applications. A Holistic Runtime
System is a distributed language runtime system that treats the runtimes underlying
a distributed application as a distributed system itself. We argue that by bridging
the barrier between the systems and the language-runtime layers, we can address
managed-language problems in data centers in a universal and flexible way.

After describing Holistic Runtimes in their general form, we present Taurus, a prototype
Holistic Runtime System based on the OpenJDK Hotspot JVM. Taurus can coordinate
managed-language workloads across machines in a data center and introduces a custom
Domain-Specific Language (DSL) to describe coordination strategies. We evaluate
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Taurus’s performance to show that it scales to several hundred machines without
introducing substantial performance overheads.

Using Taurus, we show how a Holistic Runtime System can be used to address the
problem of garbage collection pauses by coordinating between different runtime system
instances. We demonstrate the effectiveness of this approach by applying it to two
real-world workloads. We then provide a nomenclature to generalize these strategies,
to show how they may extend to other workloads.

2. Offloading Garbage Collection to GPUs and Custom Hardware: We present
a second cross-layer approach to address garbage collection problems in data-center
applications, by offloading GC from the CPU to other hardware. We first show how to
offload garbage collection to integrated GPUs. We then introduce a hardware-assisted
collector design that offloads GC to custom hardware accelerators close to memory.

3. Methodology for Hardware-Software Research on Managed Runtimes: Hard-
ware support for managed runtimes has traditionally been an area that is difficult to
evaluate, due to the lack of available research infrastructure. To address this problem,
we ported the Jikes Research Virtual Machine [4] to RISC-V [225], an open instruction
set with associated open-source hardware [18]. This creates the foundation of a new
open-source evaluation platform for managed-language research.

Using this new simulation infrastructure, we perform an initial full-stack evaluation
of our hardware-assisted garbage collector design, to demonstrate its effectiveness and
understand the design trade-offs.

1.4 Thesis Organization

We first provide an overview of background material related to this thesis, specifically on
data centers, managed runtime systems and garbage collectors (Chapter 2). We then discuss
challenges of managed runtime systems in data centers and introduce the concept of a Holistic
Runtime System to address these challenges (Chapter 3). Next, we present and evaluate a
prototype of such a Holistic Runtime System (Chapter 4) and apply it to the problem of
garbage collection pauses, to show its effectiveness (Chapter 5).

In the second part of the thesis, we show a different strategy to address the same garbage
collection problem, by offloading garbage collection itself onto different hardware. We first
show how to offload GC to an integrated GPU (Chapter 6) and then generalize this approach
to a custom hardware accelerator (Chapter 7). As this kind of hardware is difficult to evaluate
using traditional research infrastructure, we next present a platform for hardware-software
co-design of managed language workloads, based on the Jikes Research Virtual Machine and
RISC-V (Chapter 8). Finally, we use this infrastructure for a preliminary evaluation of our
hardware-assisted garbage collector (Chapter 9). We conclude with a discussion of future
work (Chapter 10), and how this research fits into future cloud data centers (Chapter 11).
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Chapter 2

Background

This chapter provides an overview of data center architectures and their relation to managed-
language runtime systems. We discuss the structure of these runtime systems, their different
components and how they are used in cloud data centers. Finally, we provide a survey of
research on one of these components, the garbage collector.

2.1 Cloud Data Centers

Cloud data centers as they exist today have evolved in three stages [17]. The data centers
that powered the Internet revolution of the 1990s were built from off-the-shelf servers and
other components. These servers either ran proprietary applications such as Google Search,
hosted websites or were available for rent. The structure of these data centers resembled
traditional networks of workstations [68], connected with off-the-shelf network hardware.

In the early 2000s, as these data centers grew, companies such as Google started designing
their own servers [87]. Components such as CPUs were still off-the-shelf, but the system
design (and increasingly other parts, such as switches [201]) became custom. This trend led
to the OpenCompute [213] project which provides an open standard for these system designs.
Meanwhile, we also saw the ascent of modern IaaS, where customers can rent resources
(typically in the form of virtual machines) and elastically adjust their resource allocation
to meet their requirements. This model was notably different from the prevailing model of
renting a fixed number of servers and gave customers more flexibility, as well as enabling
dynamic sharing of data center resources between customers. This reduced prices and made
it feasible for companies to move their existing infrastructure into the cloud.

In recent years, both of these trends have continued, and we are seeing a move towards
an increasing amount of fully custom hardware, with completely custom components such
as Google’s TPUs and Microsoft’s FPGA-based data center infrastructure. With this shift,
we have also seen cloud operators sharing resources more efficiently and selling increasingly
high-level services such as storage or machine learning in a PaaS setting.
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2.1.1 Data Center Overview

Modern data centers consist of up to 100–200,000 servers organized into racks. Each rack
contains a top-of-rack switch, and these switches are connected through a high-speed data
center network [192]. While cloud operators try to keep data centers as homogeneous as
possible, there will typically be several different SKUs within the same data center, as old
servers are repurposed and replaced with new machines [186].

Machines are shared between different workloads and users, both internal and external.
The partitioning mechanisms differ between data centers and companies, but the most
common strategies use virtual machines or containers. Workloads are assigned to machines
through a cluster scheduler, such as Borg [221], Omega [198] or Mesos [102]. There has been
a large amount of research on cluster scheduling, and schedulers use approaches that are
centralized, decentralized, reservation-based or can respond to measurements and feedback
from the application (e.g., to identify interference between jobs).

An important challenge in data centers is failure tolerance. Due to their scale, components
fail constantly, and applications have to address this through replication, transparent failure
recovery and hedging requests. This is typically handled at the software level. Services such
as parallel computation and storage are provided by parallel frameworks such as Hadoop [226],
Spark [239] or Cassandra [134], which handle failure transparently and are used as building
blocks to implement higher-level applications.

While cluster schedulers and frameworks are data-center specific software components,
the nodes themselves typically run unmodified operating systems such as Linux, and use
conventional language runtime systems such as the JVM. The OS and runtime system are
mostly treated as black boxes by the cluster scheduler. Research proposals such as data
center operating systems (e.g., DiOS [197]) or Multikernels [29] are intended to lead to OSs
that are better-suited for data centers, but are not yet deployed widely.

2.1.2 Data Center Workloads

Data centers run a large amount of code, which can be broadly classified into (1) fully-custom
application code, (2) data center frameworks such as Hadoop or Spark and (3) maintenance
and support code. While this encompasses a large range of very different workloads, the
literature [17, 221] often divides them into two categories:

• Batch workloads: These are long-running workloads such as big data analytics,
indexing or OLAP processing. As these workloads run for a long time and across a
large number of machines, their efficiency is the primary concern.

• Latency-sensitive workloads: These are workloads such as user-facing web front-
ends or back-ends for real-time systems such as autonomous vehicles, personal assistants
or augmented-reality applications. These workloads typically have strict latency re-
quirements that can range from microseconds to several hundred milliseconds. The
primary goal is to meet these deadlines, with efficiency as a secondary concern.
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Language Runtime Systems Examples TIOBE
Java OpenJDK, IBM JRE Netflix, Cassandra, Hadoop, Tomcat 13.0%
C++ N/A MapReduce, TensorFlow 5.6%
C# CLR, Mono Microsoft 4.2%
PHP/Hack Zend, HHVM Wordpress, Facebook 2.3%
JavaScript V8, node.js Uber, Netflix 2.1%
Ruby Rubinius, JRuby, MRI Github, Airbnb, Ruby on Rails 2.0%
Go Go Runtime CockroachDB, Kubernetes, Docker, etcd 1.6%
Python CPython, PyPy Django, TensorFlow (frontend) 1.6%
Scala OpenJDK, IBM JRE Twitter, Spark 0.9%

Table 2.1: Classifying Workloads in Data Centers by Language. We list a subset of
implementations and projects for each of these languages. Except for C++, all of these
languages are managed languages (Go is a hybrid as it does not have a JIT compiler). TIOBE
is an index that measures the popularity of programming languages (higher means better).

While this characterization still holds true, the distinction between these categories is starting
to blur. The general trend is that both types of workloads are operating on ever-increasing
data sets, with ever-decreasing response time requirements. As a result, future applications
such as autonomous vehicles, real-time security and cloud robotics may require processing on
large data sets and millisecond-level response times simultaneously. A particularly important
emerging scenario is machine learning for real-time systems: Traditionally, model training
is a batch workload while inference is latency-sensitive. With the emergence of real-time
machine learning, we are starting to see workloads that require both.

One important factor is that these workloads are not typically monolithic applications but
composed of a large number of different components, frameworks and services. For example,
a typical Amazon.com request requires 150 different service calls [63]. This has important
implications for latency-sensitive workloads: the latency of a request is determined by all of
its sub-requests, and as the number of services that are being called grows, the probability
that any one of them will delay the request is growing as well, leading to tail-latency problems
where a certain fraction of requests misses their deadlines. This is a major problem in data
centers and techniques to address tail-latency can mitigate the effect [62, 140].

Not only are applications composed of a range of frameworks and services, they are also
written in different languages. As a result, data centers are running a range of different
runtimes, and workloads are often composed of components running in different language
environments. Table 2.1 shows an overview of programming languages used in data centers,
together with companies and projects that are using them. We also show the TIOBE index
from August 2017 [214], which is a metric indicating their popularity (not limited to the cloud
setting). This shows that managed languages play an important role in data centers, are
being used as the main language by a number of major companies (e.g., Facebook, Twitter),
and run a number of important frameworks (e.g., Cassandra, Spark, Hadoop).
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Figure 2.1: Resource Disaggregation. The left side shows a conventional server system
composed of individual servers with CPUs, memory and storage. In a resource-disaggregated
system (right side), resources are instead managed as pools of compute (with high-bandwidth
memory), memory and storage, connected by a high-bandwidth, low-latency backplane.

Managed languages are used in two different kinds of scenarios: as application-level
languages and to build software infrastructure. The two cases are very different: By improving
the infrastructure, we can affect a large fraction of cycles and improve data center efficiency.
By improving the application-level, we can improve individual application issues, such as
long tail-latencies. As such, both scenarios are important and warrant investigation.

2.1.3 Data Center Trends

With the substantial growth of data centers over the past years, there have been an increasing
number of proposals to fundamentally rethink how they are designed and programmed. While
there are competing views, several common trends have emerged:

Resource Disaggregation

Facebook [156], HPE [72], Huawei [110], Intel [117] and UC Berkeley [17] have proposed
rack-scale system designs where resources are disaggregated. Instead of deploying individual
servers with a certain amount of compute, memory and storage, all resources in a rack
(i.e., storage, memory, accelerators and compute System-on-Chips with a small amount of
stacked high-bandwidth memory) are managed in separate pools and connected through a
high-bandwidth, low-latency backplane such as PCIe or Infiniband (Figure 2.1).

Compared to a traditional deployment, this reduces the number of different system
configurations: Instead of managing several types of nodes with varying combinations of
resources to fit the requirements of different workloads, a disaggregated system can allocate
exactly the right resource mix to each application. Disaggregation also makes it possible to
scale resources independently and does not require keeping idle nodes powered on to retain
access to their memory or storage. Finally, resource-disaggregated systems may be more
predictable than traditional server deployments, at the cost of increased data movement.
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Figure 2.2: FPGAs in the Data Center. This deployment model resembles Microsoft’s [46].
The FPGA is connected directly to the network, allowing it to handle network requests
directly and communicate with other FPGAs to perform large-scale computations.

Hardware Accelerators

Recent work has shown that hardware accelerators can substantially improve certain cloud
workloads, and major companies including Amazon [6], Baidu [174], Google [2] and Mi-
crosoft [46] are currently adopting them in production. These accelerators come in two flavors:
custom ASICs with limited programmability (such as Google’s TPU [125] or the DianNao-line
of chips [47]) or fully programmable FPGAs (such as Microsoft’s Catapult [187]).

The deployment model also differs: while accelerators can be managed as peripherals
(similar to GPUs) or pooled as a disaggregated resource, Microsoft recently proposed connect-
ing FPGAs directly to the network (Figure 2.2), which allows the FPGA to handle network
requests and dispatch work to the CPU [46].

Serverless Deployment Model

Data center applications are often designed as micro-services that communicate with each
other through service-level APIs. The services can be stateful or stateless and are often
backed by infrastructure provided by the cloud operator, such as data stores or distributed
computation frameworks.

Traditionally, these services were deployed as long-running server instances running within
virtual machines or containers. However, there has been a recent shift towards a serverless
deployment model, where customers implement their services as high-level functions and the
cloud operator provides an orchestration framework that transparently scales and schedules
these services as they see fit (e.g., Google AppEngine [84] or AWS Lambda [19]). Container-
based orchestration frameworks such as Kubernetes [41] and library operating systems such
as Mirage [152] have made it easier to deploy these services in a lightweight way.
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2.1.4 Data Center Challenges

While data centers have seen a large amount of attention by industry and the academic
community, there are a range of open or ongoing research problems. While this research
includes diverse areas such as security or cloud economics, a large portion of projects falls
into improving data centers along three categories:

Resource Efficiency

US data centers accounted for 70 billion KWh, or 2% of the United State’s energy consumption
in 2014 [100]. In 2016, Microsoft, Amazon and Google reported combined capital expenditures
of $30B, a large part of which was likely invested into data centers. According to one estimate,
the cost of ownership of a 50,000-server data center amounts to $5M per month [91]. With
companies such as Google reportedly operating 2-3 million servers each [85], this would
amount to $2.4-3.6B per year.

Given this cost, making efficient use of the available hardware resources is crucial, as even
3% percent of performance inefficiency can translate to $100M per year. Improving efficiency
has focused on a range of different areas:

• Work on the software stack, including improved cluster scheduling [64, 65, 155, 221],
better data center frameworks [82, 239] and improved resource allocation algorithms [81].
Much of this work focuses on batch workloads, but there has been work on reconciling
latency-sensitive workloads with high server utilization as well [138].

• More efficient data-center hardware or making better use of the existing hardware [144].
This includes data-center specific optimizations to processors or networking hardware,
such as being able to deliver network packets directly to the processor cache. New
processor designs also often include new features for specific data center workloads such
as machine learning [60].

• Custom hardware accelerators, such as Google’s TPU [125] or Microsoft’s Catapult
platform [187] and Brainwave [51]. These accelerators can potentially execute important
workloads much more efficiently than a traditional CPU. For example, Google reported
that without the TPU, they would have to double their data center resources [125].

• Improving the system-level design, cooling and rack setup. This includes the introduction
of rack-scale systems such as the HP Moonshot [107] and resource-disaggregated systems
such as The Machine [72].

In the future, the resource efficiency challenge will be exacerbated by the ever growing scale
of cloud data centers and workloads with new characteristics moving into the cloud.
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Tail Latency

Predictability of latency-sensitive workloads in data centers is a challenge, and has been
widely investigated [62, 140]. Most of these problems are the result of unpredictable pauses or
errors in the system that cause a request to miss its deadline (rather than hardware failures).
These unpredictable delays can occur in any level of the data center stack, including the
hardware, the systems software, the runtime system or the application itself.

Strategies to address these problems fall into two categories: improvements that make
components of the system more predictable [127, 173] and strategies that help applications
tolerate existing variability (such as hedging requests [62] or detecting interference [240]).
Achieving acceptable tail-latencies typically requires a combination of both of these strate-
gies, as building a 100% predictable system is infeasible and tolerating a large amount of
unpredictability comes at the cost of increased resource utilization and reduced efficiency.

Tail-latency challenges are becoming more important as time-scales are moving from
millisecond to microsecond granularity [28] and latency-sensitive workloads operate on ever-
larger data sets. They are also exacerbated by an increasing amount of composition of
different services, since a request’s latency is determined by its slowest component.

Programmability

An important driver of cloud adoption has been a reduced barrier to entry, and a wide range
of companies are aiming to make the cloud easier to program. This work ranges from cloud
deployment managers [135] to backup and migration solutions, to high-level frameworks for
writing and deploying web applications [2, 21, 84].

There is also an increasing number of tools to obtain more insights into data center
applications, including profiling and tracing for distributed workloads [151], understanding
consistency guarantees [71] and using continuous deployment in cloud data centers [194].
Finally, there is also work on verification, including generating provable code from high-level
specifications [97] and making distributed applications easier to reason about [227].

Despite this progress, we are seeing an emerging programmability challenge through new
deployment models such as accelerators, FPGAs and disaggregated hardware. It is an open
question how to program for these platforms. At the same time, there has been no consensus
on the ideal model for serverless computation.

2.1.5 Summary

These challenges affect all layers of the data center stack, including the hardware, systems
layer and language runtime system. In particular, the language runtime system plays a
particularly important role, as it connects the application to the underlying platform. Yet,
most existing research is limited to one level of abstraction. In this thesis, we are making
the case that these problems can be better addressed by working across multiple layers and
co-optimizing the language runtime system with the remainder of the stack.
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Figure 2.3: Components of a Managed Runtime. The heap consists of objects connected by
references/pointers, and mutator threads are the threads belonging to the application.

2.2 Managed-Language Runtime Systems

To understand how we can improve the managed runtime system in the data center context,
we first have to understand how these systems work, and how managed workloads differ from
traditional (or “native”) server workloads. While the term managed runtime originated at
Microsoft and was originally used to specifically describe workloads targeting the Common
Language Runtime [89], it is nowadays used as a general term describing language runtimes
with the following properties:

1. They run within a virtual machine abstraction (often called a language VM to distinguish
it from machine VMs running in hypervisors). This means that they do not run machine
code but instead execute bytecodes targeting an abstract machine model.

2. They deploy some form of dynamic compilation. In most cases, code is either interpreted
or just-in-time (JIT) compiled. However, there are managed runtime systems that
compile code ahead-of-time and enable dynamic optimization out-of-band.

3. They feature automatic memory management (i.e., garbage collection).

The vast majority of modern languages are managed, including Java, Python, JavaScript,
Scala, C#, Ruby, PHP and R. The exceptions include C/C++ and Rust. Go can be seen as
a hybrid, since it arguably satisfies properties 1 and 3, but is statically compiled.

Managed runtime systems typically have a much higher degree of complexity than runtimes
associated with native languages. In fact, much of the functionality of the language runtime
system replicates that within the operating system and compiler, a property that has been
pointed out repeatedly [106]. While language runtime systems differ significantly from one
another, they typically contain the following components and functionality (Figure 2.3):
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Interpreter and/or JIT Compiler: Some managed languages (such as Java or C#) start
out with a traditional compiler which produces bytecode that is then loaded by the managed
runtime system and executed. Other runtimes (such as Python and JavaScript engines) start
from executable code in the target language, parse the code and then execute the resulting
program. Both scenarios have in common that once the target code has been translated into
bytecodes, it is either interpreted or dynamically compiled to machine code.

Most high-performance managed runtimes feature a tiered compilation system where
code is initially executed by an interpreter that profiles the code, determines frequently
used sections of the code (known as “hot” functions) and then compiles these functions to
high-performance code using a profile-driven JIT compiler.

This approach enables dynamic optimizations such as trace-based inlining. These tech-
niques are crucial for performance of object-oriented languages with a large number of dynamic
function calls (e.g., for accessor methods). This approach also enables other optimization
techniques such as dynamically picking the right representation for data structures [54],
pre-tenuring of objects [95], or translating exceptions into explicit control flow [168].

Memory Management: Since managed runtime systems provide automatic memory
management, the runtime system is responsible for tracking liveness of objects and recycling
parts of memory that become unreachable. This is the responsibility of the system’s garbage
collector, which we describe in more detail below. In addition, the memory manager also
contains a memory allocator which is responsible for making memory available to the
application, and may also be responsible for relocating data structures.

Deoptimization: As JIT compilers transform the original program into a version that
differs from the abstract virtual machine’s model (e.g., due to inlining), debugging application-
level code would be complicated for the programmer. The system therefore needs a mechanism
to break at a specific point in the program and translate the optimized program state back to
what it would look like in the VM abstraction. This is called dynamic deoptimization [104]
and requires a large amount of metadata and machinery in the language runtime system,
which is then used by debuggers and for exception handling.

Safepoints: Many operations in managed runtimes require so-called safepoints (or yield
points), which are points throughout the execution where a thread checks whether it needs to
stall. This is necessary for triggering garbage-collection pauses, phase shifts in the memory
manager, biased locking, deoptimization and on-stack replacement of methods that have been
optimized by the JIT. Global safepoints (where the runtime system needs to wait for every
thread to reach a safepoint) can become a source of tail latency, and the wait time depends
on how frequently safepoints occur. For example, some Java VMs introduces safepoints at
every function prologue, epilogue and at every back-edge in the control flow graph.
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Native-Call Interface: Since the abstract language VM model means that not all system-
level functionality can be implemented in the runtime system itself, managed runtimes
typically allow calling into native code through a mechanism such as JNI (Java) and PInvoke
(C#). While semantics and implementations differ, implementations of native calls in managed
runtimes often make use of libffi [142], a popular open-source library that abstracts away
the details of the system’s underlying calling convention.

Class Library: Managed runtime systems typically provides a standard library of func-
tionality for I/O, OS interactions and common data structures. This is necessary to interact
with the outside world from within the VM abstraction, without resorting to native calls.

2.2.1 Managed-Language Challenges

While managed runtime systems are often associated with an increase in programmer pro-
ductivity, several challenges have been reported in connection with them. These challenges
are not unique to the data center setting and apply to a wide range of application scenarios,
including mobile and desktop workloads. We now review some of these challenges, and survey
research that addresses them.

Managed-Runtime Overheads: A major concern regarding managed runtime systems
has been their performance and energy overhead relative to native workloads (i.e., workloads
that do not run within a managed environment, such as those written in C/C++).

These overheads stem from different sources. First, the higher level of the language
abstraction necessitates features such as bounds checks or dynamic type checking that are not
required in a native language and introduce overheads. While this caused major overheads
in early implementations of managed languages, many of these overheads can be addressed
effectively through speculative execution in trace-based JIT compilers. In fact, the higher-level
language can even have advantages: For example, a trace-based JIT can inline functions that
a native compiler can not, and strong typing available in languages such as Java can provide
better alias analysis [207] and other optimizations. As such, today’s managed workloads can
even be faster than native implementations in practice [36].

At the same time, managed languages often introduce overheads in terms of memory
utilization, through additional information that needs to be stored in object headers. These
overheads can be as high as 50%, but are often much smaller in practice [164]. Previous work
has shown that this overhead can be reduced through region-based memory management [80,
177] or decoupling the control and data path of objects [164, 165]. Another approach taken
by some runtimes is to support value types [33, 184].

Finally, runtime systems often incur startup overheads from warming up the code cache
and JIT-compiling functions when they are executed for the first time (this can account for
up to 33% of runtime [143]). This problem has been addressed by caching code between
executions [143, 162, 243] and ahead-of-time compilation [115, 116, 119].
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Garbage Collection: A key problem of managed runtime systems is overhead introduced
by the garbage collector. Some applications spend 38% of their overall runtime in the garbage
collector alone [43], and while it has been shown that garbage collection can sometimes
outperform explicit memory management due to increased locality [109], it can be 17–70%
slower in memory-constrained environments [101].

For latency-sensitive workloads, pauses introduced by the garbage collector are a major
challenge. As we will discuss below, these pauses can range from milliseconds, for concurrent
collectors, to minutes, for stop-the-world collectors on large heaps. As these pauses typically
cause the application to stall, they can lead to requests missing their deadline. This makes
GC a main contributor to long tail-latencies. Many projects have tried to work around
this problem, through better concurrent collectors [73, 75, 211], request redistribution [212],
reducing memory pressure [164, 165] or avoiding GC in the first place [80].

Performance Unpredictability: The garbage collector is a major source of unpredictabil-
ity in a language runtime system, but not the only one. For example, JIT-compiled code can
lead to performance variations between different runs [27]. Other problems stem from the
JIT compiler tuning itself to a specific input and delivering unpredictable performance when
confronted with a different input (e.g., a large number of requests after a period of idleness).

Communication Overheads: One problem in managed runtimes is that they typically
require serialization and deserialization of data to communicate with other applications.
While native-compiled applications can simply share pages between their address spaces,
managed-language runtimes manage their own heap and therefore have high communication
latencies [172]. Recent projects such as Apache Arrow [11] have tried to improve sharing
across managed runtimes, and Sun’s Multitasking Virtual Machine [124] and the Microsoft
CLR [14] had mechanisms for sharing between applications. More recently, speed-ups of 30×
have been shown by being able to optimize across multiple managed frameworks [175].

2.2.2 Summary

While managed runtimes are widely used, they introduce challenges and a large amount of
research has been done to address them. The stricter latency requirements, larger working
set sizes and architectural changes in future data centers only exacerbate these problems. In
this thesis, we are making the case that existing techniques are not sufficient and that some
problems can be addressed better by working across the language runtime system barrier.

2.3 Garbage Collection (GC)

Throughout this thesis, we will focus on one specific challenge associated with managed
runtime systems, garbage collection. We will therefore introduce an overview of how garbage
collectors work and briefly survey existing research.
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Managed languages typically have mechanisms to allocate memory (e.g., in the form of
objects) but not to explicitly deallocate it. The garbage collector’s responsibility is to monitor
memory and recycle those objects that are not needed anymore1. Fundamentally, there are
two different types of strategies:

• Tracing: Tracing garbage collectors start from a set of roots (e.g., pointers held in
stack frames, static variables, or VM data structures) and determine the reachability
of objects by traversing the object graph, which consists of the objects and references
(i.e., pointers) between them. Objects are marked upon visiting. When the traversal
completes, the set of marked objects is the set of reachable objects – all other objects
can be recycled (Figure 2.4).

• Reference counting: In this case, a count is stored with each object, which indicates
the number of incoming edges in the object graph (i.e., how many references point to
it). Whenever a reference to the object is stored, the count is increased, and whenever a
reference is removed, the count decreases. As soon as the count reaches zero, the object
can be deallocated. Reference counting cannot detect cycles and therefore requires a
tracing backup collector to periodically perform a tracing pass and detect cycles.

As reference-counting collectors still require a tracing backup collector, we see reference
counting as an optimization and focus on tracing collectors throughout this thesis. Tracing
collectors can be further classified according to how they handle objects once their liveness
has been determined:

• Non-relocating collectors, such as the classic Mark & Sweep collector, do not move
objects in memory and instead add recycled memory to a free list. This is oftentimes
used in conjunction with a segregated free list allocator, where different free lists are
maintained for different size classes of objects. Non-relocating collectors are simple
to reason about but have two shortcomings: (1) they introduce fragmentation, which
makes them unsuitable for long-running server workloads [74], and (2) they have a slow
allocation path, as the allocator needs to traverse the free list.

• Relocating collectors, in contrast, move objects in memory, a process known as
compaction. This reduces fragmentation and enables the memory allocator to allocate
from a contiguous region in memory, known as bump-pointer allocation. There are
many schemes of relocating collectors, from classic semi-space collectors that fold the
tracing into the copying phase, to garbage-first collectors [66], where memory is divided
into regions and regions with the largest amount of garbage are collected first.

1Throughout this thesis, we will use the term object to describe the granularity of reclamation. There are
non-object-oriented language with garbage collection, such as functional languages where the entity that is
collected are stack frames. We use the term to describe these entities as well.
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Figure 2.4: Operation of a Tracing Garbage Collector. Squares indicate objects in the
object graph, and arrows indicate references between them. The collector performs a graph
traversal starting from a set of roots, and marks all objects that are reachable from them.

2.3.1 Garbage Collector Trade-offs

Garbage Collection has a large design space. Numerous techniques, algorithms and opti-
mizations exist, and searching for “java garbage collection” on Google Scholar yields almost
50,000 results. Meanwhile, it is rare that one garbage collector is strictly better than another.
Instead, the relative performance of collectors depends largely on the specific application, as
well as configuration parameters such as the maximum heap size [38]. In fact, a collector that
outperforms another by a large margin for one configuration point or application may be
substantially slower at a different configuration point (e.g., with twice the heap size). Despite
this sensitivity to the configuration, garbage collectors need to make some fundamental
trade-offs between several conflicting goals [216]:

• Application Throughput: GCs should maximize the overall application throughput.
This can be measured as overall execution time for a batch jobs, or as requests per
second for latency-sensitive jobs.

• GC Pause Times: GCs should minimize pause times due to garbage collection. There
are different ways to measure this, and it is important to not only take the mean and
median pause times into account, but to consider the tail of the distribution as well
(e.g., the maximum pause time and the 99.9 percentile).

• Memory Utilization: GCs should make maximum use of the available memory. For
example, an application may be operating on a 16 GB heap but can only use 8 GB of
the memory due to using a semi-space garbage collection scheme.

The conventional wisdom is that garbage collectors can perform well among any two of
these metrics but that there are no garbage collectors that perform well among all of them
(Table 2.2). Different types of collectors maximize a different set of goals:
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Stop-the-World Concurrent No GC Ideal
Application Throughput 3 7 3 3

GC Pause Times 7 3 3 3

Memory Utilization 3 3 7 3

Table 2.2: Garbage Collector Trade-Offs.

Stop-the-World GC: Stop-the-world collectors perform all of their garbage collection
at once. When they run out of memory, they stop the application threads (which are also
called mutators), perform the collection as quickly as possible (typically using several of
the machine’s cores, which is known as parallel garbage collection), and then resume the
application. This maximizes application throughput (as the GC does not interfere with the
running application and performs GC as quickly as possible), but leads to long GC pause
times, ranging from seconds to several minutes for large heaps [16]. Memory utilization can
be high in this scenario, as the GC runs whenever the application is out of memory.

Concurrent GC: Concurrent collectors run at the same time as the application (typically
on a subset of the machine’s cores). This minimizes pause times (and can avoid them almost
completely [53]), but comes at a cost: Since the collector and the mutators are running at the
same time, they need to be kept in sync. This is typically done by adding a small instruction
sequence known as a barrier to every read or write of a reference (Section 2.3.3). However, as
this is a very frequent operation, it slows down the mutators and therefore reduces application
throughput. While each individual barrier is negligible, the overall application slow-down
can be larger than for a stop-the-world GC [31]. Running the GC concurrently also leads to
unpredictability from interference, and to lower memory utilization from lower GC throughput
(when the collector cannot keep up with the application’s allocation rate).

No GC: An extreme design point would be not to collect garbage at all. In this case, the
application runs at full throughput and there are no pauses, but the application cannot use
most of its memory as it is fills up over time and cannot be reclaimed. This is a largely
hypothetical design point to show that collectors can achieve any two out of the three
properties, but anecdotally, there have been deployments that preventatively restart the
runtime system on a regular basis, to prevent the heap from filling up [88].

There exists an intermediate point between stop-the-world and concurrent collectors, known
as incremental GC. In this case, the application stops for performing GC but the GC pause
time is bounded by a certain time limit – typically below 100ms – according to a configuration
parameter. This can achieve better application throughput than a concurrent GC (as well as
more predictability), as the barriers required for this type of collector can be implemented
with less overhead. This kind of collector has been popular in real-time systems, and IBM’s
Metronome [23] collector is a prominent example.
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Many language runtime systems use some form of stop-the-world garbage collection by
default (at least for the old generation). For example, the OpenJDK HotSpot JVM’s default
collector is a parallel stop-the-world collector and another popular collector is CMS, which
is concurrent for the young generation but stop-the-world for major collections. However,
concurrent garbage collection has seen renewed focus in recent years. While Azul Systems
has sold specialized JVMs with fully concurrent collectors since 2005 [219], there now
exist incremental [75] and fully concurrent [73] garbage collectors for OpenJDK. The Go
programming language [111] now has a concurrent garbage collector by default as well.

The reason for this development is arguably a combination of shorter response-time
requirements (e.g., Go is used for a large number of latency-sensitive systems workloads [212])
and ever-increasing heap sizes. For example, a full GC of a 100 GB heap in HotSpot can
reportedly take over a minute [128]. As garbage collection times typically increase linearly
with the size of the heap and there are already data center servers with 2 TB of DRAM
available [166], we are reaching a point where the only way to achieve acceptable response
times is to perform GC concurrently with the application.

2.3.2 Generational Garbage Collectors

Most production-grade collectors combine multiple collection schemes for different portions
of memory. This is based on the generational hypothesis, which states that most objects only
survive for a short amount of time but that those who survive longer will persist for a very
long time. This idea led to generational collectors where memory is divided into a young
generation that contains freshly allocated objects and an old generation that contains objects
that have survived a certain number of collections in the young generation and have been
tenured. The young and old generation typically employ different collection strategies. In
this scenario, a collection of the young generation is known as a minor GC, while a full-heap
collection including the old generation is called a major or full GC.

The performance benefits of generational collectors stem from the fact that the young
generation is typically much smaller than the old generation and can therefore be collected
more quickly. To run a young-generation GC without performing an old-generation collection
as well, the collector needs to remember references that point from the old to the new
generation in what is known as a remembered set. This set is typically maintained through a
write barrier (Section 2.3.3), which contains code that is executed on every reference write to
the old generation and keeps track of all references to the new generation.

This barrier can be efficiently implemented using a scheme called card marking : the
collector maintains a bitmap that covers different regions of the old generation, and whenever a
reference to a new-generation object is written into one of these regions, the corresponding bit
is set to true. At the beginning of a minor collection, these regions represent the remembered
set and need to be scanned for references.
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Figure 2.5: Concurrent collectors may violate the property that all reachable objects are
marked at the end of the breadth-first-search (BFS). A mutator (green) may read and
overwrite a reference during an ongoing BFS, before it has been visited by the collector. In
this case, the object is reachable but not marked during the BFS.

2.3.3 Concurrent Garbage Collectors

As concurrent garbage collectors will play a larger role throughout this thesis, we will now
briefly describe how they work. While there are many techniques, they all have to solve the
same fundamental problem: In a concurrent collector, the GC traverses the object graph at
the same time as the application is modifying it, marking objects as it goes along. Meanwhile,
the GC may be moving objects in memory while the application is operating on them (this is
only the case for relocating garbage collectors). Throughout the execution, the GC needs
to ensure that (1) no reachable objects are ever unmarked at the end of the traversal, and
(2) the application never accesses an object’s old location after it has been moved. Ensuring
these two properties is necessary and sufficient for a correctly operating concurrent GC.

We now analyze why these properties might be violated by an incorrect garbage collector,
and how concurrent collectors can avoid these problems. For ease of exposition, we assume
that the traversal is implemented as a breadth-first search (BFS), which is the most common
traversal order in modern garbage collectors.

All reachable objects are marked at the end of the BFS (Figure 2.5)

In a breadth-first search over a graph, there are three types of nodes at any given time during
the execution: nodes that have already been visited (black nodes), nodes that have not been
encountered yet (white nodes) and nodes that have been encountered but not visited yet, i.e.,
they are on the BFS’s frontier (grey nodes).

In a concurrent collector, the mutator may be overwriting the only reference to a white
object with a reference to a black object, while also retaining a reference to the white object,
either on its stack or by writing it into a black object. Since the reference was not on the
stack at the beginning of the BFS, it is not in the root set, but since the reference was
overwritten before it could be traced by the BFS, the object (and any other white object
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reachable only via this object) will never be visited and hence not marked. The collector will
therefore reclaim the memory of objects that are still reachable, which is incorrect.

Concurrent GCs typically address this problem through a write barrier, a small amount
of code that is executed on every reference-write by a mutator. There are two options:

1. The write barrier can ensure that each reference that is overwritten gets processed
by the garbage collector (i.e., turned into a grey object). This is called snapshot-
at-the-beginning, since it processes all references that existed at the start of the GC.
The barrier code is shown in red below (the write field(o, f, r) operation refers
to the operation of writing reference r into field f of object o, read field is the
corresponding read operation and bfs queue refers to the frontier of a concurrently
running trace/breadth-first search):

bfs_queue.add(read_field(obj, REF_FIELD));

write_field(obj, REF_FIELD, newRef);

2. The write barrier can ensure that when a reference is written back to a black object,
this object is revisited again (i.e., turned into a grey object). This approach may require
multiple passes through the heap and also requires scanning the stack for any references
to unvisited objects at the end. However, it reduces the amount of floating garbage (i.e.,
objects that died while the concurrent collection is ongoing). This approach is called
incremental update. The write barrier looks as follows (is marked returns whether an
object is either black or grey, and the barrier protects against the case that a white
object is written to such an object, by re-adding it to the queue):

if (is_marked(obj))

bfs_queue.add(obj);

write_field(obj, REF_FIELD, newRef);

There are many variations on this general paradigm, and many different ways to implement
these barriers. However, the basic idea remains the same.

The application never accesses an object’s old location (Figure 2.6)

The other main problem occurs in relocating collectors, when the collector is moving an
object while the mutator is trying to access it. This is typically solved through a form of
read barrier : whenever a reference is read from memory into a register, the barrier checks
whether the object has moved and looks up the new location if necessary.

ref = read_field(obj, REF_FIELD);

if (has_moved(ref))

ref = new_location(ref);
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Figure 2.6: Concurrent collectors may violate the property that an application never
accesses an object’s old location. The collector (blue) may move an object after a mutator
(green) has already read the object’s reference into one of its registers and is using it to access
the object, reading from the old (wrong) location.

One key challenge for read barriers is that they are on the critical path and may involve
expensive checks. Further, they do not protect against stale references that are already in the
register file. There are two strategies to address this problem: (1) implement the read barrier
in a way that can detect when a stale reference is used, e.g., by triggering an exception in
the virtual memory system, or (2) only relocate objects at fixed points in the execution (e.g.,
safepoints) and purge all references from the register file at this point.

From a performance standpoint, barriers need to trade off fast-path and slow-path
performance. For example, it is possible to implement read barriers that have very little
impact in the common case that the object has not moved, but are expensive if it has (we
discuss an example of this approach in Section 7.2.1). Meanwhile, other barrier designs
introduce less overheads for the slow path, but are expensive in the common case (an extreme
point would be a table of forwarding pointers). Prompted by these overheads, there have
been several proposals of moving these barriers into hardware. In this thesis, we discuss
several of them (Section 7.2) and propose a new barrier design (Section 7.6.1).

2.3.4 Summary

This section only represents a small subset of work on garbage collectors. A wide range of
collector designs exist and have been implemented. A comprehensive summary is provided
by Jones & Lin [122], as well as Jones, Hosking and Moss [123]. The mechanisms described
here have different trade-offs and may be suited to a varying degree to different execution
environments (e.g., mobile, server, embedded).
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Chapter 3

Holistic Language Runtime Systems

This chapter introduces and motivates the concept of a Holistic Language Runtime System. We
start by discussing why managed languages are widely used in data centers, and demonstrate
challenges in real-world managed language workloads that exist today. We then argue that
these challenges can be addressed by treating the runtime systems underpinning a distributed
application as a distributed system itself.

3.1 Managed Languages in the Cloud

High-level managed languages and frameworks are already a popular way to program the
public cloud. PaaS and serverless platforms almost exclusively use managed languages [84,
19, 20], and many frameworks running in IaaS deployments are written in managed languages
as well. Arguably, the current source of this popularity are the good productivity and safety
properties of managed languages. However, we also believe that there are fundamental reasons
that make managed languages an ideal fit for the cloud setting, and we therefore think that
the current trends will continue and application-level workloads will almost exclusively run
on managed-language runtime systems in the future:

• Managed languages raise the level of abstraction: Managed languages hide the complexity
of the underlying architecture. This is often considered a disadvantage for system-level
software and application scenarios such as HPC (since it prevents some low-level tuning),
but in the cloud setting – and specifically the PaaS/serverless setting – a high level of
abstraction is necessary since hand-tuning will not be possible.

• Managed languages provide automatic memory management : Explicit memory man-
agement is prone to errors, and bugs such as memory leaks or buffer overruns can be
particularly damaging in a cloud scenario of long-running, security-sensitive workloads
that are sharing the same machine. At the same time, there is little benefit of explicit
management in an opaque system – automatic memory management and garbage
collection (GC) are therefore a significant advantage.
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• Managed languages operate on bytecode: This allows transparent recompilation and
auto-tuning to a particular architecture based on runtime performance counters. There
are also high-level frameworks such as SEJITS [45] or Dandelion [191] that can help
to program accelerators in a high-level language by using introspection into compiled
programs. In particular, this can be used to target the new FPGA architectures
presented in Section 2.1.3, by compiling high-level languages to FPGAs [108, 50].
Finally, the high level of abstraction makes it easier to target different instruction sets,
which reduces the vendor lock-in for cloud providers. In fact, Google and Microsoft
have both announced that they are considering a shift to ARM [86, 222]. Google is also
a member of the RISC-V Foundation supporting the free and open RISC-V ISA [225].

• Managed languages operate on references instead of pointers : This allows transparent
migration of data and execution. This is particularly important with the emergence
of disaggregated systems (Section 2.1.3). With resources disaggregated at the rack
or data-center level, application-level knowledge is required to decide how to move
data between different pools of memory, including high-bandwidth memory on chip
and remote memory elsewhere in the rack. While these decisions could be directly
exposed to the application, the programmer may not have the information to make the
best decision, and the resulting code may not be portable. Instead, previous work has
explored page-based migration mechanisms [77], but those work at a coarse granularity
and cannot take application-level knowledge into account. Improving over this approach
is challenging in native languages, as moving data at a finer granularity than a page
requires rewriting pointers. In contrast, managed runtime systems already have a
mechanism to relocate individual objects and redirect pointers as necessary. This could
enable them to transparently migrate different parts of the heap. Managed runtimes
also have mechanisms to measure performance profiles (such as access frequencies),
which makes it possible for them to dynamically decide where to place data. As such,
they may be able to do a better job than the programmer, and to do so transparently.

3.2 Managed Data Center Workload Challenges

As discussed in Section 2.2.1, managed languages are known to cause performance overheads
in some use cases [43, 112], and much work has been done to address these. However, most of
this work focuses on individual nodes. When running distributed managed applications and
frameworks such as Hadoop or Spark at a rack or data-center scale, the application spans
many processes across multiple nodes, each with its own runtime system (Figure 3.1). This
causes a largely orthogonal set of problems beyond those encountered within an individual
runtime system. Specifically, the language runtime systems on different nodes make completely
independent decisions, such as when to perform GC or how to JIT their code. This causes
performance problems for many workloads, including both throughput-oriented and latency-
sensitive jobs. We identify the following five problems:
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Figure 3.1: Currently, applications run across a number of different machines and different
runtime systems. These runtime systems act completely independently from one another and
are unaware of the fact that they underpin a distributed applications.

The Coordination Problem: Runtime systems on different nodes are unaware of each
other. This means that they make all decisions independently, e.g., when to perform GC.
As we show in the next section, this can have a significant impact on distributed workloads,
both batch workloads and interactive jobs. Similar problems have been reported in several
real-world deployments [98, 181, 80].

The Interference Problem: Runtime systems on the same node do not coordinate.
While co-scheduling of parallel [176, 94] and data center workloads [56, 65, 94, 136] is well-
investigated and has been addressed by many projects, most of these projects do not look
at managed-language-specific issues such as GC interference or instruction cache pollution
from multiple copies of the same code. Some distributed Java applications have 100s of
instances on the same node – this can make these overheads substantial, and motivated the
Multi-tasking Virtual Machine project [124], JSR-121 [126] and Application Domains [14].
These approaches execute multiple applications within the same runtime system, but failed
to achieve widespread adoption, presumably due to concerns about failure propagation and
difficulty of deployment (two issues we are addressing in this work).

Unfortunately, this problem cannot be solved at either the language runtime or the OS
level alone, as the required high-level information about the threads is not available to the
OS scheduler, and the runtime system cannot control scheduling across applications.

The Composition Problem: For productivity and maintainability, applications are often
broken into a large number of services – e.g. page requests to Amazon.com typically require
over 150 service calls [63]. However, when services are shared between different runtime
instances, a service call requires crossing the boundary between two processes. This prevents
optimizations such as code inlining or service fusion, and adds overheads from context switches
and scheduling. At the same time, simply putting all services into the same process would
cause problems in current systems, such as losing failure isolation and not being able to
dynamically migrate service instances between nodes.
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Figure 3.2: Basic Overview of a Spark Graph Computation. Vertices of the graph are
partitioned across nodes and intermediate data is exchanged between the partitions at the
end of every PageRank superstep.

The Redundancy Problem: Every runtime system has its own JIT. As distributed
workloads often run the same executable on every node (or even multiple instances of the
same executable), this causes wasteful re-JITing of shared code (for example, OpenJDK 7
loads 379 classes for a minimal “Hello World” program). Since the JITed code is tied into
the logical data structures of the runtime, page sharing between processes cannot avoid this
problem. Companies such as Microsoft are therefore starting to forego the JIT in favor of
statically pre-compiled binaries [115, 116]. However, this loses benefits from profile-directed
dynamic optimization (e.g., trace-driven compilation and dynamic inlining). Meanwhile, in
VM-based deployments, the redundancy problem applies to the OS layer as well. Managed
runtimes have a large number of dependencies and VM images often contain an entire OS
with a large amount of unused libraries and code, even if only a small subset is used (which
can lead to three orders of magnitude overhead in binary size [152]).

The Elasticity Problem: Managed language runtimes take a long time to boot and reach
their full performance, partly due to warming up the code cache [143]. This introduces
overhead when scaling applications horizontally, as well as time skew.

3.3 Motivating Examples

We will now focus on one of these problems specifically, the coordination problem. We show
how it materializes in the two main categories of workloads encountered in data centers:
throughput-oriented batch workloads and latency-sensitive workloads (Section 2.1.2).
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Figure 3.3: Memory occupancy in the old generation over time on different nodes in a Spark
cluster running PageRank. Colors indicate different nodes. Nodes are filling up at different
rates and trigger a GC when they run out of memory, indicated by vertical lines.

3.3.1 Apache Spark (Batch Workloads)

To illustrate the problems caused by a lack of coordination between runtime systems for
batch workloads, we use iterative computations in Apache Spark [239] as an example. Spark
is a popular Scala-based framework for distributed computation. It can run a wide range of
workloads, including graph computations [83], machine learning, database workloads [235]
and stream computations [238].

Figure 3.2 shows an example of a Spark workload. Spark is built around the concept of
resilient distributed datasets (RDDs), which are potentially large data sets that are partitioned
across nodes in the cluster and can be kept in memory. Spark programs are written in a
high-level language such as Scala or Python and apply operators and transformations to these
data sets. Each worker applies these operators to its own partition, while some operators
result in communication between the different workers (e.g., shuffle operations).

We use a PageRank graph computation as an example. The graph is first loaded and
partitioned across the different nodes. PageRank is an iterative computation, and executes
in multiple iterations (or supersteps). In each iteration, the workers operate in parallel on
their own data and then need to exchange the intermediate results with one another before
being able to continue with the next iteration. Figure 3.4 shows a Spark implementation
of the PageRank algorithm, taken from Spark’s library of examples (the version we run for
experiments differs slightly, using the Bagel library).

Spark workloads are often memory-intensive. Our example runs across 32 GB heaps, and
deployments with heap sizes of 100 GB are known [128]. Spark, by default, uses the parallel
scavenge/serial mark-sweep-compact stop-the-world GC in the Hotspot JVM, which has very
high collection performance but frequently incurs short pauses to perform young-generation
GC (on the order of 100s of ms) and every once in a while incurs very long pauses (up to
multiple seconds, and in some cases even minutes [128]) for full GC.
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var ranks = links.mapValues { edges => defaultRank }

for (i <- 1 to numIterations) {

val contribs = links.groupWith(ranks).flatMap {

case (id, (linksWrapperIterable, rankWrapperIterable)) =>

val linksWrapper = linksWrapperIterable.iterator

val rankWrapper = rankWrapperIterable.iterator

if (linksWrapper.hasNext) {

val linksWrapperHead = linksWrapper.next

if (rankWrapper.hasNext) {

val rankWrapperHead = rankWrapper.next

linksWrapperHead.map(dest =>

(dest, rankWrapperHead / linksWrapperHead.size))

} else {

linksWrapperHead.map(dest =>

(dest, defaultRank / linksWrapperHead.size))

}

} else {

Array[(String, Double)]()

}

}

ranks = (contribs.combineByKey((x: Double) => x,

(x: Double, y: Double) => x + y,

(x: Double, y: Double) => x + y,

partitioner)

.mapValues(sum => a/n + (1-a)*sum))

}

Figure 3.4: Code of PageRank implemented in Apache Spark. This listing was adapted from
WikipediaPageRankStandalone.scala in the Spark 1.1.0 distribution package.

These long pauses cause difficulties during iterative computations. Throughout execution,
the memory of each node fills up over time, and once it reaches a threshold, a collection
is triggered. Figure 3.3 shows this for a small 8-node cluster running PageRank on the 54
GB Wikipedia graph from the original Spark paper [239]1. During each superstep, Spark
launches a number of tasks on each worker node. Once all tasks have completed, the nodes
exchange results and can only continue after this exchange has completed. As a result, this
step effectively acts as a barrier between supersteps.

1Chapter 5 uses a slightly different cluster of 16 nodes, using Spark 1.1.1, OpenJDK 1.7.0 75 with a
heap size of 32 GB and the default GC settings. Section 5.2 describes the setup in detail.
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(b) Coordinating GC (Stop-the-Universe)

Figure 3.5: Relation between GC and the superstep durations of Spark PageRank (shade
represents the number of nodes performing GC during a superstep; white = no GC). As soon
as one node performs GC, the superstep takes much longer.

In the absence of GC, every superstep takes a similar time (Figure 3.5a). However, when
one node performs a full GC, it pauses for multiple seconds and all other nodes have to wait
at the barrier for that node to become available again. While waiting, they cannot do any
work themselves. Worse, when they continue, they will at some point incur a GC themselves,
and become the reason for other nodes to wait (Figure 3.6).

The root cause of this problem is that the runtime systems make independent decisions
about when to perform GC. The memory on the different nodes fills up at a different rate,
and therefore their GCs will occur at different times. But what if the system was globally
coordinated? In that case, the best decision would be to let all nodes do GC at the same
time: Since nodes have to wait for a single node in GC, they can use that time efficiently
by performing their own GC. We call this policy Stop-the-Universe. Figure 3.5b shows its
effect: even on this small cluster, coordination leads to a speedup of 15% (excluding the
initial loading of the graph from disk).

We note that this problem is common to all distributed iterative computations with
global barriers. This includes many machine learning algorithms (e.g., logistic regression) and
graph workloads (e.g., shortest path). The problem is somewhat reminiscent of inter-thread
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Figure 3.6: Garbage collection pauses throughout the execution of Spark PageRank on an
8-node cluster (each row represents a node). White indicates that the node was idle, yellow
indicates that it performed work, and red lines indicate the end of a PageRank iteration.
Green indicates major GC pauses. GC on one node cause all other nodes to get delayed.

synchronization in parallel workloads and the OS Noise problem in HPC [215]. Both problems
are often solved using gang-scheduling, and the Stop-the-Universe policy can be seen as its
language-runtime equivalent.

While the specific potential speed-up is highly dependent on the application, data set and
setup, we think it can be approximated as follows. If, in an iterative computation, iterations
take tIteration on average (excluding any GC pauses), nodes perform a GC every s iterations
on average and spend tGC per GC pause, the potential speed-up is:

1 +
(s− 1) · tGC

s · tIteration + tGC

The rationale is that for a very large number of nodes and long-running computations, at
least one node will perform GC within every iteration, while in a system with coordinated
GC, only one collection would be necessary every s iterations.

Independently and concurrently to our work, similar problems have been confirmed for
Naiad workloads [80], which are based on C#. This indicates that this class of problems
applies to a wider range of workloads and managed runtime systems.
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Client

Figure 3.7: A 4-Node Cassandra Cluster. The colored boxes represent replicas of key-value
pairs. The nodes are logically arranged in a ring and replicas are stored on subsequent nodes
in the ring (in this example, there are three replicas per entry). These nodes are determined
through consistent hashing. Read and update queries can be sent from a client to any node
in the cluster, which then contacts the replicas and assembles a quorum.

3.3.2 Apache Cassandra (Interactive Workloads)

We now demonstrate a different set of problems, which is encountered by latency-sensitive
workloads. This includes data stores such as Cassandra [134], client applications such as
the Apache SOLR search engine [202] or systems-level software such as ZooKeeper [113].
Data center applications are interacting at ever smaller time-scales (such as in algorithmic
trading, real-time bidding for ads, or low-latency storage [171]). Further, applications are
often composed of hundreds of services [63] and the expected latencies for individual services
have decreased to micro-second granularities. In such a scenario, stragglers are a significant
problem since a single straggler can cause an entire request to miss its deadline. GC can be a
significant contributor to this problem – even minor-GC pauses on the order of milliseconds
are problematic when services operate at micro-second granularity.

We use the Cassandra key-value store as an example. Cassandra uses consistent hashing
to replicate data across a subset of nodes. Requests can be sent to any node, which then
assembles a quorum by contacting the replicas (Figure 3.7). While Cassandra uses a concurrent
collector, it still experiences multi-millisecond pauses for young-generation GC (note that
most concurrent collectors still introduce some form of jitter like this). To show the impact
of these pauses, we ran a 4-node Cassandra cluster with the YCSB benchmark [59] for 10M
queries (details can be found in Section 5.3). While the average latency for reads was 277µs,
we occasionally incurred latencies that were over 100× larger. Figure 3.8a shows that these
spikes mostly coincide with GC pauses (grey lines). Figure 3.8b shows that, in fact, most
requests longer than 10 ms coincided with a GC pause, either in the node that received the
request or in a node required to assemble a read or write quorum (others have presented
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Figure 3.8: Correlation between stragglers in Cassandra read queries and GC. Grey lines in
(a) are minor GCs and latencies of (potentially concurrent) request are averaged over 10ms
intervals. The average request latency was 277µs.

related results [71]). Note that these numbers might even understate the impact of GC, due
to correlated omission in YCSB [223].

The fundamental problem is, once again, ignoring the language runtime system as part
of the distributed system. Runtime systems make their GC decisions independently and
collect as soon as their young generation fills up, stalling the application without warning.
For example, two replicas holding the same entry can become unavailable due to GC at the
same time, making it impossible to assemble a quorum. However, services often have a choice
where to send a request. For example, Cassandra requests can be handled by any node, but
sending a request to a node that starts a GC pause before being able to send a response
introduces a straggler.

Many of these problems could be avoided in a globally coordinated system. One approach
is to expose the state of all runtime systems to the logic that directs requests to different
servers (e.g., the load balancer). This makes it possible to avoid nodes that are close to
GC – we call this Request Steering. Another strategy is to globally schedule GC such that
there is always a sufficient number of replicas of any service available – we call this approach
Staggered GC. Others have confirmed the efficiency of similar strategies [212].

3.4 What Does Software Do Today?

Problems such as the ones above have been reported for a wide range of applications and
frameworks, including Hadoop [98], SOLR [202] and financial applications [181, 61]. They
are often solved by rewriting parts of the application in a native language such as C++ and
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managing large data structures off-heap [183, 133]. Others use non-idiomatic Java (e.g., large
byte arrays), split applications into smaller VMs or control allocation carefully to reduce
memory pressure and avoid GC pauses. In fact, the latest versions of Spark and Cassandra
both use such techniques (note that our experiments use versions from before these changes).
The problem with these approaches is that they lose many advantages of using a managed
language in the first place, including safety and productivity.

There is also anecdotal evidence that some distributed applications treat GC as a failure
mode like others, and restart the process when a full GC is necessary. The problem with this
approach is that it is only viable if GC is rare. As we saw in this chapter, major GCs may
occur every few minutes. In the past, some applications also tried to control GC explicitly,
using functions such as System.gc(). This turned out to be insufficient, since it was difficult
for application developers to make good decisions based on the knowledge available. Some
runtime systems hence ignore such calls today.

We have also seen a commercial application that steers requests away from nodes paused
for GC, similar to our proposed strategy above [181]. Implementation of such strategies is
facilitated through language extensions such as C#’s GC Notification API [78] that allow
applications to respond to upcoming GC pauses [212]. However, while explicitly designed
for this use, we have not seen these APIs being widely used. Our hypothesis is that the
mechanism is too low-level; programmers still need to solve distributed systems problems
such as multi-node coordination or failures. Making the implementation of such strategies
much easier is one of the key goals of the work presented in this thesis.

Finally, a solution to the problem are concurrent garbage collectors such as C4 [211] or
G1 [75] (Section 2.3.3). These collectors avoid GC pauses, but instead incur a performance
cost from constantly having to trace and compact the heap, and the overhead from read and
write barriers. This means that more memory bandwidth and CPU resources are used for GC
to achieve the same GC throughput as a parallel stop-the-world collector. Furthermore, most
popular concurrent GCs still introduce short pauses or jitter (e.g., the previous Cassandra
example used the concurrent CMS collector from OpenJDK). With the very short request
latencies required by many services today, this can still be problematic. In fact, we believe
that it may be preferable to implement strategies to tolerate rare, predictable stop-the-world
pauses than incurring unpredictable jitter from concurrent GC.

While all these solutions work, they often result in error-prone ad-hoc approaches, reduce
productivity, redo a large amount of work, are not portable or yield poor performance. We
believe that the fundamental problem is that these solutions either treat the runtime system
or the underlying systems layer as a black box. In the remainder of this chapter, we argue
that we need to work across these layers to solve these problems at a more fundamental level.
Specifically, most managed language runtime systems were not originally designed for the
data center scenario and have not evolved to meet the new latency requirements in the data
center, target new data center architectures and scale to the sizes required by modern data
center workloads.
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Figure 3.9: A Holistic Runtime System coordinates individual language runtime systems
across machines in a cluster, based on a policy.

3.5 The Case for Holistic Runtimes

To address these problems, we propose what we call a Holistic Language Runtime System
(Figure 3.9). We define Holistic Runtime Systems as follows:

Definition: A Holistic Language Runtime System is a distributed language runtime
that treats the runtimes underlying a distributed application as a distributed system
itself and enables them to make federate decisions globally rather than individually.

As such, Holistic Runtime Systems adopt some of the ideas from distributed operating
systems [49, 137, 160, 170, 197] and apply them to language runtimes systems. This approach
is motivated by today’s low-latency data center networks and a trend towards rack-scale
machines that enable a tighter integration of nodes in distributed systems. At the same time,
data center workloads interact at ever smaller time-scales. These developments make it both
feasible and necessary to integrate the runtime systems in a cluster more closely.

One design point of a Holistic Runtime System would be a monolithic distributed runtime
system with a single-system view [149]. However, this approach raises challenges regarding (1)
compatibility with existing applications, (2) predictability by hiding the distinction between
local and remote memory, (3) failure isolation, and (4) scalability bottlenecks such as those
from distributed GC across a shared heap. We therefore propose an intermediate approach
that retains the boundaries between individual runtime systems but enables coordination
between them. Applications do not need to be aware that the runtime systems they are
running across are part of the same logical entity. This enables running unmodified workloads,
where the Holistic Runtime transparently applies policies for runtime system components such
as the garbage collector or JIT compiler. At the same time, workloads that know they are
running on such a system can communicate with it to take advantage of its global knowledge
and coordination capabilities.
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The Holistic Runtime System has similarities to previous work on Distributed JVMs [10,
15, 147, 241, 242]. However, these JVMs are targeted at monolithic applications, not
distributed workloads. There are also projects that share some of our goals: Forseti [42]
investigates holistic heap sizing. The MVM [124] looked at running multiple applications
in the same JVM. A2-VM [200] cooperatively schedules Java applications across machines,
making the JVM and its services resource-aware to enable cluster-wide thread scheduling
based on policies (which bear some resemblance to our policies). Finally, Terracotta [39]
deploys Java applications across multiple JVMs through clustering. The last two differ from
Holistic Runtimes in that they provide a platform for writing distributed workloads rather
than a transparent support layer.

Holistic Runtimes are also related to work on cluster schedulers [102, 198], and share
some of their responsibilities. While Holistic Runtimes schedule and coordinate workloads as
well, they do so at a much coarser granularity. However, it is possible that Holistic Runtime
functionality could eventually be integrated into the cluster scheduler, to reuse its available
information and failover mechanisms.

3.6 Application Scenarios

We believe that the idea of a Holistic Runtime System can be applied to a wide range of
application scenarios:

• Coordinating Maintenance Events: We previously showed an example where
uncoordinated garbage collection can cause problems for distributed workloads. The
same applies to other maintenance tasks such as log compaction or writing buffers to
disk. A Holistic Runtime System can coordinate these tasks across different nodes.

• Sharing JIT Code Caches: One instance of the redundancy problem in managed
runtimes is that each node JITs the same code and therefore performs redundant work.
A Holistic Runtime System could avoid this work by sharing code caches across different
runtime instances. It could also reduce instruction cache pressure by enabling runtimes
running on the same node to share pages, avoiding the need for multiple copies of the
same code in the instruction cache. This also helps address the elasticity problems as it
can help nodes to forego warming up code caches.

• Establishing Communication Fast Paths: One instance of the composition prob-
lem in managed runtimes are the overheads introduced by serialization and deserial-
ization of data when it is transferred between different runtimes. A Holistic Runtime
could detect the availability of faster communication mechanisms (e.g., RDMA within
a rack, shared memory within a node) and allow applications to bypass this step.

• Co-Scheduling Runtimes: Holistic Runtimes could help reduce the interference
problem by co-scheduling runtime systems on the same node, similar to approaches
that have successfully demonstrated such strategies for parallel workloads [94].
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3.7 Summary

In this chapter, we introduced and motivated the concept of a Holistic Runtime System.
While there is a large design space for these Holistic Runtime Systems, we will now present a
specific implementation of such a system that is particularly targeted at coordinating garbage
collection across multiple nodes in a cluster.
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Chapter 4

The Taurus Holistic Runtime System

This chapter describes the implementation of Taurus, a Holistic Runtime System based on the
OpenJDK HotSpot JVM. We first present an overview of the system, following by a detailed
description of its design. We then evaluate the system’s performance and scalability using
microbenchmarks and show that its overheads are negligible.

4.1 System Overview

We now give a high-level overview of our prototype Holistic Runtime System implementation,
Taurus. As described in the previous chapter, a Holistic Runtime System is a distributed
language runtime system that coordinates a set of language runtimes across a cluster. It aims
to be a general solution that enables developers to deploy and experiment with strategies
to work around the problems from Section 3.2, while abstracting away potential sources of
errors and increasing productivity.

From the perspective of the application that is running across the runtime systems,
nothing changes: the application processes are still isolated, and there is no shared heap.
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Figure 4.1: The Holistic Runtime System approach.
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Traditionally, each runtime system would now make decisions independently, based on its
configuration (for example, the Hotspot JVM allows users to configure the GC, generation
sizes, tenure rates, and many other settings). In a Holistic Runtime, these decisions are made
globally for the entire distributed workload, through a configurable policy provided by the
application or administrator. We show how policies are defined in Section 4.2.

Coordination is performed by dividing time into epochs of varying length. At the end
of each epoch, a leader executes the policy. The policy considers the state of all the nodes
and produces a plan that contains runtime events to be executed during the next epoch, as
well as information to be shared between the nodes. This plan is then distributed to the
other nodes and executed in a decentralized manner (reminiscent of the approach taken in
operating systems such as Tessellation [56] for decentralized scheduling). At the end of the
epoch, all nodes report back to the leader with any state updates, so that the policy can
execute again and the next epoch can begin (Figure 4.1).

This approach enables a wide range of coordination patterns, while giving a clear ab-
straction and hiding the challenges of maintaining the distributed system, failure tolerance,
time synchronization and interfacing to the runtime system. In Taurus, our prototype, we
use these mechanisms to implement and investigate GC coordination. However, the same
mechanisms could be used to coordinate JITs, share profiling data, reduce startup times or
co-tune applications running on the same node.

4.1.1 Design Requirements for Taurus

One of our primary goals for Taurus is compatibility. While it would be possible to design an
entirely new system (and potentially language) from the ground up, it would be challenging
to bring up workloads for it: many existing workloads require a fully standard-compliant
runtime system, and even close approximations (such as Apache Harmony [12]) do not work
reliably. We therefore decided to base our work on the OpenJDK Hotspot JVM, which is the
reference implementation of Java and runs the vast majority of software.

Another important goal is usability. For Taurus to be useful, its deployment must be
substantially less effort than reimplementing coordination at the application level. We
therefore designed Taurus to be a drop-in replacement for the JVM; the goal is that the user
only has to install a different java executable and everything else behaves the exact same
way as before. Behind the scenes, this executable calls into Hotspot and brings up Taurus,
which then connects and transparently coordinates the runtime systems.

A third goal is failure isolation. For the system to be adopted in real-world data center
settings, it must not substantially increase the probability of failures in any part of the system.
For this reason, Taurus has fault tolerance built in and can tolerate node-failures by electing
leaders and migrating state using a distributed consensus protocol (Section 4.3.3). This is an
important argument for foregoing a model that supports a single-system view (which might
reduce failure isolation between nodes).

We are also concerned about failure propagation into the JVM. We therefore avoid direct
changes to the Hotspot code base but instead interact with the JVM through its management
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Figure 4.2: The high-level components of Taurus.

interface. Hotspot provides a rich interface to install libraries and performance monitors
within the JVM, which can communicate to the outside world. Taurus itself is implemented
as a co-process for Hotspot – this ensures that most errors in Taurus stay outside the JVM
process barrier, and failures do not bring down the JVM.

4.1.2 Components of the System

Figure 4.2 shows the high-level components of Taurus. With Taurus installed, every JVM
instance is augmented with a monitor process at startup, to form a Holistic Runtime Instance.
The monitor connects to the JVM’s management interface, which allows it to measure memory
occupancy and other internals, and trigger JVM operations such as GC (Section 4.3.1). The
monitor also opens a communication channel to the application space of the JVM. This allows
the application to exchange information with Taurus (Section 4.1.4). Using this feature is
optional and requires modifications to the application.

On startup, the monitor instantiates a client thread, which exposes an RPC interface
that other nodes can connect to (Section 4.3.2). Monitors also connect to a consensus layer
that provides us with a small amount of replicated, consistent storage. This layer is used
for features such as leader election or node discovery (Section 4.3.3). Taurus uses Stanford’s
LogCabin [145] implementation of the Raft consensus protocol [169] – we assume that this
layer is available on startup, but it could also be launched automatically.

When launching a Holistic Runtime Instance, the application can select a policy, usually
through a new set of special command line flags (we use the -XX:HVM:flag=value namespace,
which is not used by Hotspot; adding new -XX arguments does not break J2SE-compliance).
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Figure 4.3: A cluster divided into multiple coordination groups. Orange nodes are the
leaders, which execute the policy and distribute plans to the other nodes in the group.

4.1.3 Policy Execution

Policies are at the core of Taurus: they describe the strategies for coordinating the runtime
systems. Taurus’s policies are written in a high-level DSL we describe in Section 4.2.

Policy execution in Taurus follows a two-level approach. Using the consensus layer for
all coordination in the entire cluster would result in scalability issues, and prevent us from
fully exploiting fast rack-level interconnects for applications that only span a subset of nodes
within the same rack. We therefore allow multiple independent policies to be active within
the same cluster and operate on what we call a coordination group.

A coordination group is a subset of runtime systems that is subject to a policy at a given
time (Figure 4.3). Every runtime system can be a member of at most one coordination group,
and policies can choose to add or remove unclaimed runtimes from their group. Coordination
groups operate independently from each other and the consensus layer is only used to handle
group membership, leader election and recovery (we assume such changes to be infrequent).
This means that a Holistic Runtime System can manage a large set of machines while
fine-grained coordination occurs for subsets of nodes, such as those within a rack or those
belonging to the same distributed application.

A policy is a pure function that takes as input the state of the coordination group (e.g.,
memory occupancy of all runtime systems, or user-defined state as described in Section 4.1.4)
and produces a plan that contains runtime events for the next epoch and state updates. It
also contains coordination group changes (e.g., runtime systems to add or remove).

Each coordination group has an elected leader; all other nodes are followers. The leader
establishes a synchronized time base for the group and is responsible for executing the policy
once every epoch. When a runtime system instance is launched with a policy selected, it
will try to become the leader for this policy by contacting the consensus layer. If there is no
leader yet, the node will become the leader, spawn off a leader thread, and start executing
the policy. Otherwise, it will become a follower and connect to the existing leader.
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By using this approach, we address the scalability issues since no global consensus is
necessary within the coordination group; the only scalability bottleneck is the leader, which
needs to receive one sample from each member of the coordination group per epoch and
distribute the plan (in Section 4.4.3, we show that this scales well to at least 180 nodes).
Furthermore, failures in the coordination group are “softer” than failures in the global
consensus layer. While they may lead to performance degradation, missing a small number
of epochs will not cause a failure of the application running on Taurus, as the state can be
corrected throughout later epochs (work in cluster scheduling shows that such an optimistic
approach can work well in a distributed setting [198]). The downside is that since we are
not relying on the consensus layer within coordination groups, we need to be able to recover
from both leader and follower failures (Section 4.3.4).

4.1.4 Communication with the Application

In addition to coordination at the runtime system level, Taurus can optionally communicate
with the application itself. This is useful to implement policies such as the Steering policy
from Section 3.3.2, where the runtime system needs to communicate to the application which
nodes to avoid. The communication abstraction we chose is a shared set of key-value pairs
visible to both the runtime system and the application space.

For this purpose, each monitor installs a globally visible class in the application space that
exposes two thread-safe static methods to the application, HVM.getKeyValuePair(k) and
HVM.setKeyValuePair(k,v). To use this interface within an existing application, it suffices
to add a .jar file to the classpath and recompile the application.

When running, the policy receives as part of its input the full set of key-value pairs on
all nodes of the coordination group, and can produce and distribute (as part of its plan)
updates to key-value pairs on any node. This allows policies to implement a wide range of
communication patterns with the application.

4.1.5 Reconfiguration

When launching a new policy, its coordination group only contains one node: the leader of
the group. The policy can query the list of available runtimes in the cluster, and whether
they are a member of any other group. They can then select unassigned nodes to add to
their coordination group as part of the plan. These nodes join during the next epoch, and
are considered during the next execution of the policy (conflicts are avoided by making policy
executions atomic with respect to one another). Node terminations or failures are visible
in a similar way: the policy can see that a node has timed out and can remove it from its
coordination group (Section 4.3.4).
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4.2 Policy Description Language

To facilitate the development of policies (and therefore adoption), we designed a Domain-
Specific Language (DSL) for policy descriptions (Figure 4.5). Policies are high-level imperative
programs that are atomically executed by the leader at the beginning of each epoch. Accessing
different data structures, policies gain insights into the state of all runtime systems belonging
to the coordination group, and assemble a plan that is distributed to all nodes in the group
and contains actions to perform, as well as the duration of the epoch.

Figure 4.4 describes the grammar of the policy language. Each policy starts with a policy

declaration, which gives the policy a unique name. It contains a run block that describes
the policy function and defines policy parameters. This block contains a sequential program
that can access any state visible to the system and builds up a plan. Instead of a fully
Turing-complete language, we do not provide general for or while loops, but only foreach

loops over finite sets. This ensures that policies always terminate, which prevents the leader
getting stuck. This is a key advantage of using a DSL.

In addition to the primitive types double, int and string and two parameterized
collection types Set and Map, the language provides two composite types to describe runtime
systems (two types are required to distinguish between runtime systems that are under the
control of the policy and those registered but not under the policy’s control):

• Runtime (Table 4.1): This type describes a runtime system that is part of the Holistic
Runtime but not necessarily the current coordination group. This type is used for
managing group membership (e.g., adding/removing runtimes). The type contains
fields such as the runtime’s server address, command line, a collection of tags set at
startup, and the current coordination group membership.

• Member (Table 4.2): This type describes a member of the policy’s coordination group.
This type is used to directly interact with the runtime system. It contains fields for
memory occupancy of the different memory spaces, GC-related statistics, whether the
node is unresponsive (busy) and the set of key-value pairs.

Note that the Members are a subset of the Runtimes: Given a Member m, the corresponding
Runtime can be accessed with m.runtime. The sets of all runtimes and all members can
be accessed using global keywords runtimes and members. Note that the runtimes set can
become large, which is why monitors cache it instead of updating it from the consensus layer
at every epoch (comparing only a version number to check for updates).

The language allows filtering sets with a predicate. An example can be found in Figure 4.5b.
In this case, a filter predicate is used to determine the set of members with a certain memory
occupancy, and check whether it is empty.

We provide a special construct of the form plan <- Action(...) to add commands to
the policy’s plan constructed during the current epoch. A plan is effectively the policy’s
return value and contains a set of commands to execute on each runtime system. Some
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〈program〉 ::= ‘policy’ 〈ident〉 ‘{’ 〈policy〉 ‘}’

〈policy〉 ::= 〈decl〉 ‘run(’ 〈args〉 ‘) {’ 〈stmt〉 ‘}’

〈decl〉 ::= 〈decl〉 ‘;’ 〈decl〉
| 〈empty〉
| ‘import’ 〈ident〉 ‘(’ 〈args〉 ‘)’
| ‘state’ 〈type〉 〈ident〉 = 〈expr〉

〈stmt〉 ::= 〈stmt〉 ‘;’ 〈stmt〉
| ‘if (’ 〈pred〉 ‘) {’ 〈stmt〉 ‘}’
| ‘foreach (’ 〈type〉 〈ident〉 : 〈expr〉 ‘) {’ 〈stmt〉 ‘}’
| ‘plan <-’ 〈plan-action〉
| 〈ident〉 ‘(’ 〈args〉 ‘)’
| 〈cstmt〉

〈plan-action〉 ::= ‘ReconfigureAddMember(’ 〈expr〉 ‘)’
| ‘MajorGC(’ 〈expr〉 ‘)’
| ‘MinorGC(’ 〈expr〉 ‘)’
| ‘EpochLength(’ 〈expr〉 ‘)’
| ‘SetKV(’ 〈ident〉 ‘,’ 〈string〉 ‘,’ 〈expr〉 ‘)’

〈expr〉 ::= ‘name.filter([’ 〈type〉 〈ident〉 ‘:’ 〈pred〉 ‘])’
| 〈cexpr〉

〈type〉 ::= ‘int’ | ‘double’ | ‘string’
| ‘Member’
| ‘Runtime’
| ‘Set<’ 〈type〉 ‘>’
| ‘Map<’ 〈type〉 ‘,’ 〈type〉 ‘>’

〈args〉 ::= 〈arglist〉
| 〈empty〉

〈arglist〉 ::= 〈arglist〉 ‘,’ 〈arglist〉
| 〈ident〉 ‘=’ 〈expr〉

Figure 4.4: Grammar describing the policy description language. 〈cexpr〉 and 〈cstmt〉
describe statements in the C language with any variables and arguments declared in the
policy added to their scope. 〈pred〉 is an 〈expr〉 that evaluates to true or false. 〈ident〉
describes identifiers such as variable names.



CHAPTER 4. THE TAURUS HOLISTIC RUNTIME SYSTEM 44

Field Description

id A unique integer ID that is assigned to the runtime system by Taurus.

tag
A string that is initialized to a value that can be passed to the Java executable using a
non-standard -XX:HVM:tag=val argument. This can be used to identify the runtime systems
belonging to a particular application.

cmd A string that contains the command line arguments the JVM was called with.

status
An integer ID belonging to the coordination group that this runtime is part of, or
UNASSIGNED if it is not part of any coordination group.

Table 4.1: Fields of the Runtime composite type.

Field Description

uptime Time elapsed since the runtime system was launched (in s), as a floating point number.

busy
A boolean that is true iff the leader did not receive a sample from this runtime system
during the last epoch. This enables the policy to detect and handle failures.

kv

A field to query the set of key-value pairs associated with this member. To access a key-
value pair, the policy can call m.kv(name). The resulting key-value pair’s value can be
converted to other types using methods toString(), toInt(default) and
toDouble(default), where the default is used if the conversion fails.

runtime The Runtime instance belonging to this member.

memory
Memory occupancy of the different memory spaces in the JVM. Fields include eden, old,
perm, s0, s1. Values are floating point numbers ranging from 0.0 to 100.0.

gc
Statistics about the number of full and young-generation, and the time spent in them.
Fields are floating point and include young.count, young.time, full.count, full.time.

Table 4.2: Fields of the Member composite type.

commands take parameters, such as a subset of members or runtimes they apply to (e.g.,
adding a set of runtimes, performing GC on a set of members). By repeatedly using this
construct, the policy builds the plan (an instance of the Builder pattern).

A member’s key-value pairs are accessed through a kv field in Member, and updates to
them are added to the plan by adding a SetKV command (Figure 4.6). Key-value pairs are
stored as strings and it is often necessary to convert values to or from primitive types such as
integers. To prevent error conditions in the case of malformed strings, all such conversions
need to be provided a default value that is used in case the conversion fails.

Finally, policies support state that is kept around between epochs using the state keyword
(Figure 4.6). State is atomically updated during policy execution and in the absence of
failures, status is maintained between epochs. Note that all state variables also need a default
value that is used in case of errors (e.g., if a key is not found in a Map, or on failure).
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policy AutoAdd {

run(Set<Runtime> s = runtimes) {

foreach(Runtime r : s) {

if (r.status == UNASSIGNED && r.tag == "gc") {

plan <- ReconfigureAddMember(r);

}

}

}

}

(a) Policy that automatically adds all unassigned runtimes to the coordination group that
were launched with the -XX:HVM:tag=gc command line argument. This operation is cheap
and does not introduce scalability challenges (Section 4.4.3).

policy STU {

extern double cutoff = 10.0;

run(Set<Member> stu = members,

Set<Member> collect = members) {

if (!(stu.filter([Member m : (! m.busy) && m.memory.old > cutoff]).empty())) {

plan <- MajorGC(collect);

}

}

}

(b) Stop-the-Universe Policy that performs a full GC for all members in collect if at least
one of stu has reached a memory occupancy of cutoff.

policy Example {

import STU(cutoff=90.0);

import AutoAdd();

run() {

STU(members.filter([Member m: m.runtime.tag == "gc"]), members);

AutoAdd(runtimes);

plan <- EpochLength(200.0); //ms

}

}

(c) Composing policies: Example imports and calls into the STU policy from above (with two
dynamic parameters), followed by a call into AutoAdd. The STU policy is only applied to
runtimes that were launched with the -XX:HVM:tag=gc command line argument.

Figure 4.5: Examples of policies written in Taurus’s DSL.
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policy PingPong {

state Map<Member,int> prev = 0;

run() {

foreach (Member m : members) {

int pp = m.kv("pingpong").toInt(0);

if (prev.get(m) != pp) {

plan <- SetKV(m, "pingpong", pp+1);

prev.set(m, pp+1);

}

}

plan <- EpochLength(200.0);

}}

Figure 4.6: Example policy using key-value pairs and policy state. The policy monitors a
key-value pair and increases it when it sees a change; the application does the same.

4.2.1 Configurability and Composability

We hypothesize that most workloads will require variations of a small set of basic policies,
potentially with some application-specific extensions (Section 5.4). Composability is therefore
an important feature in our Policy DSL: it allows us to build a repository of basic policies
over time, and combine them into application-specific solutions. To achieve this flexibility,
policies need to be configurable and composable.

We allow policies to be included into other policies through an import statement. This
will include the policy and allows it to be called within the run block. Figure 4.5c shows
an example of this. Policies are parametrizable with two types of parameters: dynamic and
static parameters. Static parameters are defined at the time of import and do not change
at runtime (these are the parameters defined as extern outside the run block). Dynamic
parameters are defined with the run function and passed to the policy whenever it is called
from within another policy. Figure 4.5b shows examples for both types of parameters: cutoff
is static, while stu is dynamic. All parameters can have default values.

4.2.2 Policy Compilation

Our DSL is embedded into C++11, and we reuse many C++ features including numerical
and logical operations, if statements and stream operators. A recursive-descent parser written
in Python transforms our policy code into C++ code, which is then compiled into a dynamic
library. The parser does not split the code down to individual tokens but only into pieces that
can be directly transformed into C++ code (e.g., the predicate within a filter). We then find
and replace any DSL-specific keywords and idioms with their C++ equivalents (while taking
into account scopes, string delimiters, etc.). Policies are transformed into classes, foreach
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Figure 4.7: Interface between Hotspot and the monitor. ZMQ (also called ∅MQ or Ze-
roMQ [103]) is a popular communication framework.

loops into iterators and filter predicates into C++11 lambda expressions. We use C++11
move semantics to chain filters without copying data.

4.3 Implementation

After the high-level design, we will now present implementation details of Taurus. Taurus is
entirely written in C++11, to avoid GC-induced pauses in the Holistic Runtime itself.

4.3.1 JVM Interface

The monitor connects to Hotspot through three different interfaces (Figure 4.7). It queries
memory occupancy information through the Hotspot JVM’s jstat interface, which exposes
the JVM’s performance counters by writing them to a shared page that can be mapped by a
different process (by default, Hotspot updates these counters every 50 ms; as we require a
finer granularity, we set the interval to 1 ms instead). Using this mechanism, the monitor
can access this data directly without blocking on the JVM.

Commands in the JVM (primarily triggering of Major GC) are performed through the
jcmd interface, which allows calling into the JVM to trigger activities (it may stall if the
JVM is unresponsive, such as during a GC pause).

Finally, key-value pairs are exposed to the Java application through a Java agent that is
installed into the JVM’s application space at start-up. This agent connects to the monitor
through an IPC mechanism provided by the ZMQ library [103], which is the same library we
use for inter-node communication. The agent then updates key-value pairs in the HVM class
(Section 4.1.4), which is accessible from the application. The agent is also responsible for
triggering minor GCs: since Hotspot does not support this, the agent can force a minor GC by
allocating unreachable objects until the young generation is full (using the MemoryPoolMXBean
interface to determine how much memory it needs to fill).
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4.3.2 Inter-Node Communication

Inter-node communication is implemented using a simple RPC protocol. We use ZMQ [103]
for communication, since it gives us a higher level of abstraction than regular sockets (e.g.,
managing concurrency and high-level communication patterns), and supports low-latency
communication over Infiniband. Our RPC protocol is using Protocol Buffers [218].

To add a node to the coordination group, the leader (prompted by its policy) sends a
reconfigure request to the node’s client, which will then send a request to join the leader’s
coordination group. The leader then confirms the join request and sends the plan of the
currently active epoch to the client, after which the node is part of the coordination group.
Leader and client also repeatedly exchange timestamps through a separate connection, to
determine the drift between them (no special hardware is needed for this). From then on, all
timestamps are expressed relative to the leaders’s clock.

4.3.3 Consensus Layer

We use LogCabin [145, 169], Stanford’s Raft implementation, as our consensus layer. We run
three LogCabin instances by default, and monitors can connect to any of them. LogCabin
provides a small amount of consistent, highly replicated storage. We use this storage to track
the set of instances currently registered with Taurus, as well as active policies. The set of
instances has a version number; for performance reasons, nodes cache the instances locally
and only compare against the version number once per epoch.

When launching a new JVM, its monitor will connect to LogCabin and create an entry
for its runtime system instance. This includes information such as its command line options
and address/port (the monitor selects a free port automatically on startup). Next, it will
try to launch a policy (if requested through a command line option), and become the leader
for this policy. When the policy runs, it can detect other instances in the cluster and add
them to its coordination group, using a policy such as that in Figure 4.5a. To help policies
distinguish between multiple distributed applications, the -XX:HVM:tag command line flag is
used to assign a unique application name to all JVMs belonging to one application; the first
node with this name will become the leader and runs the policy, which adds the other nodes.

4.3.4 Execution & Failure Handling

Once a leader has been selected and has started running the policy, it enters a loop that
consists of three stages, visualized in Figure 4.8:

1. Distribute the current plan to all nodes in the coordination group (at the beginning,
the plan is empty). This plan includes the length of the next epoch.

2. Followers execute the instructions in the plan, wait until the end of the epoch, atomically
take a sample of their state, and send it to the leader. If they cannot take a sample in
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Figure 4.8: A sample policy execution in Taurus. When a follower fails, the policy sees it
as unavailable. When the leader fails, another node becomes leader, restores the policy from
the last executed epoch, and continues (marking all other nodes as unavailable for the next
epoch, before stabilizing).

time, they will send a response that they are “busy” (which can happen if the JVM is
in a GC pause or if there is contention in the system).

3. The leader collects the state updates from all followers. Once the epoch has ended, it
marks all nodes from which it has not received an update as “unavailable”, executes
the policy, produces a new plan, and sends it to all nodes (including those that are
unavailable; failures are discussed below).

The length of the epoch is set by the plan itself and can adapt to the circumstances (e.g., if
the workload is exhibiting irregular allocation rates, the policy can decide to decrease the
epoch to react more quickly to changes). However, when dynamically adjusting the epoch
length, policy authors have to be careful about control loops.

Leader failures are tolerated by storing the policy meta-data (including the most recent
plan) to the consensus layer every epoch (i.e., the epoch is made persistent before sending
out a plan). All followers have a timeout by which they expect the next plan to arrive. If
no plan arrives, they assume that the leader has failed and will attempt to become leader
themselves by trying to write the entry of the current epoch to the consensus layer. If it has
been written before, it means that the original leader is either still alive and the message was
delayed, or that some other node has become leader in its place. In either case, the node will
continue as a follower. If the node succeeds in writing the policy entry, it becomes the next
leader, pulls the policy data from the consensus layer, and starts executing.
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Figure 4.9: Missed epochs depending on the epoch length. Varying the epoch length
demonstrates the coordination granularity supported by Taurus. “8-Null” and “16-Null”
are policies that perform no operation; this shows that an epoch length of 1–2 ms can be
supported on a 16-node cluster. “GC” is a policy that regularly triggers GC, confirming
that a constant fraction of epochs is missed in this case. “100 KV” is a policy that sets 100
key-value pairs on each node during each epoch, showing that a large number of key-value
pairs can increase the minimum coordination granularity to 20 ms.

This approach moves all failure handling into the consensus layer, making it simpler to
reason about fault tolerance. At the same time, it puts little load on the consensus layer in
the absence of failures (requiring only the leader to access it, and only once per epoch). This
maintains the advantages of the two-level approach while tolerating failures.

4.4 Evaluation

We now characterize Taurus’s coordination performance, scalability and overheads through
a series of microbenchmarks. Most of our evaluation was performed on a 16-node cluster
connected with 40 GbE using Mellanox dual port MCX314A-BCBT cards. Each node has
an Intel IvyBridge E5-1680V2 3.0GHz CPU with 8 cores (16 hardware threads) and 64 GB
RAM. In addition to our workloads, the cluster ran YARN, as well as HDFS and Tachyon file
systems. To demonstrate the generality and scalability of Taurus, we also run a scalability
microbenchmark on a set of 200 g1-small instances on Google Compute Engine.

All nodes in our cluster are running Linux 3.13.0. We run a snapshot of LogCabin from
4/10/15 with the Segmented storage module on a RAM disk (as we do not require persistence
across machine failures). We use OpenJDK 1.7.0 75, ZeroMQ 4.0.5 and Google Protocol
Buffers 2.6.1. Unless noted otherwise, we used the default settings for all applications.

4.4.1 Coordination Granularity

We are first interested in the granularity of coordination that Taurus enables, specifically
the minimum sustainable epoch length. We ran Taurus on a Java program that sleeps for
one second at a time in an infinite loop, and ran it for different policies and epoch lengths
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Figure 4.10: Scaling to 180 Google Compute Engine nodes. This experiments fixes the
fraction of missed epochs and adjusts the epoch length to achieve this target (in large deploy-
ments, there are always some missed epochs). This shows that the minimum coordination
granularity increases for larger numbers of nodes, and that a coordination granularity of 10
ms is achievable, even for large numbers of nodes and few missed epochs.

(Figure 4.9). We report how often clients fail to report back by the end of the epoch, indicating
that the epoch was too short. In all cases, we let the system reach a stable state before
performing our measurements. Error bars here and later are the σ of 5 runs.

8-Null and 16-Null are policies that do nothing and only check for new runtimes (on 8
and 16 nodes). In both cases, no epochs were missed until reducing the epoch to below 2
ms, indicating the minimum sustainable epoch length is 1–2 ms (for the scale we looked at).
Since the minimum jstat sampling rate of the Hotspot JVM is 1 ms, this is sufficient.

We also experimented with two other policies: KV sets 100 key-value pairs every epoch on
each node – this stresses communication and increases the minimum epoch length to 20 ms.
We also ran a policy that triggers a full GC every 10 s (GC), on a workload that constantly
allocates data. As expected, this misses a constant fraction of epochs due to GC pauses.

4.4.2 Scalability

To demonstrate that Taurus scales to a large number of nodes in a more realistic data center
deployment, we ran a similar microbenchmark on a set of up to 180 Google Compute Engine
g1-small instances. We used a policy that constantly measures the number of missed epochs
and adjusts the epoch length – similar to a binary search – until a target fraction of missed
epochs is reached (note that in a large deployment, there are always some missed epochs).

Figure 4.10 shows that even in such a deployment without Infiniband, Taurus performs
well and can achieve epoch times below 10 ms. With ping latencies of around 300 µs (and
LogCabin running on a separate set of nodes), we believe these results to be reasonable. As
we will see in Section 5.3, a 10 ms epoch is sufficient even for fine-grained coordination in
latency-sensitive systems. In addition to helping us determine the minimum epoch length,
this experiment also shows an example of a policy that automatically adjusts the epoch
length (a good strategy to make policies more portable).
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Figure 4.11: Impact and scalability of the different components of policy execution. The
leader execution time is dominated by the time to access the consensus layer and executing
the policy itself, while communication cost is low. Followers spend most time processing
commands and key-value pairs, while the time to sample the JVM is negligible.

4.4.3 Performance Breakdown

We are now interested in how much the different components of the execution contribute
to the epoch length. For the leader, we ran a policy that reads out all nodes’ GC statistics
while varying the coordination group size (with four JVMs per node). For the followers, we
chose the KV policy from Section 4.4.1, varying the number of key-value pairs. igure 4.11
shows the different contributors: For the leader, this consists of the policy execution (Policy),
writing to the consensus layer (Log) and sending/receiving messages (Msgs). For followers,
this consists of serializing and deserializing messages (Process), updating the key-value pairs
(KV ) and collecting the sample from the Hotspot JVM (Sample).

Understanding the contribution of these different components is important, since the
leader’s execution time limits the coordination granularity as much as the epoch length. The
bottleneck appears to be the access to LogCabin: snapshotting the epoch takes about 400us
on average (with a LogCabin instance on the leader’s node). The policy takes a similar
amount, as it needs to perform one access to the LogCabin cluster as well, in order to check
version numbers. Sending out messages is a small fraction of the execution time, and scales
linearly with the coordination group size.

For followers, the execution time is currently dominated by receiving, decoding and
applying the instructions of the plan (which grows with the number of key-value pairs). It is
likely that a more efficient format could reduce these overheads. Neither sampling the JVM
nor communicating key-value pairs to the JVM appear to be a substantial bottleneck. Note
that this example uses an unusually large number of key-value pairs and execution times in
practice are likely going to be lower.
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Figure 4.12: Overhead of running the DaCapo benchmarks with Taurus, compared to
OpenJDK’s Hotspot JVM without Taurus. Taurus introduces negligible overheads. Speed-
ups relative to the baseline are likely due to Hotspot’s sensitivity to the environment.

4.4.4 Overhead

To determine the overhead of Taurus, we used the DaCapo benchmarks [37] (we chose the
subset of benchmarks that worked correctly with OpenJDK 7: avrora, h2, jython, pmd,
sunflow, and tradebeans). We compare the performance degradation both for followers and
leaders. Taurus does not introduce substantial overheads, at most 3.0% in our measurements
(Figure 4.12). Given that JVMs are known to be sensitive to changes in the environment and
that we introduce many such changes (e.g., adding an agent, using management interfaces,
changing the sampling interval), we believe most of the differences in performance to be noise
(including the speed-up for pmd).

4.5 Summary

We presented the design of Taurus, a prototype Holistic Runtime System to coordinate dis-
tributed applications in data centers. Taurus is a JVM drop-in replacement, runs unmodified
real-world applications, requires no modifications to the underlying runtime system and
provides a simple DSL to implement policies. Our goal is to enable developers to implement
their own policies and use Taurus as a research vehicle for exploring coordination strategies.

So far, we have demonstrated how Taurus can be used to coordinate garbage collection
between different nodes in a cluster. However, we believe that Taurus can be used beyond
GC. Specifically, it could be used for distributed monitoring and profiling, coordinating
code generation in JIT compilers, and reducing interference between JVMs. It would also
be possible to integrate Taurus with other runtime systems than the JVM, to coordinate
workloads across different programming languages (such as PHP or Python).
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Chapter 5

Using Taurus for GC Coordination

This chapter describes how Taurus can be used, by applying it to the problem of coordinating
garbage collection pauses in data center applications. We first demonstrate these techniques for
the two examples from Chapter 3. We then present a general classification of GC coordination
techniques and how they apply to a range of different data center workloads.

5.1 Running Applications with Taurus

As described previously, running workloads under Taurus requires relatively few changes.
Depending on the workloads, this includes the development of a workload-specific Taurus
policy, as well as modifications to the application itself. In many cases, the policy can be
built more easily by combining existing policies (Figure 4.5).

To run Taurus, we first need to extend the PATH environment variable to add Taurus’s
directory. This allows the system to pick up Taurus’s utility programs and replaces the
default java executable with Taurus’s version. We then need to run a taurus command to
launch and initialize the consensus layer. This command accepts a list of addresses of nodes
to run instances of the consensus layer on (we use three nodes for all of our experiments).

Finally, policies are written into a file and compiled by calling the compile-policy

program. This produces a dynamic library, which needs to be placed into the same directory

export PATH=/home/user/bin/taurus:$PATH

taurus start --nodes=ip0,ip1,ip2

compile-policy MyPolicy.policy

java -XX:HVM:policy=MyPolicy MainProgram

HVM_POLICY=MyPolicy ./run_main_program.sh

Figure 5.1: Commands to run an application using Taurus.
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on all nodes (typically Taurus’s setup directory). This directory can be adjusted through the
-XX:HVM:policy searchpath command line option.

Once these steps have been completed, the actual application can be launched. Existing
run scripts can be used as before, but we now need to tell the executable to use our new policy.
This can either be done through the -XX:HVM:policy command line option when calling
into java, or by setting an HVM POLICY environment variable. The latter is advantageous if
an application requires complex run scripts, since it does not require any changes to those
scripts. Throughout the rest of this chapter, we rely on the latter approach, using run scripts
from the BITS benchmark suite1.

From a user perspective, no further changes are needed. Taurus will launch transparently
in the background, connect all runtime systems, elect a leader and start running the policy.
We found that for debugging purposes, it can be useful to have the policy output additional
information, which will be stored in a file. Figure 5.3 will show an example of this.

We will now demonstrate Taurus by applying this approach to the two real-world workloads
from Section 3.3. These workloads are representative for both batch workloads and interactive
workloads, and demonstrate instances of a range of general coordination strategies.

5.2 Apache Spark (Batch Workload)

As an example for a batch workload, we used the same Spark PageRank computation as in
Section 3.3.1. This workload is representative of iterative computations, such as other graph al-
gorithms or repeated gradient descent. We use the implementation of the PageRank algorithm
that ships with Spark 1.1.1 (org.apache.spark.examples.bagel.WikipediaPageRank) and
run it on the 54 GB Wikipedia graph from the original Spark paper [239].

We recall that the computation is divided into multiple iterations (i.e., PageRank super-
steps). At the end of each iteration, the nodes need to exchange intermediate results, which
effectively acts as a global barrier. When one node stops for a garbage collection pause, its
iteration takes longer and it will therefore delay the other nodes who will wait for it at the
barrier. Figure 5.2a shows this effect running on our 16-node cluster: PageRank supersteps
take a similar amount of time in the absence of GC, but as soon as one node stops for a GC
pause, the superstep as a whole takes longer.

As discussed in Section 3.3.1, this problem can be addressed using a Stop-the-Universe
(STU) policy. Instead of performing GC whenever a node runs out of memory, we perform
collections on all nodes at the same time. Implementing such a strategy in Taurus is simple.
It requires no modification of Spark and a simple policy shown in Figure 5.3.

The effect of using this STU policy for the Spark PageRank workload is shown in
Figure 5.2b. We used Spark 1.1.1 on 16 nodes with 32 GB heaps. No modification to Spark
was required, and even this simple policy reduced execution time by 21%.

1BITS stands for Berkeley Interactive and Throughput Suite and was developed to support several projects
at UC Berkeley, including Taurus. The source code is available at https://github.com/ucb-bar/bits.
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(b) Coordinating GC (Stop-the-Universe)

Figure 5.2: Relation between GC and the superstep durations of Spark PageRank (shade
represents the number of nodes performing GC during a superstep; white = no GC). As soon
as one node performs GC, the superstep takes much longer. With the STU policy, all nodes
perform garbage collection at the same time and therefore only incur this delay once.

policy SparkPageRankSTU() {

extern double threshold = 90.0;

import AutoAdd();

run() {

// The main Stop-The-Universe (STU) logic: detect whether there are

// nodes whose old generation is almost full. Ignore busy nodes, as

// "busy" means no sample is available for the last epoch.

foreach (!members.filter([Member m : m.memory.old > threshold &&

(! m.busy)]).empty()) {

plan <- MajorGC(members);

out << "Trigger GC" << endl; // Debug output

}

// We only need to coordinate the SparkSubmit application (which runs

// the main algorithm) and the executors, which perform the main work

AutoAdd(runtimes.filter([Runtime r :

contains(r.cmd, "spark.executor") ||

contains(r.cmd, "deploy.SparkSubmit")]));

// Epochs have a constant length of 500ms

plan <- EpochLength(500.0);

}

}

Figure 5.3: Stop-the-Universe Policy for Spark. The policy coordinates the main processes
that belong to Apache Spark, detects whether any of them has an old generation that is
more than 90% full, and triggers a major collection on all of these nodes if this is the case.
The AutoAdd policy was introduced in Figure 4.5a and automatically adds runtimes to the
coordination group when they are discovered.
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Figure 5.4: Cumulative query latency distributions of Cassandra running the YCSB bench-
mark. We report the slowest 100K queries (99.9 percentile) of a representative run. Stacked
bars represent the number of GCs during a request. Each experiment represents a different
coordination strategy that reduces the number of stragglers: Vanilla uses no coordination.
Steer uses a strategy that instructs the load balancer to send requests to nodes that are
unlikely to enter GC. Snitch applies the same strategy for selecting replicas within Cassandra.
Stagger schedules garbage collection pauses across Cassandra nodes.

5.3 Apache Cassandra (Interactive Workload)

As an example for an interactive workload, we used Taurus to improve Cassandra tail latencies
(Section 3.3.2). We run a YCSB snapshot from 3/11/15 against Cassandra 1.0.6 with a
replication factor of 3 and a cluster size of 8. We run workload A on a keyspace with 10M
entries for 100M queries (50s warmup). We chose a 32GB heap with a 4GB young generation.

Running this experiment, we observed that average query latencies were very short, 173.6
us for updates and 522.8 us for reads. However, some requests took over 100× longer than
this. Figure 5.4 shows the cumulative latency distribution of the slowest 100K queries (> 5
ms latency), which is the tail from the 99.9 percentile. We show that Taurus can eliminate
most of these stragglers (in particular, queries with latencies of over 20 ms).

Cassandra requires more sophisticated coordination strategies than the Spark example
from the previous section. Specifically, we had to implement several different GC coordination
policies, and introduce minor modifications to the application itself. We will now present the
strategies in turn, and discuss their effectiveness for improving query latencies.

We assume a setup similar to that introduced in Section 3.3.2: A cluster of 8 Cassandra
nodes is deployed to separate machines, and a load balancer on a different machine evenly
distributes requests to these nodes. We use the YCSB workload generator in place of the
load balancer, simulating a set of clients connecting to the Cassandra cluster.
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Figure 5.5: Cassandra Request Steering. The policy monitors the young generation on all
Cassandra nodes and communicates one key-value pair per node to the load balancer (i.e.,
the workload generator in our case). The key-value pair has a value of 1 if the node is close
to a GC pause, and 0 otherwise. The load balancer then checks these key-value pairs before
dispatching a request. If the key-value pair is 1, the request is forwarded to a random node
with a non-zero key-value pair. Forwarding works by creating a second forwarding connection
thread per Cassandra node – whenever a connection is about to send a request to a node that
is close to GC, it will instead enqueue this request for a random forwarding thread to process.

policy CassandraSteer() {

import AutoAdd();

run {

AutoAdd(runtimes);

// Identify the node running the YCSB workload generator/load balancer

Set<Member> ycsb = members.filter([Member m : m.runtime.tag == "ycsb"]);

if (!ycsb.empty()) {

foreach (Member m : members) {

if (m.memory.eden > 80.0 || m.busy || m.memory.eden < 5.0) {

plan <- SetKV(ycsb, m.runtime.tag, 1);

} else {

plan <- SetKV(ycsb, m.runtime.tag, 0);

}

}

}

plan <- EpochLength(10.0);

}

}

Figure 5.6: Implementation of the Cassandra Steering Policy.
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Recall that nodes in Cassandra are logically arranged in a ring, and requests can be
sent to any node (Section 3.3.2). This node will then act as the coordinator for the request,
assemble a quorum by contacting the nodes that hold replicas of the requested key-value
pair, and return the result. Replicas are assigned to nodes through consistent hashing which
maps replicas to successive nodes in the ring. Through inspection and instrumentation of
Cassandra executions, we identified three fundamental reasons for stragglers:

1. The node that acts as the coordinator for a request stalls for garbage collection while
handling the request, delaying the response to the client.

2. The coordinator does not stall, but one of the replicas it chooses to contact is delayed
due to a garbage collection pause.

3. Several features in Cassandra that are not related to garbage collection may cause
delays as well (e.g., log compaction or the anti-entropy mechanism).

We now show how to address the first two problems. The third problem is out of scope for
this thesis, but may be addressed by Taurus as well, using its key-value pair mechanism to
schedule non-GC operations at suitable times.

5.3.1 Request Steering Policy

This policy addresses the problem of nodes stalling for GC while processing a request. The
key insight is that instead of distributing requests equally between all Cassandra nodes, we
modify the load balancer to avoid sending requests to nodes that are likely to stall for GC
in the near future. To achieve this, we identify all nodes that are close to GC and expose
this information to the load balancer (in our case, the YCSB client). We implemented this
approach using a policy that monitors the young-generation occupancy of each node during
every 10ms epoch and communicates one key-value pair per node to the YCSB client, which
indicates whether or not the node is close to GC.

Figure 5.5 visualizes this strategy. The policy first identifies the node that runs YCSB,
based on its tag. It then builds a set of key-value pairs for this node which are 1 if a node is
close to performing GC, or 0 if it is not. These key-value pairs are then made visible to YCSB.
YCSB then checks these key-value pairs before dispatching each request. If the key-value
pair is 1, YCSB sends the request to a different node.

This required minor modifications to YCSB. By default, YCSB maintains one connection
to each node, with an associated thread that generates a continuous stream of requests to
this node. We introduced a second connection per node that does not generate requests itself
but instead drains a queue of requests that are forwarded from other nodes. Before sending a
request, the original connection threads first check the corresponding key-value pair, and if
the value is 1, enqueue the request to one of the secondary connections, skipping those whose
key-value pair is set to 1 themselves.
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Figure 5.7: Cassandra Snitch Steering Strategy. When assembling a quorum, Cassandra
picks a subset of replicas based on a mechanism known as “Snitch”. This mechanism ranks
Cassandra nodes according to preference, typically based on proximity. We modified the
Snitch to instead give precedence to nodes that are not close to GC; in this example, the node
that is close to GC (i.e., has a young generation that is > 80 % full) is given least precedence.

This approach eliminates most update stragglers over 20ms, as shown by the “Steer”
results in Figure 5.4). However, read queries do not improve. This is because updates can be
delayed by the coordinator if a quorum of replicas cannot be assembled. In contrast, reads
need to receive responses from a quorum of replicas before the result can be returned. The
next strategy will address this problem.

5.3.2 Snitch Steering Policy

To improve read queries as well, we implemented a second coordination strategy. This policy
can be seen as another instance of the Steering policy from Section 5.3.1. To serve a read
query, the node executing the query has to assemble a quorum of replicas (Figure 5.7). This
quorum is chosen based on a Snitch, a feature in Cassandra that is normally used to describe
the data center topology and discover nodes that are close in the data center (e.g., in the
same rack). The snitch ranks existing nodes in the system (typically by proximity), and
Cassandra then picks and contacts the highest-ranking nodes to form a quorum.

We modified Cassandra’s dynamic snitch to read Taurus’s key-value pairs and give
precedence to replicas that are not close to GC. This approach uses the key-value API
presented in Section 4.1.4 and introduces fewer than 50 lines of code. As Figure 5.8 shows,
we had to modify the compareEndpoints function of the snitch to give precedence to nodes
that are not close to GC. This is determined by a function isBusy, which reads Taurus’s
key-value pairs using the HVM API (Figure 5.6 shows the policy code that sets them). We
maintain a wasBusy table that represents the most recent knowledge whether or not a node
is close to GC. Note that similar to accessing key-value pairs in policies, accessing key-value
pairs through the HVM API can fail – by maintaining the wasBusy table, we are robust to this
case (which can happen during start-up and failure recovery).
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public class HVMSnitch extends AbstractEndpointSnitch {

public List<InetAddress> getSortedListByProximity(InetAddress address,

Collection<InetAddress> unsortedAddress) {

List<InetAddress> preferred = new ArrayList<InetAddress>(unsortedAddress);

sortByProximity(address, preferred);

return preferred;

}

public void sortByProximity(final InetAddress address,

List<InetAddress> addresses) {

Collections.sort(addresses, new Comparator<InetAddress>() {

public int compare(InetAddress a1, InetAddress a2) {

return compareEndpoints(address, a1, a2);

}

});

}

public int compareEndpoints(InetAddress target,

InetAddress a1, InetAddress a2) {

boolean unavailable1 = isBusy(a1);

boolean unavailable2 = isBusy(a2);

if (unavailable1 && !unavailable2)

return 1;

else if (!unavailable1 && unavailable2)

return -1;

return 0;

}

public static boolean[] wasBusy; // Keeps track of nodes close to GC

public static boolean isBusy(InetAddress a1) {

int tag = nodeMapping.get(a1);

String str = HVM.getKeyValuePair(Integer.toString(tag));

if (str == null) { /* No KV pair (e.g., due to start-up or failures) */ }

else if (str.equals("1")) { wasBusy[tag] = true; }

else { wasBusy[tag] = false; }

return wasBusy[tag];

}

}

Figure 5.8: Abridged version of the modified HVMSnitch class implementing Snitch Steering
in Apache Cassandra. The snitch orderes replicas by preference – we modify the snitch such
that it gives precedence to replicas that are unlikely to become unavailable due to GC.
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Figure 5.9: Fraction of total execution time (sum of all query latencies) spent in requests
of at least a certain length. This demonstrates that Taurus strictly outperforms the baseline.

The “Snitch” results from Figure 5.4 shows that running with this policy, in addition to
request steering, improves read query latencies substantially.

5.3.3 Staggering Policy

While the two steering policies substantially improve query latencies, additional read stragglers
remain. Further analysis revealed that some of these stragglers stem from multiple GCs
occurring at the same time. Serving a request requires 2 out of 3 replicas to be available
simultaneously. Otherwise, the coordinator cannot form a quorum, even with steering.

To address this problem, we modified the policy to ensure that only one node is performing
GC at any time. Each epoch, we trigger a minor GC on the node with the highest memory
occupancy over 80%, if any, and trigger no other GC before it has finished. For our 8-node
cluster, this is sufficient. Larger clusters could stagger GC by triggering simultaneous GCs
on nodes 3 steps apart in the Cassandra ring. This would avoid stalling multiple replicas
belonging to the same key, as replicas are placed on subsequent nodes in the ring.

5.3.4 Impact of Coordination Policies

The overall impact of all coordination techniques is shown in Figure 5.9. The y axis shows
the fraction of total time spent in requests of at least the latency on the x axis, averaged
over 10ms intervals. As our coordinated version is well to the left of the original (note the
log scale), we eliminate a large fraction of stragglers. On a per-request basis, the 99.99%ile
latency improves from 65.7 ms to 33.8 ms for reads (40.7 ms to 10.1 ms for updates) and the
99.999%ile from 128.6 ms to 54.6 ms for reads (67.7 ms to 21.0 ms for updates).

Figure 5.10 demonstrates the same effect visually: When we switch from running without
coordination (red) to applying the coordination techniques (green), most of the long stragglers
disappear. However, some stragglers remain – this is mostly due to non-GC related reasons.
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Figure 5.10: Effect of Taurus on Cassandra READ latencies. The measurements are
averaged over 10 ms intervals. At 200 seconds, we switch from no coordination to a policy
implementing all coordination strategies discussed in Section 5.3.

While it may be possible to use Taurus to take these causes of delays into account when
generating the key-value pairs, we have not further explored this direction yet.

Note that we use an untuned configuration of Cassandra, with a large heap and young
generation. In practice, Cassandra deployments are heavily hand-tuned. We argue that with
a system such as Taurus, tuning becomes less important.

5.4 Generalizing GC Coordination Strategies

While the previous sections show specific instances of Taurus coordination policies, we now
attempt to generalize these strategies to a wider range of workloads. Looking at a range of
data center workloads, we discovered that most garbage collection policies we found could be
expressed as a combination of three fundamental coordination strategies:

• Schedule: Both the Stop-the-Universe policy we used in Spark and the Staggering
used for Cassandra trigger garbage collection pauses deliberately instead of incurring
them when the runtime system runs out of memory. This generalizes to a class of
strategies where Taurus triggers GC at suitable or convenient times (what constitutes
such a time is workload-dependent).

• Redirect: Both the Request steering and Snitch steering policies for Cassandra are
instances of strategies that redirect requests to nodes that are unlikely to stall for
garbage collection. This generalizes to any case where a task or request can be handled
by multiple nodes. In this case, a policy can ensure that requests are always redirected
to one of the nodes that is not unavailable due to GC.
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Figure 5.11: Mapping of GC policies to base strategies. Almost all GC coordination
strategies that we are aware of can be decomposed into three fundamental approaches.
Schedule strategies trigger GC deliberately at times that are convenient for the application.
Redirect applies to systems where multiple nodes can handle the same request, and steers
requests to those nodes that are unlikely to stall for GC. Hand-off is used for systems that
have a centralized point of failure, and causes this node to pass their responsibilities to
another node as it is getting closer to GC.

• Hand-off : A third class of strategies does not appear in our examples but has been
investigated in the literature [212]. These strategies concern cases where a single
node has the sole responsibility for a task or a piece of data (e.g., a master node in a
centralized distributed system). To handle GC pauses in these cases, the policy can
hand the node’s responsibility to another node whenever the node is close to GC.

We introduce the shorthands S, R and H for these fundamental strategies. Looking at the
published literature and our own work, we were able to describe nearly all policies that we
are aware of in terms of these fundamental strategies, providing a strong indication that they
are sufficiently general to span the space of possible coordination strategies:

1. Stop-the-Universe (S). Synchronize GC such that collections are performed on all
nodes in the distributed system at the same time. This strategy is useful for iterative
batch workloads, such as the Spark example we presented in Section 5.2. This includes
a wide range of algorithms, including graph algorithms, machine learning algorithms
and scientific computations.

2. GC-when-Idle (S). Trigger GC during a period of idleness. For example, many
computations involve multiple phases such as reading data from a data store (e.g.,
HDFS), processing this data and then writing back the results. GC could be scheduled
such that the component in question is idle during the GC (e.g., we might schedule the
GC for the data store while the data is being processed).
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3. Steering (R). In a system where multiple servers can handle the same request (e.g., key-
value stores such as Cassandra, sharded search engines such as SOLR [202], or replicated
services such as fleets of web servers), steer requests away from nodes that are close to
GC. This ensures that nodes do not incur GC pauses while handling requests. Steering
can happen within applications (e.g., within the application’s consensus algorithm) or
at a load-balancer. We saw two instances of this strategy in Section 5.3.

4. Staggering (S). In a system that requires quorums of replicas for consistency, ensure
that only a sufficiently small subset of the replicas is performing GC at any given time.
This can be achieved by staggering garbage collection across the different nodes in the
system, as we saw in Section 5.3.3.

5. Backup (SR). Have two instances of a component, but use only one of them at a
time, by steering all requests to this node. As soon as this node gets close to garbage
collection, we switch over to the other node instead and force a collection. This approach
has been successfully used in latency-sensitive finance applications [181].

6. Leadership Transfer (H). When the leader of a centralized distributed system is
about to stall for GC, hand off leadership to another node in the system. This can
often be achieved using the recovery mechanism that is already part of the system,
since this behavior resembles leadership re-election after a failure [212].

7. Timeout Extension. This is the only strategy we found that could not be expressed
in terms of the basic strategies. It has been reported that garbage collection in some
distributed workloads cause leases or connections to time out, which can trigger the
failure recovery mechanism [113]. An application running on Taurus could instead
extend leases whenever a collection is being performed.

Applications can combine these policies to fit their needs. Figure 5.11 shows examples: Spark
(Section 5.2) benefits from Stop-the-Universe (S ), Cassandra (Section 5.3) uses Steering &
Staggering (SR), a Zookeeper-like system [212] has been shown to benefit from a Steering,
Staggering & Leadership Transfer (SRH), and replicated application servers [180] have been
shown to benefit from Steering (R) alone.

We note that there is a connection between the fundamental policies and their imple-
mentation complexity: S -type strategies oftentimes require no changes to the application,
R strategies do require changes but those are minimal if it is possible to modify the replica
selection algorithm already available in applications, while H strategies can be more work,
unless the application already has a hand-off mechanism as part of its failover handling.

Taurus enables and simplifies the implementation of these policies, and we hypothesize
that they provide a basic set that can be combined to cover most applications (and could be
incorporated into a standard library of policies).
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5.5 Summary

We believe that the presented strategies generalizes to a wide range of both batch and
interactive workloads. We also think that the same mechanisms may be used for other
system-level and maintenance events, such as log compaction.

An important conclusion from this work is that these strategies were possible by working
on neither the managed-runtime layer or the systems layer in isolation, but by working across
the boundary between them. However, while Taurus can help applications tolerate GC pauses
better, it does not solve the fundamental underlying problem. Specifically:

1. Applications still spend up to 38% of their CPU time in garbage collection, taking up a
large number of CPU cycles and energy [43].

2. While garbage collection pauses can often be tolerated, they do not disappear, and
some irregular applications may not be able to use coordination effectively to avoid
them. Further, there is a large amount of legacy code that is difficult to change and
adapt to a system such as Taurus.

It would therefore be preferable to reduce the impact of garbage collection altogether, both in
terms of cycles and energy spent on it, as well as GC pauses. We believe that this is possible
by looking at the problem from a different perspective: Instead of only investigating the
problem in the context of software, we believe that we can address garbage collection more
fundamentally by considering the hardware as well. Specifically, we hypothesize that the
impact of garbage collection could be reduced by offloading it from the CPU onto specialized
hardware. This idea is what the remainder of this thesis will be exploring.
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Chapter 6

Offloading Garbage Collection

This chapter presents a different approach to the garbage collection problem. Instead of
enabling applications to tolerate GC-related pauses better, we remove garbage collection from
the CPU and offload it onto a data-parallel accelerator. We demonstrate one instance of this
approach by offloading GC to an integrated GPU in a combined GPU-CPU part, and show
how this motivates the design of a custom data-parallel accelerator for GC.

6.1 Offloading Garbage Collection to the GPU

While Taurus enabled tolerating GC pauses by working across the language runtime and
systems layers, we now investigate ways to address the garbage collection problem at a more
fundamental level, by working across the language runtime and hardware layers to design
custom accelerators that perform garbage collection more efficiently than a CPU.

As a first step, we investigated offloading garbage collection to accelerators that already
exist in commodity systems and data center servers. Specifically, we offload the compute-
intensive mark phase of a garbage collector to the integrated on-chip Graphics Processing
Units (GPUs) that are widely available in desktop and server-class machines.

GPUs have been part of commodity systems for over 15 years. While they were originally
designed to accelerate 3D graphics (e.g., for video games), frameworks such as CUDA and
OpenCL have enabled GPUs to run general-purpose workloads, including special-purpose
computations such as deep learning. In the absence of such workloads, the GPU is often
underutilized. This is true despite the recent renaissance of GPUs in machine learning: While
this led to a large amount of work on dedicated GPUs, this work is typically limited to
high-end devices such as NVIDIA’s Tesla GPU systems [167].

While GPUs have long been discrete devices, CPUs and GPUs are now often integrated in
a single system on chip (SoC). This setup opens up a whole new set of application scenarios,
since it eliminates the copying overhead that is traditionally associated with moving data
between the CPU and a dedicated GPU. While early implementations of this paradigm were
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simplistic and only shared physical memory, modern hardware now provides a shared address
space and cache coherence between CPU and GPU [40].

We believe that this integration provides an opportunity to move traditional systems
workloads to the GPU. Garbage collection appears to be a particularly good candidate for
this, since garbage-collected languages such as C# and Java account for a significant portion
of code running both in data centers and on consumer devices. Offloading their GC workloads
to the GPU allows us to harvest the GPU’s unused compute power, leaving the CPU free to
perform other tasks such as JIT compilation, garbage collection for other memory spaces, or
running mutator threads (if the GPU is used for concurrent garbage collection).

Our intuition was that garbage collection is a workload that is well-suited for running on the
GPU, especially once the copy overhead between CPU and GPU disappears. Graph traversals
(a key component of many garbage collectors) have already been efficiently demonstrated on
GPUs [105], and previous work by Veldema and Philippsen [220] has shown that garbage
collection for GPU programs can be efficiently performed on the GPU itself.

In this chapter, we take the next step and investigate whether it is feasible to offload GC
from conventional programs running on the CPU, and what it takes to achieve this goal.
We show that GPUs can, on average, perform GC with overheads ranging from 40–100%
compared to a CPU, despite the GPU’s SIMD-style programming model and the need to
design algorithms that make explicit use of available parallelism and memory bandwidth,
while avoiding serialization of execution. The contributions of this chapter are as follows:

• We present an analysis of the heap graphs of several Java benchmarks, to evaluate the
theoretic feasibility of using GPUs and data-parallel accelerators for garbage collection
(Section 6.3). These insights inform both our GPU-based GC design as well as our
custom garbage collection accelerator (Chapter 7).

• We prototype a GPU-based garbage collector within the Jikes Research Virtual Ma-
chine [4] (Section 6.4), a Java VM maintained by the research community. We later
adopt this infrastructure as part of a broader evaluation methodology (Chapter 8).

• We show a new algorithm, and variations thereof, for performing the mark phase of a
Mark & Sweep garbage collector on a GPU. Our algorithm differs from previous work
by using a frontier queue approach instead of a data-parallel algorithm. We also discuss
trade-offs and optimizations to make it efficient on a GPU, which form the foundation
for the custom GC accelerator presented in the next chapter.

The objective of this work is not to present a single tuned implementation, and the implemen-
tation presented in Section 6.4 is mainly for the purpose of illustrating a particular point in
the design space. Our main goal is to assess whether GPUs – and data-parallel accelerators
in general – are feasible targets for offloading garbage collection, and to identify obstacles
that need to be overcome. These insights led us to design our own custom hardware in the
next chapter, which takes the lessons we learned from implementing garbage collection on
GPUs, and distills them into a custom data-parallel accelerator.
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Figure 6.1: Illustration of the spatial and temporal scheduling of work-items for a fictional
compute unit with 4 stream processors and a wavefront size of 16.

6.2 GPU Programming Model

This section provides a general introduction to the hardware and programming model of
a GPU. Note that throughout this chapter, we use the terminology from OpenCL – the
terminology used by CUDA (the other major framework) is synonymous1. We also want to
note that we describe GPU architectures and terminology as of 2011-2012, when we originally
did this work and when the GPU that we are using was released. We discuss differences to
the current state-of-the-art in Section 6.7.5.

GPUs provide a SIMT (Single Instruction Multiple Thread) programming model. SIMT is
an extension of SIMD (Single Instruction Multiple Data) with support for hardware execution
masking to handle divergent control paths within an instruction block. Computation is
described in terms of a kernel which is executed by a set of work-items (i.e., threads).

The basic building block of a GPU is a streaming multiprocessor (SM), or compute unit,
which contains a single instruction decoder and a number – typically between 8 and 64 –
of stream processors (SP). The stream processors execute the same instruction in lockstep,
but with different register contexts (each of them stores the registers and a small amount of
memory for each of its work-items). Within the compute unit, stream processors share access
to a Local Data Store, a small fast block of dedicated memory.

Work-items are grouped into wavefronts (Figure 6.1). Each wavefront typically contains
four times the number of stream processors. The work-items of the wavefront are interwoven
such that each stream processor executes the same instruction four times – once for each
quarter of the wavefront. To handle divergence of control flow within a wavefront (e.g., one
work-item takes a branch while another work-item does not), the hardware will perform
masked execution. Both sides of the branch will be executed, but only some of the work-items
will be enabled. For good performance, it is critically important to minimize the amount of
divergence in the control flow.

Wavefronts are in turn grouped into workgroups (256 to 1,024 work-items per workgroup
are common). When a given wavefront stalls because of a memory access, another ready

1For further reading, the AMD OpenCL Programming Guide [8] and the OpenCL v1.2 Specification [130]
provide all the detail one might require.
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wavefront begins executing. Context switches between wavefronts are extremely fast (usually
a single cycle), since each work-item in the entire workgroup retains its dedicated registers
at all times. To maximize memory bandwidth, a kernel should maximize the number of
wavefronts that are able to perform independent memory accesses.

GPUs have a number of compute units which share access to a memory region known
as global memory. On the devices we investigated in 2012, the number of compute units
varied from 2-4 on a low-end device to as many as 12-40 in high-end devices (today, NVIDIA
sells parts with up to 512 compute units). For discrete GPUs such as graphics cards, global
memory is dedicated hardware on the device; for integrated GPUs, where CPU and GPU
share the same package, it will often be a reserved area of the main system memory.

The discrete approach has the advantage of much faster access times, but requires slow –
on the order of 8 GB/s in 2012 – explicit copies between CPU and GPU, using DMA over the
PCIe bus (modern NVLink-based systems can achieve 300 GB/s). In 2012, neither approach
participated in the cache-coherence protocol of the CPU; this meant that communication
between CPU and GPU had to be done explicitly through the OpenCL interface. Today,
there exist cache-coherent CPU-GPU combinations.

6.3 Preliminary Analysis

Garbage collection in general – and the mark phase of a Mark & Sweep garbage collector
specifically – is a memory-bound problem. As such, the main challenge of any implementation
is to process and issue memory requests at a sufficiently high rate to fully utilize the available
memory bandwidth. As we will discuss more in Section 6.5, being able to process a large
number (i.e., hundreds) of objects in parallel is essential for meeting this goal on a GPU
(and, as we will see in the next chapter, on a data-parallel accelerator).

The core of our GPU-based mark algorithm is a highly parallel queue-based breadth-first
search (recall Section 2.3). Objects to be processed are added to a frontier queue. For each
item in the queue, we remove it, mark the object, and then add each outbound reference
to the queue. This processes objects in order of increasing distance from the root set (i.e.,
increasing depth). At each depth, there is a fixed width (or beam) of nodes available for
processing. If this available width is greater than the number of work-items, we can keep the
entire device busy and make efficient progress through the traversal.

Any practical collector can do no better than an ideal collector which examines every
object at a given depth in a single iteration. To understand this theoretical best case garbage
collector on real programs, we examined the heap structure of benchmarks from the DaCapo
9.12 benchmark suite [37]. We examine two attributes of heap graphs: their general shape
(i.e., depth, width per iteration, etc.) and the distribution of outbound references across
objects. The latter has a significant performance impact on GPUs due to the divergence
problem described previously (Section 6.2).

The data collection for this section was performed using an instrumented Jikes garbage
collection plan. All measurements were performed using the optimizing compiler; optimization
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Figure 6.2: Number of objects at each depth during an idealized breadth-first traversal
starting from the root set. This exemplifies the degree of parallelism available.

affects the frequency of collection and thus the heap graphs’ shapes. We ran the small and
default configurations of a subset of the benchmarks2. For further details about the structure
of common Java heaps, we recommend Barabash and Petrank’s paper [26]. They analyze
heap depth and approximate shape for a previous release of the DaCapo benchmarks, as well
as several Java SPEC benchmarks.

6.3.1 Structural Limits on Parallelism

We first examined the general shape of the heap graphs as traversed by the ideal collector.
We were interested in determining whether there were structural limits that would prevent
the degree of parallel processing that data-parallel architectures require for efficiency.

A selection of the graphs generated from the DaCapo benchmarks is shown in Figure 6.2.
The figures show the number of objects reachable – marked or unmarked – from a given step
of the ideal breadth-first traversal starting at the root set. All of the benchmarks begin with
a short section of extreme parallelism. The first step is limited to the size of the root set
(typically 600-1,000 objects), but the next few steps expand rapidly.

2We only report a subset of the benchmark suite since several benchmarks did not work on a vanilla Jikes
RVM running on our evaluation system. This is a known problem and unrelated to our garbage collector.
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Figure 6.3: Distribution of the number of references within objects on the heap. Most objects
have few outbound references, but some objects have hundreds or thousands.

Once this startup section is completed, our benchmarks fell into three categories. Some of
the benchmarks – such as luindex – then complete within a small number of additional steps.
A few – such as avrora – had moderate length sections of structurally limited parallelism.
Unfortunately, there were also a few benchmarks – such as lusearch – which had long narrow
sections (“tails”) following the parallel beginning. A width of 30 to 80 represents at most
1/3 of the available parallelism on the GPU. As the number of available work-items per
workgroup increases with time, this fraction may drop precipitously.

Since no hardware can execute an infinite number of threads, we repeated the analysis
above while limiting the maximum step widths to 128, 256, 1,024, and 32,768. As expected,
decreasing the number of items processed in each iteration increased the effective depth of
the graph, but did not change the overall shape of any of the benchmarks.

Despite the limited parallelism towards the end of some collections, we conclude that heap
graphs are sufficiently parallel for the purposes of garbage collection on GPUs and custom
accelerators. However, if one wants to minimize collection latency, having a mechanism to
deal efficiently with long narrow tails in the heap graph is critical; we discuss our solution in
Section 6.5.4. An alternative approach would be to insert artificial shortcut edges into the
heap graph. Barabash and Petrank describe this strategy in detail [26].

6.3.2 Distribution of Outbound References

Prompted by Veldema and Philippsen’s [220] findings on divergence when performing garbage
collection on GPUs, the second issue we examined was the distribution of the number of
outbound references within each object. When processing one object per thread in a SIMT
environment where each thread loops over the outbound references within its object, this
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distribution is critical to understanding and controlling divergence. Our results show that the
vast majority of objects have a small out-degree: 26% of objects have no outbound references
(other than their class pointer), 76% have four or fewer, and 98% have 12 or fewer. However,
this distribution also has a very long and noisy tail. A small fraction of objects (less than
0.01%) have hundreds to thousands of references. It is worth noting that our analysis does
not distinguish between objects and arrays of references, but we have manually confirmed
that some of the high double-digit out-degree nodes are, in fact, objects.

The distribution of the number of references within objects can be seen in Figure 6.3. Given
that the results across benchmarks are fairly uniform, we chose to present the distribution
across all the collections of all the benchmarks for which we collected results.

Even leaving aside the extreme tail of the distribution, the distribution of references
between objects means that blindly looping over the number of references will result in
unacceptable divergence of threads. We discuss one solution for distributing references
between work-items in Section 6.5.2.

6.4 System Integration

In this section, we present challenges for offloading garbage collection to the GPU and
discuss different performance trade-offs. To substantiate our claims, we implemented a
proof-of-concept GPU-based garbage collector for the Jikes Research Virtual Machine [4].
This allows us to investigate performance trade-offs for full executions of real Java programs,
by performing a series of macro and micro benchmarks.

Our test platform was an AMD E-350 APU, which was one of the first chips that integrated
a CPU and GPGPU into a single device (Intel’s Sandy Bridge architecture had a similar
integrated GPU, but it was not programmable). APU (Accelerated Processing Unit) is a
term coined by AMD to describe their integrated CPU/GPU solution marketed as AMD
Fusion. The E-350 targeted low-end laptops and tablets and has since been subsumed by
several successor generations (the latest being the Bristol Ridge series).

6.4.1 High-level Overview

We modified Jikes’s Mark & Sweep garbage collector to offload its mark phase to the GPU.
The operation of the collector can be divided into three phases:

1. Root scanning: JikesRVM stops all application threads, scans their stacks for refer-
ences and copies all outgoing references from the set of static variables.

2. Mark phase: The collector performs a breadth-first search through the heap graph
and sets the mark bits of all visited objects (as described in Section 2.3).

3. Sweep phase: The collector traverses all blocks in memory and recycles those cells
that have not been marked in the previous phase.
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Figure 6.4: Overview of the collector integration.

Execution time is dominated by the mark and sweep phases. Both expose a high degree of
parallelism – while we have shown the mark phase’s parallelism in the previous section, the
sweep phase is embarrassingly parallel, as different blocks can be swept simultaneously.

We integrated our GPU-based GC into Jikes’s stop-the-world MarkSweep collector. We
modified the collector to offload the mark phase to a GPU and investigate the challenges of
targeting it to a data-parallel architecture. While a real-world collector would have to offload
the sweep phase as well, we think that Veldema et al. have sufficiently covered this aspect in
their work, and therefore focus on the mark phase for brevity. A complete collector would
perform the sweep phase on the GPU, immediately after the mark algorithm, and only copy
the resulting free lists back to JikesRVM running on the CPU.

The steps performed by the collector are shown in Figure 6.4. For experimentation
purposes, our mark phase is performed on a reference graph data structure, a self-contained
version of the heap that only contains references but no other fields. We discuss this structure
in the next sections. The reference graph is kept up-to-date during program execution or filled
in on each collection. We then invoke our collector in a native call which sets up our mark
kernel and runs it on the GPU. The CPU is idle until the mark completes (a production-grade
implementation would perform other tasks during this time). Upon completion, execution
returns to Jikes and the markings are transferred back into the heap. The sweep phase
is then performed on the CPU. Note that the intermediary copying steps are merely an
implementation detail of our prototype, and not inherent to our approach.

6.4.2 Bidirectional Object Layout

A major challenge of offloading the mark phase to a GPU is the JVM’s object layout. Every
object has reference and non-reference fields. During the mark phase, the collector needs to
follow non-zero pointers in all reference fields (i.e., the outgoing references).

In a traditional object layout (Figure 6.5a), the header is at the beginning of the object,
followed by the fields declared by the parent class and then the fields of the class itself. This
enables inheritance, as it allows an object to be treated as an instance of any of its parent
classes. However, this layout means that reference and non-reference fields are interspersed.
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Figure 6.5: Bidirectional Object Layout. In a traditional object layout, the header is at the
beginning of the object and reference and non-reference fields are interspersed throughout the
object (with a side-table to indicate which fields contain references). In a bidirectional layout
layout, the header is in the middle, references are to one side and non-reference fields to the
other. This saves lookups in the type descriptor, provides a more advantageous memory
access pattern, but still supports inheritance.

Existing JVMs get around this problem by having a side-table which contains the offsets
of all reference fields. When tracing an object during the mark phase, the collector can look
up the offsets of the reference fields in this side table. As these tables are typically in cache,
this does not add a substantial overhead on a CPU. However, on architectures without caches
– such as GPUs – this adds up to three levels of indirection (type information block, type info,
offset array), and incurs a performance penalty.

Another strategy that is often used on a CPU is to synthesize specialized tracing functions
for the most common patterns of references. However, this is not feasible on a GPU either,
as it would cause divergence to run a different tracing function for every object.

We therefore require a different object layout, which lays out the references of an object
consecutively and contains the object’s number of references in the object header (Figure 6.5b).
A bidirectional layout [231] such as that used by the Sable VM [76] achieves this requirement
with minimal overhead [79], by laying out reference fields to the right of the object header,
and non-reference fields to the left. While this layout has only moderate performance benefits
on CPUs [90], and has therefore seen little adoption, we found that it is crucial for making
GC work on data-parallel architectures, as we will show in Chapter 7.

6.4.3 Reference Graph

A real-world GPU-based garbage collector would likely be implemented on an integrated
GPU that is cache-coherent with the CPU and can operate on the same virtual address space
as the application running on the CPU. However, the test platform that was available to
us in 2012 (see Section 6.6.1) did not support either feature. Instead, it could only map a
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Figure 6.6: The reference graph structure. Each object on the heap has a corresponding
object in the reference graph which only contains the reference fields.

128 MB subset of the application’s memory at a time3, by unmapping it on the CPU and
mapping it on the GPU. This became problematic, as this size was too small to hold the
heaps of several DaCapo benchmarks (when including Jikes’s own memory spaces).

For the purposes of evaluation, we solved this problem by building a condensed version
of the heap which we call a reference graph. The reference graph is stored in a separate
space and contains an entry for each object on the main heap, consisting of a pointer to the
original object, the number of references, and a consecutive list of all outbound references
as pointers into the reference graph (Figure 6.6). Arrays are represented in the same way.
This emulates the object layout presented in Section 6.4.2, but reduces the size of the heap
such that it fits on the GPU. Due to the lack of caching on the GPU, this approach does not
give a performance advantage, while it allows us to evaluate our collector on real-world heaps
that otherwise would have been too large to fit on the GPU.

We found that the reference graph gave us a sufficient reduction in size to evaluate the
DaCapo benchmarks on our collector. The following table shows the cumulative sum of heap
sizes across all collections within a run, as well as the equivalent numbers for the reference
graph (we used a maximum heap size of 100 MB for all runs). This allows us to estimate
that the reference graph approach reduces the size of our graph by about 75% on average:

# GCs Cumulative Heap Cumulative Reference Graph Ratio

avrora 9 256 MB 80 MB 31.2%
jython 114 10499 MB 3301 MB 31.4%
luindex 7 178 MB 35 MB 19.8%
lusearch 77 7078 MB 515 MB 7.3%
pmd 14 809 MB 233 MB 28.9%
sunflow 39 2935 MB 658 MB 22.4%
xalan 23 1686 MB 456 MB 27.1%

We experimented with two different approaches for building and maintaining the reference
graph. Both of these approaches allocate a node in the reference graph whenever a new

3This value was determined experimentally.
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object is allocated, but differ in how they maintain references between them.

• The most basic approach fills in the reference graph immediately before performing
a collection. It performs a linear scan through the “distilled” objects in the reference
graph, follows the references of each corresponding original object, and copies the
pointers for the corresponding distilled objects to the reference graph (Figure 6.6).

• The reference graph can also be built while running the mutator threads: this turns
every reference write into a double-write to two locations, which can be implemented
as either a write barrier or issuing a second write instruction in the compiler. We
prototyped the simpler write barrier approach.

While these approaches differ in performance, we refrained from performing a deeper analysis,
as this problem is somewhat orthogonal to our approach and lost its relevance shortly after
this work was completed in 2012.

6.4.4 Launch Overhead

Equipped with the reference graph, our collector calls into a C function (using Jikes’s SysCalls
mechanism) which initializes OpenCL, copies (or maps) the reference graph to the GPU and
launches the mark kernel. Launching a kernel execution incurs both a fixed startup cost, and
a variable cost related to the kernel itself and the size of memory being mapped to the GPU.
We incur these costs once per garbage collection.

While our original platform incurred launch overheads on the order of hundreds of
milliseconds for remapping memory, modern architectures do not incur these overheads. At
the same time, launch times have been trending downward at a steep rate, and are now in
the low microsecond range [228]. For this reason, we exclude launch overheads from the
execution times of our kernels – as long as the number of kernel launches is small, they can
be discounted for the purpose of assessing the feasibility of offloading GC to the GPU4.

6.4.5 Copy-back Overhead

After performing the mark phase on the GPU, our collector incurs an additional overhead
from copying the marked reference graph back into main memory and transcribing the mark
bits into the original heap structure. This is necessary for the integration with Jikes, but
would not occur in a real-world collector that integrates both mark and sweep phase: after
finishing the sweep phase on the GPU, the collector would simply move the resulting free-list
to the CPU, ideally in a low-overhead, zero-copy operation. For this reason, we ignore this
overhead for the purpose of our evaluation.

4Please see the original paper for detailed measurements of launch overheads on our platform [148].
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Figure 6.7: Structure of the basic mark algorithm on the GPU. Each SIMT thread is
responsible for one object at the beginning of the current frontier (i.e., mark queue). It first
reads the object’s address from the frontier, followed by marking its header and extracting
the number of outbound references (in one atomic operation). The threads then use this
information to calculate the locations (i.e., offsets) where the outbound references need to
be copied at the end of the frontier queue, in order to prevent them from overwriting each
others’ data. Finally, each thread copies its object’s outbound references into the designated
portion of the frontier queue. Once all have finished, the cycle repeats.

6.5 Algorithm and Optimizations

The core part of our collector consists of an algorithm that performs a parallel mark phase
on the GPU, using n work-items (on our platform, n = 256). Our approach is based on
maintaining a frontier queue that contains pointers to objects to be processed; we do not
differentiate between arrays and objects. The kernel processes these elements in a loop: at
each iteration, it removes up to n pointers from the queue, marks them, and adds the address
of any referenced objects to the end of the queue.
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Algorithm 1 Pseudo-code describing one step of the GPU mark phase. id is the SIMT thread
ID, in queue points towards the beginning of the frontier and out queue points towards the
end (we assume these regions are contiguous and do not overlap). x is a temporary array in
local memory, and MARK BIT represents the new value of the mark bit.

function mark phase (id, in queue, out queue)
1: x← (0, . . . , 0)
2: l← min(length(in queue),WORK GROUP SIZE)
3: if id ≥ l or in queue [id] == NULL then return
4:

5: old header← fetch and mark(in queue [id] ,MARK BIT)
6: if ¬marked(old header) then
7: refcount← ref count(old header)
8: else
9: refcount← 0

10: end if
11: x [id]← refcount
12:

13: offset← compute offset(id, x, l)
14:

15: for i = 0 to refcount− 1 do
16: refptr← in queue [id] + i+ HEADER SIZE
17: out queue [offset + i]← ∗refptr
18: end for

Veldema and Philippsen [220] identified synchronization as a core problem of such an
approach: in an implementation where each work-item accesses the queue in an atomic oper-
ation, execution would be serialized and therefore very inefficient. Based on this observation,
they discard the queue-based approach and instead show a data-parallel implementation that
switches to the CPU after every iteration, to spawn a new set of work-items.

In contrast, we execute the entire mark phase on the GPU. We avoid the problem of
serialization by calculating in on-chip memory the total number of elements to remove and
add to the queue, as well as their offsets. This avoids the need for per work-item atomic
operations on the critical regions of the queue. At the same time, running completely on
the GPU avoids switching between CPU and GPU, since we found the associated launch
overhead to be too significant for this approach (Section 6.4.4).

Our algorithm is implemented as an OpenCL kernel which executes the code in Algorithm 1
in a loop until the frontier queue is empty (using WORK GROUP SIZE work items). We
discuss the details of this algorithm below. For the purposes of this explanation, assume
that in queue and out queue are pointers to the parts of the queue where we are extracting
elements from and where we store new elements, respectively. On each iteration, we remove
up to WORK GROUP SIZE pointers from in queue and examine the corresponding
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objects in parallel. We then mark all objects that have not been marked before and copy
their references to the end of out queue. This is done in three steps (Figure 6.7):

1. For all objects, read the number of outgoing references and whether the object has
been marked. Objects that have already been marked are treated like an object with
zero references. This is facilitated by the bidirectional object layout (Section 6.4.2):
By storing the mark bit and the number of references in the header, this step can be
performed in a single memory operation.

2. Compute the offsets that the references of each object will have in out queue, using
either a prefix sum or histogram approach (discussed in Section 6.5.1). For the ease of
exposition, assume the prefix sum approach for now, which lays out the references of
an object consecutively, one object after another.

3. Copy all outgoing references to their new location in the frontier, using the previously
calculated offsets to determine where to store the references of each object.

Only between iterations do we update the queue’s start- and end-offsets. This can be done
by a single work-item per workgroup, since all work-items know the number of elements that
are removed from the queue (l) and the number of elements that are added to the queue
(which is given by the offset calculation – e.g. the right-most entry of the prefix-sum).

The following gives a more detailed description of the algorithm that is executed by each
work-item. Note that id is the offset of each individual work-item within the workgroup.

• Lines 1-3 set up the necessary data structures and drop out of the function if there
is no work to do for the work-item. Notably, x is allocated in the local scratchpad
memory and used to efficiently calculate the offsets into the output queue.

• Lines 5-11 implement the first part of the algorithm. Each work item retrieves its
object’s header, in order to extract the marking and the reference count. It then stores
the reference count in x.

• Line 13 calculates the offsets for writing into the output queue. We implemented several
options, which are discussed in Section 6.5.1. The presented algorithm uses a simple
prefix-sum operation to determine the offset for each object in the output queue, and
stores the object’s references in consecutive slots after this offset. The next section
discusses this aspect in detail.

• Lines 15-18 describe the final part of the algorithm. The references are copied one-by-
one into their dedicated locations in the output queue. The output calculation in the
previous step ensures that no two references are written into the same slot, avoiding
the requirement for synchronization or locking. In the given code, the fixed constant
HEADER SIZE represents the offset of the first reference from the beginning of the
object header (which is constant for all objects).
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Algorithm 2 Histogram approach for the offset calculation.

1: hist← (0, . . . , 0)
2: global offset← 0
3: atomic max(&max refcount, refcount)
4: for i = 0 to max refcount− 1 do
5: if i < refcount then
6: local offset← atomic increment(&hist [i] , 1)
7: refptr← in queue [id] + i+ HEADER SIZE
8: out queue [global offset + local offset]← refptr
9: end if

10: (memory barrier)
11: global offset+=hist [i]
12: end for

It is important to note that the mark operation does not need to use an atomic operation.
Setting the mark bit is an idempotent operation and there is no correctness concern if a
single object is processed multiple times. The slight performance loss due to redundant work
– if an unmarked object gets added to the frontier multiple times and processed within the
same iteration – is vastly outweighed by the cost of atomic operations5.

The described version of the algorithm performs no coordination between workgroups
and can thus only exploit one compute unit per device. In Section 6.7.4 we expand on
it and discuss load balancing and synchronization concerns in detail. We present a näıve
proof-of-concept solution in Section 6.5.5.

6.5.1 Offset Calculation

Our first strategy for calculating the offsets for the output queue used Blelloch’s prefix-sum
algorithm from [93]. With this approach, all references of an object are stored in consecutive
slots in the queue, and the offset of an object’s first reference is the total number of references
from work-items with a lower id than the work item processing that object (Figure 6.8).
When performed in local memory, the complexity of this approach is O(log n) parallel addition
and local memory operations.

However, when implementing this strategy, we discovered that the approach often takes
up 40-50% of the kernel’s total execution time, arguably due to the large number of accesses
to local memory. We therefore implemented a different strategy, based on a histogram. In
this approach, the first references from all work-items with at least one reference are copied
first, followed by the second references, third references, etc.

5On past AMD hardware, atomic operations were up to 5× slower than normal accesses, because they
use the complete path vs the fast path for memory access [8] In the compiler we had available in our version
of the SDK (AMD APP SDK v2.6), using any atomic operation on global memory causes all global memory
accesses to use the complete path. In practice, this has led us to avoid atomic operations wherever possible.
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Figure 6.8: Comparing our two different approaches for calculating offsets. m.n describes
the n’th reference of the m’th object (i.e. work-item).

Offsets for this layout are calculated by generating a histogram that counts the number
of work-items that have at least one reference, at least two references, etc. The histogram is
generated using atomic operations in local memory, by atomically counting the number of
work-items with an object having i = 1, 2, . . . references or more. The sum of the first i− 1
entries of the histogram gives the global offset of the part of the output array where the i’th
references begin (Figure 6.8). The atomic counting operation also gives each work-item a
unique local offset into the i’th part, where it will write its reference. The following code
replaces the last part of Algorithm 1, starting from line 13.

This uses O(max refcount) parallel atomic operations, where max refcount is the maxi-
mum number of references among the objects currently processed by any of the work-items.
Since the atomics are executed in local memory, they do not slow down global memory
accesses and are comparatively fast. An additional advantage of this approach is that we are
writing to consecutive items in the queue, which is efficient on our hardware.

6.5.2 Reducing Divergence

As discussed in Section 6.3, the majority of objects have a small out-degree (i.e., a small
number of references), while a few objects have a large numbers of references. In the algorithm
above, each work-item loops over all references within the object it handles. This behavior is
problematic for SIMT execution: when one work-item encounters a high-degree node, the
remainder of the workgroup will stall until that work-item has completed its task. This
results in low utilization of available parallelism and wastes available memory bandwidth.

To avoid this case, we extended our algorithm to let each work-item process at most a
fixed number of references for each object (currently 16, based on our study in Section 6.3).
This minimizes the worst-case divergence in the loop. Objects that are longer than this are
then stored on a non-blocking stack and (in the same iteration of the algorithm) processed in
parallel. This is done by letting all work-items process one reference each in parallel, a very
efficient way to perform a large copy operation.
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Like Veldema and Philippsen, we consider this an essential optimization. Our approach
bears resemblance to theirs, but processes large arrays (and objects) immediately and does
not require a new kernel launch.

6.5.3 Vectorized Memory Accesses

We explored the possibility of using vector reads to decrease the number of individual memory
requests. OpenCL supports 4-wide vector types, which allow reading 128 bits at a time. We
rewrote our algorithm to use vector loads to access the header and the first three references
at the same time (and then read references in groups of four). This made it necessary to
lay out the objects in such a way that headers are aligned to 128 bit boundaries, which we
achieved by introducing additional padding to our reference graph.

Vector reads can lead to performing extra work, as the algorithm may read more references
into local memory than necessary. Overall, however, we expected a speed-up due to the
reduced number of memory requests.

6.5.4 Cut-off for Long, Narrow Heaps

As we show in our heap analysis (Section 6.3), some workloads exhibit very long narrow tails
(e.g., due to linked lists). From a performance perspective, it is beneficial to detect such cases
and return execution to the CPU. We believe that without the ability to saturate memory
with requests, the GPU loses out to the CPU due to the CPU’s much lower average memory
latency as a result of caching. The CPU benefits from any spatial locality of the memory
graph that may exist, whereas the GPU does not. The CPU also benefits from the fact that
the (very small) active section of the queue ends up in L1 cache.

We therefore implemented a mechanism that returns execution to the CPU once the size
of the queue drops below a certain threshold. As a safeguard, we require a minimum number
of iterations on the GPU to complete before returning.

Veldama and Philippsen identified a similar optimization, but in a different context: their
discussion focuses on avoiding context switches to and from the GPU. To handle linked lists,
their algorithm runs multiple iterations on the GPU without switching to the CPU. This
optimization does not apply to our approach.

6.5.5 Multiple Compute Units

To achieve high throughput, it is desirable to leverage all of the GPU’s compute units. For the
purposes of our evaluation, we chose a näıve proof-of-concept approach to run the algorithm
on the two compute units that our platform provides. We first divide the root set into
two halves and hand one of them to each compute unit. Each compute unit then runs the
algorithm independently, without any load balancing or synchronization. This approach has
two drawbacks:
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• If the initial partitioning results in an uneven distribution of work, one compute unit
may be idle for most of the execution.

• We may perform redundant work in cases where the two compute units race to mark
an object and retrace the same part of the heap.

While this results in a negative performance impact, our approach is nonetheless correct:
marking a node is an idempotent operation and can be performed multiple times without
harm. Better results can be achieved by using dynamic load balancing between compute
units – we discuss this aspect in Section 6.7.4.

6.6 Evaluation

In this section, we present the results of experiments we ran to evaluate the performance of
our mark algorithm. We first describe our evaluation platform and then use microbenchmarks
to highlight strengths and weaknesses of our algorithm and collector implementation. We
then examine the performance of our implementation on real-world application benchmarks
from the DaCapo 9.12 benchmark suite. We conclude with a brief discussion of additional
overheads that were excluded from the previous subsections.

6.6.1 Test Platform

Our test platform was an AMD E-350 APU, which was one of the first chips that integrate a
CPU and GPU into a single device (Intel’s Sandy Bridge architecture has a similar integrated
GPU, but it is not programmable). The system was configured with 3.5 GB of DDR3 1066
RAM. The APU’s “Bobcat” CPU is a dual core running at 1.6 GHz with a 512 KB L2 cache
[9]. Its “Brazos” GPU is running at 492 MHz with 2 compute units, 16 stream processors,
an 8 KB L1 cache per compute unit, and a 64 KB L2 cache per GPU [8]. Measurements
show that the caches are disabled for accesses to local and shared memory. The CPU and
GPU share memory and a single memory controller on which they compete for bandwidth;
we experimentally determined that the GPU can only map 128 MB in any given kernel
invocation. All experiments were conducted on Fedora Linux (kernel version 2.6.35.14-103).

6.6.2 Microbenchmark Results

To explain the performance of the baseline algorithm and explore potential optimizations,
we used a set of simple microbenchmarks. These benchmarks were handwritten and do not
run through the Jikes environment. This approach was chosen to get pure forms of the
heap graphs, since even a small Java program creates enough internal objects to obscure the
microbenchmark results. Table 6.1 presents the execution times of the microbenchmarks for
a set of different configurations of the garbage collector.
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Methodology We ran our microbenchmarks on the following configurations: CPU is our
implementation of a serial single CPU mark phase. GPU is the baseline algorithm described
previously. GPU+V is the vectorization of that algorithm (Section 6.5.3). GPU+D is the
variant with special support for large objects to prevent divergence (Section 6.5.2). GPU+F
is a variant which falls back to the CPU once the queue length drops below a threshold
and a minimum number of iterations have run (Section 6.5.4); we use 20 as the threshold
and 5 as the minimum number of iterations. We report the sum of the GPU and CPU
runtime. GPU+P uses the prefix-sum approach instead of the histogram (Section 6.5.1), for
comparison. GPU+2CU contains the first two optimizations but also uses both compute
units. Each configuration was run for 20 iterations and the average runtime is reported;
variation between runs was extremely low.

Benchmark Descriptions For each benchmark, we also provide the overall size of the
reference graph that is associated with it:

• Single Item (28 bytes) - This benchmark consists of a single item in the heap, with a
corresponding pointer in the root set. The purpose of this benchmark is to measure
the overhead (excluding copy overhead) of the algorithm. As would be expected, the
startup cost for the GPU variants are similar. The CPU is an order of magnitude faster
since the data is already in cache.

• Long Linked List (156 KB) - This benchmark consists of a single long linked list
with 10,000 elements. This case is the worst for the GPU since it cannot exploit any
parallelism in the graph. All of the GPU implementations perform badly, but the one
with the option to fall back to the CPU fares best. It runs the minimum number of
iterations on the GPU, then returns to the CPU for the majority of the execution.
Unfortunately, the few iterations it does run on the GPU prove quite expensive.

• 256 Parallel Linked Lists (39 MB) - This benchmark consists of 256 parallel linked
lists with 10,000 elements each. The root set contains a pointer to each linked list. The
effect of this is that each work-item within the workgroup can operate independently,
which allows the GPU implementations to perform relatively well, some even beating
the CPU by a small amount.

• 2560 Parallel Linked Lists (117 MB) - This benchmark extends the previous exper-
iment by adding more linked lists. Due to our hardware’s limited amount of mappable
memory, we shortened each list to 3,000 elements each. This case can arguably be seen
as the best for the GPU since there is abundant parallelism and little locality between
objects in the queue. This microbenchmark is the only one where the GPU solidly
outperforms the CPU.

• Very Wide Object (3.92 KB) - This benchmark consists of a single array containing
1,000 individual objects. This is an extreme case designed to illustrate the effects when
SIMT divergence is not addressed.
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Discussion These benchmarks allow us to evaluate the impact of the optimizations discussed
in the previous section.

• Histogram (Section 6.5.1) - Comparing the GPU and GPU+P results shows the
difference in performance characteristics of the histogram and prefix styles of offset
calculations. The prefix sum implementation performs well for cases in which a small
subset of the work-items perform useful work, while the histogram fares better when
many work-items are active. On real-world benchmarks (not presented), the histogram
is clearly better, but it may be worth exploring a combination of both approaches (e.g.
by switching dynamically between them).

• Divergence Handling (Section 6.5.2) - This causes a slight slowdown for those bench-
marks that do not contain objects with large numbers of references. For benchmarks
that do (such as Very Wide Object above), the performance improvement is substantial
(a 89% improvement). For real workloads, we believe divergence handling to be a
critical and necessary optimization.

• Vectorization of Loads (Section 6.5.3) - This optimization shows an improvement
on most of the microbenchmarks we report. The improvements range from 12% to 40%
for all benchmarks except the Single Item case. This case is hinting at a more general
problem which is that vectorization can (and does) hurt performance in some cases: if
the vectorization causes memory words to be read that are not used, and if memory
bandwidth is already running at the hardware limit, vectorization can slow down the
algorithm. However, from our experiences, this seems to be a rare case.

• Falling back to the CPU for narrow tails (Section 6.5.4) - Our implementation of
fallback has a barely perceptible negative impact on performance for most benchmarks.
However, for cases where the GPU would perform extremely poorly (such as the Long
Linked List microbenchmark), it recovers some, but not all, of the performance lost.
There is still a significant amount of time spent on the GPU to handle narrow sections
before the cut-off is invoked; we believe this to be a necessary evil to prevent temporary
drops in parallelism from triggering overly eager fall-back.

• Multiple Compute Units (Section 6.5.5) - Despite our näıve approach, we still
obtain perceptible improvements by using both compute units. It is important to
note that this improvement is not guaranteed: using a second compute unit can hurt
performance if the first unit would otherwise get additional bandwidth and the second
unit is performing only redundant work.

Comparison with related work The last two benchmarks are modeled closely after those
presented by Veldema and Philippsen for evaluating their GPU mark algorithm. Unfortunately,
the results are not directly comparable due to different experimental setups. We would like
to note that their results were collected on a significantly more powerful GPU. Nonetheless,
our mark algorithm appears to fare well in comparison.
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• VP Linked List (4MB) - This benchmark consists of 16 linked lists of 8,192 element
each, of which all but one is immediately garbage. Only one of the linked lists is traced
by the mark phase. As a result, this is structurally very similar to the Long Linked List
benchmark above.

• VP Arrays of Objects (20MB) - This benchmark consists of 1,024 arrays, each
containing exactly 1,024 objects. Only the first 64 arrays are retained. All others
immediately become garbage and are not traced.

It should be noted that we do not report launch overheads, while Veldema and Philippsen
report complete execution times. Furthermore, they perform 8 collector runs while we only
measure one execution. As we do not compare our numbers directly to their results, these
differences do not affect our conclusions.

6.6.3 DaCapo Benchmarks

We measured the performance of our GPU-based collector for real-world application bench-
marks from the DaCapo 9.12 benchmark suite. The results are shown in Table 6.2.

Methodology In these results, the Optimized GPU implementation includes the vectoriza-
tion and divergence handling optimizations discussed previously. Both the optimized and
unoptimized results use the histogram method for offset calculation. Neither version includes
the long tail cutoff, to avoid the issue of confusing what is actually running on the GPU.
The Jikes MS column is an unmodified instance of Jikes’ MarkSweep collector. The second
column is a trivial CPU implementation which operates on the reference graph and runs
outside Jikes’s Java environment. We present these numbers to offset any minor locality
advantage the reference graph structure may give us. The final two columns present the
slowdown of the GPU over the best of the two CPU implementations and the improvement
resulting from optimization of the GPU algorithm respectively.

The Jikes RVM was configured with a maximum heap size of 192 MB - the largest we
could map on the GPU even with the reference graph. We do not report collection times
for avrora or luindex since neither consistently triggers a collection at the heap size we are
using. All results were generated running the benchmarks with their default configurations
and using the “converge” (-C) option provided by the suite. We report the cumulative time
of all garbage collections conducted during the final iteration.

Discussion As can be seen from the results in Table 6.2, our GPU mark implementation
is within a factor of two for all of the benchmarks we report. As a reminder to the reader,
we are conservatively comparing against the better of Jikes’ MarkSweep and our own CPU
implementation working off the reference graph. When comparing only against the MarkSweep
collector, our implementation fares significantly better; the GPU outperforms Jikes on 3 of 4
benchmarks. We consider this to be a highly encouraging result.
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We would like to note that these performance results are extremely sensitive to the heap
size. As the heap size increased, the relative performance of our GPU implementation to Jikes
increased sharply. We present the largest heap sizes supported by our evaluation platform,
but even those are small for real program heaps. We suspect that relative performance would
continue to improve as the heap size increases.

6.6.4 Overheads of Our Implementation

In the preceding discussion, we excluded the copy overhead and kernel launch overhead for
any of the GPU configurations; we report kernel execution only (for Jikes, we only report the
mark phase). Our reference graph implementation adds some additional overhead outside
the mark phase. Allocating each object requires that a corresponding reference graph node
be allocated as well; this introduced mutator overhead of approximately 40% in an allocation
stress test microbenchmark. This overhead is less pronounced in the DaCapo results, but is
still significant, varying between 7% and 25%. It should be mentioned that this overhead
could presumably be reduced by adding this functionality through the compiler, rather than
adding an extra function call.

Using the basic approach of filling in the entire reference graph before every collection
adds a major overhead to each collection, taking several times as long as the mark phase
on the CPU, arguably due to a highly untuned implementation. The double-write approach
eliminates this at the cost of an additional 11% runtime overhead in the microbenchmark,
for a cumulative total of 57%.

Some collector overhead is also added in copying markings from the reference graph back
to the heap in preparation for running an unmodified Jikes sweep phase.

Let us emphasize that all overheads discussed in this subsection are artifacts of either the
copying of data to the GPU (Section 6.4.4) or our need to reduce the size of the space being
collected (Section 6.4.3). Neither is intrinsic to the problem and both are likely to be less
pronounced on modern hardware.

6.7 Discussion

While our numbers imply that our GPU-based garbage collector is a factor of 1.4–2× slower
than our CPU-based collector and therefore not directly competitive in terms of performance,
our experimental results nonetheless answer the questions we set out to investigate. We
identified the key points for offloading garbage collection to the GPU, some of which are
surprising in hindsight. We were also able to assess the suitability of today’s GPUs for
garbage collection. But most importantly, we confirmed the feasibility of offloading GC to
data-parallel accelerators in general, and identified the bottlenecks that could be improved
either by future GPU generations or through custom hardware. It is these insights that lead
to the custom hardware accelerator for garbage collection presented in the next chapter.
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6.7.1 Lessons from the Mark Algorithm

Somewhat counter-intuitively, the primary goal for garbage collection on the GPU is not to
parallelize the computational steps of the algorithm but to maximize the hardware’s ability
to schedule memory requests. As we saw in Section 6.3, the degree of theoretical parallelism
that is available throughout most of the mark phase ranges from 100 to 100,000-fold. This
degree is too high for a single CPU to take effective advantage of this parallelism, and is
therefore much better suited for data-parallel architectures.

On the GPU, the key to achieving high memory bandwidth is to ensure that each work-
item can effectively generate and handle memory requests every cycle. It is therefore crucially
important to reduce divergence between threads (Section 6.5.2), but also to avoid serialization
of execution (as ensured by our queue approach). The numbers presented in Section 6.3
confirm that heaps typically contain rare but long objects and arrays which cause this
divergence. This led to the insight that an effective architecture for GC needs to be able to
decouple processing of long objects, since such an object can otherwise block other memory
requests from executing. We show our solution to this problem in Section 7.5.1.

In our algorithm, the number of outstanding requests is limited by the maximum size of a
workgroup (which is limited by the hardware). Notably, this is different from the number
of streaming processors in the GPU: while the number of streaming processors limits the
throughput in terms of instructions per cycle, the workgroup size limits the number of
work-items that can be in-flight at a given time, and therefore the number of outstanding
memory requests that can be issued. As we saw in this work, keeping as many outstanding
memory requests in-flight as possible is crucial for the performance of a garbage collector.
This led to the insight that the best architecture for garbage collection would be one that
can keep an arbitrary number of memory requests in flight at a low cost. While a GPU is
suitable for this type of workload, the relatively large amount of state per SIMT thread still
puts a substantial limit on the number of simultaneously active work items.

As with many GPU algorithms, it is only feasible to run the mark algorithm on the GPU if
the number of objects to mark is sufficiently large. For small collections, the launch overhead
dominates the entire collection time, in which case it is beneficial to run the collection on
the CPU in the first place. Predicting the size of a collection is non-trivial, but it may be
possible to apply heuristics, similar to Garbage-First collectors [66].

6.7.2 Lessons from the Reference Graph

Our reference-graph approach is somewhat orthogonal to the problem we are trying to solve:
we hypothesize that modern GPUs could instead map the entire heap’s address space, perhaps
even cache-coherently, with the CPU. Surprisingly, we noticed that the reference graph gave
significantly better performance for a CPU collector: our untuned CPU collector beat the
optimized Jikes collector on several occasions, arguably due to increased cache locality. We
believe that this approach could be exploited by specialized CPUs: While we did not explore
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Bound	1:	Longest	path	through	
the	graph	(latency)
=	6	x	tRequest

Bound	2:	Time	to	access	all
nodes	(bandwidth)
=	(objsize1 +	… +	objsize9)	/	Bandwidth

Ro
ot
s

Figure 6.9: Two independent ways of constructing a lower bound on GC latency. The
minimum execution time is bound by the time it takes to access every reachable element of
the graph, and the latency of traversing the maximum shortest path to any object.

this direction further, we briefly want to discuss the performance trade-offs one would face
when using this approach. These trade-off are not specific to GPUs.

Our numbers from Section 6.6.4 indicate that keeping the reference graph up-to-date when
running the mutator seems to be the most promising approach. We believe that modifying the
compiler to issue duplicate writes whenever a reference is written will lead to a significantly
lower performance impact than we are incurring with our näıve, write-barrier based approach
(which incurs a function call for every write). An alternative approach consists of splitting
each object into two parts, one only containing the references, the other containing the
non-references. This avoids the need for duplicating data and substantially improves collector
locality, at the cost of access locality.

The latter approach might be particularly promising for specialized CPUs: It would
allow us to decouple reference accesses and non-reference computation in a similar way to a
decoupled access/execute architecture [203], potentially eliminating the performance overhead
of read and write barriers, and improving locality and caching. We did not investigate this
approach further but found it worth mentioning as we found the trade-offs intriguing.

6.7.3 Estimation of Performance Limits

To estimate the potential of our approach, we need to quantify how the performance of our
implementation compares to the theoretical best case on the given hardware. To do this,
we present two weak, but independent, constructions of a lower bound on execution time
for the 2,560 Parallel Linked List benchmark from Section 6.6. Following this, we discuss
performance measurements that lead us to believe that the actual bound is even tighter.

Figure 6.9 shows these bounds. The first bound can be constructed by examining the
minimum time required to touch every memory location in the reference graph exactly once.
As constructed, the reference graph contains only the edges in the heap graph and some
minor padding. While there may be a more compact representation, we believe that this is a
reasonable first-order approximation for a minimum-size representation of the heap graph.
Using only the size of the benchmark (117 MB) and the peak memory bandwidth for our
device (9 GB/s), we can establish a lower bound for GPU execution of ∼12.7 ms.
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For the second bound, we can consider the minimum number of dependent loads from main
memory and the stall latency implied by each. Without the presence of caches, each step of the
list traversal requires at least one round trip to main memory. As a result, a lower bound on
the run-time of the algorithm is given by depth× stall penalty in cycles× 1/gpu frequency.
We benchmarked a stall latency of 256 cycles under load and the benchmark requires an
absolute minimum of 3,000 dependent loads (one per linked-list element). Taken together,
this gives us a lower bound of ∼ 1.5 ms. For this benchmark, the bound is not particularly
tight, but we present it nonetheless since it reflects structural features of the heap graph that
cannot be avoided (Section 6.3). Together, these two approaches gives us a bound that is
about 15× better than our best measured performance on the GPU.

We also examined the sustained memory bandwidth achieved by our implementation over
an entire execution of the mark phase and compare it against the peak memory bandwidth
available on the device. For our benchmark, the optimized dual compute unit configuration
achieves a sustained bandwidth of 3.016 GB/s, or roughly one third of peak. As expected,
the single compute unit version of the same code achieves roughly 1/2 of the bandwidth at
1.72 GB/s. It is worth noting that these are measurements of our actual implementation
and thus may not reflect an actual bound due to errors in the implementation or missed
optimizations. As an illustrative example, disabling the vectorization and divergence handling
for the dual compute unit code gives a higher sustained bandwidth (4.317 GB/s), but lower
overall performance. (We believe this to be due to the fact that the native memory request
size is 2 words. Reading the two words separately can result in separate requests being issued
in some cases and artificially inflate bandwidth.) An additional caution is that the profiler is
known by the vendor to provide unreliable results under some circumstances.6

Taking these points together, we believe our algorithm to be within around 3× the optimal
performance on our hardware. However, these results show that in order to achieve maximum
GC performance, it is crucial to make maximum use of the available memory bandwidth.
Our GPU’s 9 GB/s is small compared to the 50 GB/s that are available on modern server
processors, even without more than 2 memory channels. High performance GCs therefore
need to be able to saturate a very large amount of memory bandwidth. In Chapter 7, we
show how custom hardware can help achieve this goal.

6.7.4 Load Balancing on Multiple Compute Units

As explained in Section 6.5.5, our current implementation statically distributes the load
between the two compute units on the device. We believe that static load balancing will not
suffice for a real implementation (or even our own implementation on a device with more
compute units). Given modern GPU parts have a 1-2 orders of magnitude larger number of
compute units, this is an urgent concern. With this in mind, we experimented with a number
of options for synchronization between compute units.

6As noted in the Developer Release Notes for AMD APP SDK v2.6.
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There are two fundamental approaches: pre-partitioning the graph between compute units
before the start of the computation, or synchronizing between compute units. Graph traversal
is a highly irregular computation. The analogy of pre-partitioning and re-partitioning for
graph traversal is to stop the GPU kernel after regular intervals, have the CPU inspects all
queues, load balance if necessary, and then relaunch the kernels. This is related to the option
chosen by Veldema and Philippsen [220]. As they showed, it can be used effectively, but
incurs significant overhead since kernel launch and termination are expensive synchronization
actions (see Section 6.4.4 for discussion of launch overheads). Additionally, this solution
would interfere with our goal of leaving the CPU available for other processing. Potential
alternatives include:

• Using global atomics to synchronize through shared memory. As discussed previously
and documented by Elteir et al. [69], global operations used to be prohibitively expensive
on AMD hardware, but this has likely improved since 2012.

• Using on device hardware counters to construct a fast software lock. This seemed like a
possible workaround on our test platform, but after a trial implementation, we were
forced to conclude that the counters were not appropriate for our goals.

• Having each compute unit copy content from the other compute unit’s queue into its
own if its queue length dropped below the number of work items per unit (i.e., work
stealing). This scheme does not use any form of synchronization and thus can not update
the source queue safely. As a result, redundant work can and will be performed. From
preliminary results, it appears that the overhead caused by the inspection outweighs
any benefit provided by the load balancing. We did not explore this idea further.

Based on our investigation, the only dynamic load balancing scheme that seemed viable at
the time was to use the CPU for coordination as suggested by Veldema and Philippsen [220].
However, this has changed on modern hardware: Abhinav and Nasre [3] showed four years
later that on a modern Intel i7-3610QM, the work-stealing approach enables scaling to 16
compute units (and potentially beyond).

A corollary from being able to scale to multiple compute units is that this enables
proportionality of garbage collection and memory allocation rates, by scaling GC performance
continuously based on memory pressure. This makes it possible to reduce the use of GPU
resources (and therefore energy consumption) when GC is a lower priority, and increase GPU
resources as memory pressure grows. The same idea can be applied to custom GC hardware,
by implementing multiple GC acceleration units, or enable throttling for existing ones.

6.7.5 Assessment of Garbage Collection on GPUs

Our results show that it is possible, with a large amount of overhead, to build a GPU-based
garbage collector on current hardware. The numbers from the microbenchmarks show that
an optimized GPU mark algorithm can, for the best case, significantly outperform a mark
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algorithm running on the CPU. However, our results for the DaCapo benchmarks show that
the mark phase for real-world benchmarks is a factor of 1.4-2× slower than on the CPU (but
sometimes outperforms Jikes’s MarkSweep collector).

Many of the performance limitations were a result of the hardware that we were using, and
integrated GPUs have come a long way since 2012. Specifically, our approach was limited by
(1) only being able to map small amounts of memory, and only with large start-up overheads,
(2) lack of synchronization between compute units and (3) a limited amount of memory
bandwidth and compute resources available on the GPU.

In 2016, Abhinav and Nasre [3] repeated and extended our study with OpenJDK 8 running
on an Intel i7-3610QM SoC with an integrated Mobile HD 4000 GPU. This part has 16
compute units, low zero-copy launch overheads and enables synchronization between the
different compute units. Using this part, they were able to achieve a 4-5× speed-up of the
GPU-based garbage collector relative to HotSpot’s parallel collector running on the CPU.
While this approach still relied on the reference graph, it demonstrates that a real-world
GPU-based collector is much closer to reality at this point.

6.8 Related Work

The idea of performing garbage collection on the GPU existed prior to our work. Jiva
and Frost describe the basic approach in a patent application in 2010 [120], while Sun and
Ricci [206] describe the idea as part of a larger vision of using GPUs to speed-up a variety of
traditional operating system tasks. However, to our knowledge, none of them has published
an appropriate algorithm or publicly disclosed a working GPU-based collector.

While the work by Veldema and Philippsen [220] explored the implementation of a mark
& sweep garbage collector on the GPU, their work differs from ours in a number of important
points. First and foremost, their goal was not to use the GPU to accelerate garbage collection
for programs running on the CPU, but to provide garbage collection facilities for CUDA-like
programs written in a Java dialect and running on the GPU. Additionally, our mark algorithm
bears little resemblance to theirs.

Prior to our work, there had been a few recent proposing potential non-numeric applications
for GPUs. Naghmouchi et al. [161] investigated using GPUs for regular expression matching.
Smith et al. [204] evaluated GPUs as a platform for network packet inspection.

By 2012, several groups had already investigated algorithms for performing breadth-first-
search on a GPU. One of the first publications in this space was the work by Harish and
Narayanan [92], who presented the first algorithm to perform an efficient breadth-first-search
on the GPU. However, this approach was based on visiting every node at every iteration, and
was less efficient than the most efficient CPU implementation at that time. Their approach
was improved by Luo et al. [146] who used an approach based on hierarchical queues to
achieve better performance. Work by Hong et al. [105] improved the performance even further.
Veldema and Philippsen’s [220] approach resembles the work by Harish and Narayanan [92],
whereas ours takes the approach of Luo et al. [146] and Hong et al. [105]
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Another body of work that is related to garbage collection on the GPU describes the use
of other parallel architectures or heterogeneous platforms to perform garbage collection. An
example for this is the work by Cher and Gschwind which demonstrates how to use the Cell
processor to accelerate garbage collection [48]. Barabash and Petrank cover the problem of
garbage collection on highly parallel platforms from a more general perspective and perform
a heap analysis similar to ours [26]. An early paper by Appel and Bendiksen [13] covers GC
on vector processors and our approach has been influenced by some of their ideas.

6.9 Summary

By implementing garbage collection on the GPU, we showed that there is potential for
offloading garbage collection to data-parallel accelerators. While we believe that this work
stands on its own, it demonstrates important lessons for taking the next step and implementing
a fully custom hardware accelerator for garbage collection.

Specifically, our study of heap graphs from the DaCapo benchmark suite shows that there
were no structural features that would prevent effective parallelization, and that heap graphs
are fairly regular and therefore lend themselves to specialization. By implementing a GPU-
based garbage collector, we showed that even existing data-parallel accelerators can perform
GC reliably within 2× the performance of a CPU. However, most importantly, we learned
important lesson about making garbage collection efficient on data-parallel architectures and
integrating it into a full system design:

• While garbage collection is compute-intensive on traditional platforms, its efficiency
is dominated by being able to keep as many memory-requests in-flight as possible.
On traditional CPUs (and GPUs), this requires being able to issue a large number of
memory operations – data-parallel architectures excel at this type of task.

• While a bidirectional memory layout has limited impact on a CPU, it is crucial for
making garbage collectors performance-efficient on architectures without caches. This
is especially important in accelerators, where area and power are crucial metrics.

• Divergence is a problem for the mark phase of a garbage collector, and much of it is
the result of imbalance in the copying of outgoing references. This led to the insight
that decoupling the copying of outgoing references from marking headers can lead to
higher throughput (similar to our divergence optimization from Section 6.5.2).

While these insights are important on GPUs, this work led to the realization that all of them
could be exploited much more efficiently by building custom hardware for garbage collection,
which is integrated into the SoC and performs GC for the CPU. In the next chapter, we will
further explore this direction and show that this approach can lead to a design that is much
more efficient than either a CPU or a GPU.
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Chapter 7

Hardware Support for Pause-Free GC

In this chapter, we take some of the insights we gained from offloading garbage collection to
GPUs and distill them into a design for a custom accelerator that performs garbage collection
in hardware. We argue that such an accelerator will be able to perform garbage collection
more efficiently than a CPU or GPU, at a much lower die-area cost.

7.1 Why Hardware Support for Garbage Collection?

Garbage Collection research over the past 50 years has led to several fundamental improve-
ments in collector designs (such as generational collectors) and GC design points that enable
new use cases (such as concurrent real-time collectors). However, as we describe in Sec-
tion 2.3.1, all garbage collectors have to make fundamental trade-offs between application
throughput, pause times and memory utilization. Arguably, we still have not found what has
been called the “Holy Grail” of garbage collection [159]: a pause-free collector that achieves
high memory utilization and high GC throughput (i.e., sustaining high allocation rates),
without a large resource cost for the application.

Many recent GC improvements have focused on pause times and GC throughput. As
a result, modern collectors can be made effectively pause-free at the cost of slowing down
application threads and using a substantial amount of resources. Moreover, many approaches
ignore another factor that is very important in data centers: energy consumption. Previous
work [43] has shown that GC can account for up to 25% of energy and 38% of execution
time in common workloads (10% on average). Worse, as big data systems are processing ever
larger heaps, these numbers will likely increase.

What all widely used approaches today have in common is that they only investigate
the GC problem at the software level. This fundamentally limits the ability to reconcile
pause times and application performance. In particular, the fundamental work that the
garbage collector has to perform does not become cheaper, but is instead shifted from garbage
collector threads into application threads.
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We believe that we can reconcile low pause times and application performance by revisiting
the old idea of moving GC into hardware, and co-designing the hardware and software layers.
Applying the ideas we learned from offloading GC to GPUs, we propose the design of a
custom accelerator that can be integrated into server SoCs and performs the GC operations
at a much lower area and energy cost than either a CPU or a GPU.

Our goal is to build a collector that simultaneously achieves high GC throughput, good
memory utilization, pause times indistinguishable from LLC misses and energy efficiency.
It is possible to design a GC algorithm that performs well on the first three criteria but is
resource-intensive (e.g., Azul’s Pauseless GC [53]). Our key insight is that such an algorithm
can be made energy efficient as well by moving its work-intensive phases into hardware,
combined with several software-level and algorithmic changes.

We are not the first to propose hardware support for GC [24, 53, 121, 157, 232, 234].
However, none of these schemes has been widely adopted. We believe there are three reasons:

1. Garbage-collected languages are widely used (due to their productivity and safety
properties), but they are rarely the only workload on a system. Systems designed for
specific languages mostly lost out to general-purpose cores, partly due to Moore’s law
and economies of scale allowing these cores to quickly outperform the specialized ones.
This is changing, as the end of Moore’s law makes it more attractive to use chip area for
accelerators that improve common workloads – such as garbage-collected applications.

2. Most garbage-collected workloads run on servers (note that there are exceptions, such
as Android applications). Servers traditionally use commodity CPUs and the bar for
adding hardware-support into such a chip is very high. However, this is changing: cloud
hardware and rack-scale machines in general are expected to switch to custom SoCs and
FPGAs, which could easily incorporate IP to improve GC performance and efficiency.

3. Many Hardware GC proposals were very invasive and would require re-architecting of
the memory system or other components [121, 230, 232, 234]. We believe an approach
has to be relatively non-invasive to be adopted. The current trend to accelerators and
processing near memory may make it easier to adopt similar techniques for GC without
substantial modifications to the architecture. Furthermore, Mobile SoCs have set a
precedent for assembling systems from non-invasive IP components and accelerators.

We therefore think that the time is ripe to revisit hardware-assisted GC. In contrast to many
previous schemes, we focus on making our design sufficiently non-invasive to incorporate into
a server or mobile SoC. This requires isolating the GC logic into a small number of IP blocks
and limiting changes outside these blocks to a minimum.

Our design exploits two insights: First, overheads of concurrent GCs stem from a large
number of small but frequent slow-downs due to read and write barriers spread throughout
the execution of the program. We propose moving the culprits into hardware to alleviate



CHAPTER 7. HARDWARE SUPPORT FOR PAUSE-FREE GC 98

their impact and allow out-of-order cores to speculate over them. Second, the most resource-
intensive phases of a GC (marking and reclamation) are a poor fit for general-purpose CPUs.
We move them into accelerators close to DRAM, to save power and area.

In this chapter, we first describe our proposal in the most general form, and present the
design space associated with it. To evaluate trade-offs, we then focus on the accelerator
portion and present an end-to-end RTL prototype of a specific incarnation of this design,
integrated into a RocketChip RISC-V SoC running full Java benchmarks with JikesRVM on
top of Linux on FPGAs (Chapter 9). To enable this work, we had to build a new research
platform and evaluation methodology, which we present in Chapter 8.

7.2 The Hardware GC Design Space

We start out by describing the general design space of hardware-assisted garbage collection.
The trade-offs span both software and hardware components, and we highlight these different
design decisions throughout the text.

Recalling Section 2.3, tracing garbage collectors have to periodically perform two opera-
tions. First, they have to perform a mark pass through the heap to identify all objects that
are reachable from a given set of roots. This phase typically performs a breadth-first search
(BFS) across the object graph and sets the mark bits within all objects that it encounters.
The second operation is a reclamation step where all objects that are not reachable are
recycled, either through compaction (i.e., packing live objects into a new space) or sweeping
(i.e., keeping live objects in place and creating a free list to link the newly freed memory cells
together). The first option is relocating, as it moves objects in memory, the second is not.

Both phases can be executed while stopping the application threads, or run concurrently
with the application and with each other1. If the phases run concurrently with the application
threads (mutators), barrier code needs to be injected into the instruction stream to keep the
collector and mutators in sync (Figure 7.1). This leads to the first design trade-off we need
to consider: whether or not to design a relocating or a non-relocating collector.

Relocating collectors achieve shorter allocation latencies, more locality and incur less
fragmentation, which is important in server workloads. However, they either require for-
warding pointers or additional barriers. For a non-relocating collector, only a write-barrier
is required to inform the collector when a mutator hides an object from it. A relocating
collector also needs to either follow a level of indirection or inject read barriers, which check
on every reference access that the object has not moved and look up the new location if it
has. Since read barriers are on the critical path of a reference load from memory, they are
more expensive than write barriers.

Among read and write barriers, there is a wide design space that trades off fast-path
latency (e.g., if a read barrier’s object has not moved), slow-path latency if the barrier
gets triggered (e.g., if the object has moved), the instruction footprint and how it maps

1To run marking and reclamation in parallel, the collector needs to keep multiple sets of mark bits, which
allows the reclamation phase to operate on a set that was generated by the previous mark phase.
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Figure 7.1: Read and Write Barriers in their general form. There are many different
ways to implement read and write barriers. In our analysis, we consider the above general
functionality of these barriers (parallel horizontal arrows describe concurrent execution).
Write barriers are required for all concurrent collectors while read barriers are only required
for relocating concurrent collectors. Stop-the-world collectors require no barriers.

to the underlying microarchitecture (i.e., how well it can be interleaved with existing code).
As barriers are very common operations – they typically have to be added to every reference
read and/or write operation – these design decisions have a substantial impact on application
and collector performance. Fundamentally, there are three approaches:

1. Compile the code for checking the barrier condition into the instruction stream and
branch to a slow-path handler whenever the barrier triggers.

2. Reuse the virtual memory system to fold the barrier check into existing memory accesses
and incur a trap if the barrier triggers. For example, the OS can unmap pages before
compacting the objects contained within them into a new space, which means that any
accesses using old references will raise a page fault. The trap handler can then look up
the new location and fix the old reference.

3. Introduce a barrier instruction in hardware. The semantics of these instructions vary,
but they typically have similarities to the second approach and raise a fast user-level
trap when the barrier triggers.

This leads to a trade-off between invasiveness, programmability and performance. Most
existing designs choose option (1), minimizing invasiveness by operating solely in software
(e.g., the G1 collector [75] and Go’s concurrent GC [111]). Options (2) and (3) have been used
in systems such as Sun Lab’s Project Maxwell [234], IBM’s z14 [118] or Azul’s Vega [219].
For example, Azul’s Pauseless algorithm [53] relied on a barrier instruction that can raise



CHAPTER 7. HARDWARE SUPPORT FOR PAUSE-FREE GC 100

fast user-level traps in the slow-path case, while IBM’s Guarded Storage Facility [67] can
protect a set of memory regions and raise a trap when a reference to these regions is loaded.
These designs are invasive as they change the CPU, but still prioritize programmability via
the software trap handlers.

We take a complementary approach. In addition to considering hardware support for
barriers, our insight is that GC is a bad fit for CPUs, and regular enough to be executed
in hardware (a similar argument as for hardware page-table walkers). By offloading GC to
a small accelerator that takes up a fraction of the area and power of a CPU core, we can
reduce the impact of the GC work (at the cost of programmability).

Such an accelerator has a design-space on its own, trading off area, GC performance,
power and overall energy per collection. As an accelerator is more invasive than a
software-only solution, it has to outperform a CPU along at least some of these metrics to
be a feasible design point. In particular, the area consumption has to be small, since the
accelerator will be idle a large fraction of the time.

The idea of a GC accelerator was previously proposed by Sun [230, 234] and at least one
publication in the context of embedded systems [157]. While similar to our proposal, we are
not aware of any work that has fully built out such a system and explored the idea in the
context of a full-stack high-performance SoC with a focus on area and power consumption.
Our accelerator could be used in either a stop-the-world setting (freeing up CPU cores to run
other applications) or can be combined with barriers to be used in a pause-free collector.

To describe our system in a more tangible way, we will now present one specific concurrent
GC algorithm, Pauseless GC [53], which will act as a straw-man throughout this chapter and
serve as an example of how our hardware changes could be integrated with a real collector
design. We choose this example because it exercises the most general design point, as it is
both relocating and concurrent. Pauseless is also representative of a modern, state-of-the-art
collector and has been implemented in different settings (including a specialized hardware
appliance), covering different points in the design space.

7.2.1 Example: The Pauseless GC Algorithm

Pauseless GC has two key components: a mark and a relocation (i.e., reclamation) phase.
The mark phase (Figure 7.2) regularly performs breadth-first search (BFS) passes over the
heap to produce a fresh set of mark bits that indicate whether each object is reachable or
not (multiple mark bits are maintained for each object). The relocation phase uses the most
recent set of mark bits to pick pages in memory that are mostly garbage (i.e., unreachable
objects) and compacts them into a fresh page (Figure 7.3). For this to be efficient, page sizes
are typically chosen to be large. Figure 7.4 shows this operation in detail.

One challenge is that the mark phase can mistake a reachable object as unreachable if a
concurrently running mutator moves an unvisited reference from memory into a register and
therefore “hides” it from the mark phase (Section 2.3.3). Like other schemes, Pauseless GC
solves this problem through a barrier: whenever a reference is loaded into a register, it is also
passed to the mark queue to be marked through (added to the BFS). Figure 7.5 shows the



CHAPTER 7. HARDWARE SUPPORT FOR PAUSE-FREE GC 101

while (!q.empty()):

node = q.dequeue()

if (!marked(node)):

mark(node)

for r in outgoing_refs(node):

q.enqueue(r);

Figure 7.2: Abstract presentation of the basic mark phase. Tracing is a breadth-first search
(BFS) where the current frontier is kept in a mark queue and per-object mark bits indicate
whether an object has been visited. Every step, we take an object reference off the mark
queue, identify all outgoing references stored in object fields and add them to the queue.
Once the BFS has finished, the set of mark bits indicates the reachable objects.

for cell in from_space:

new_location = to_space.alloc(size(cell))

copy_from_to(cell, new_location)

forwarding_table[cell] = new_location

for object in heap:

for r in outgoing_refs(object)

remap(r, forwarding_table[r])

Figure 7.3: Abstract presentation of the basic relocation phase. A page (from space) is
selected for compaction, based on which pages contain the most garbage. A new page is
designated as the target (to space) and all live objects are copied into this space, keeping
a table of forwarding pointers outside the page. Once the old page has been evacuated, all
references to objects in the old page need to be rewritten to point to the new page. This
operation can be folded into the next mark phase.

operation of this barrier (one distinguishing feature of Pauseless is that it folds both read
and write barriers into a single barrier primitive).

To avoid passing the same reference many times, the barrier is “self-healing”: it tags the
reference in its original memory location such that next time it is encountered, we know
that it was already communicated to the marker. This is implemented by using the most
significant bit of each reference to store a NMT (not-marked-through) bit. The bit indicates
whether we have already encountered this reference during the current mark. The barrier
is only triggered if the bit does not match the current mark phase, and once it has been
triggered, the barrier code also flips the NMT of the reference that triggered it. This way,
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Figure 7.4: Relocation in Pauseless GC. A page is selected for evacuation and unmapped
to protect it from future memory accesses. All live objects in this page are then compacted
(copied) into a different page. A forwarding table is maintained, which can be used to remap
any stale references when they are encountered.

the read barrier is only triggered once for each reference. Note that the NMT-bit mechanism
means that this bit needs to be masked out whenever a reference is loaded into a register.

The relocation phase also needs to use a barrier mechanism: when an object is moved
to another page, other objects may still contain stale references to the old location. To
remap these references to the new location, another self-healing read barrier is used. When
evacuating a page, it is first marked as protected, which will trigger the barrier when it is
accessed (depending on the barrier implementation, this may involve updating the page table
to cause a trap when the page is accessed). The relocation phase maintains a forwarding
table outside the original page, which maps the old location of each object to its location
in the new page. If a mutator tries to access the old page (due to a stale reference), it will
trigger the read barrier, use the forwarding table to determine the new location of the object
(potentially copying the object if it has not been evacuated yet), and update the location
where the reference that caused the barrier to trigger came from.

It would be possible to perform all updates in the barriers, but the mark phase also
remaps references when it encounters them, to guarantee that all references to an object
have been remapped once the mark phase has completed. At this point, the old page (and
forwarding table) can be freed.

Azul proposed three ways of implementing the barrier: in software by interleaving it with
the instruction stream, in hardware on the Vega platform (which delivers a fast user-level
trap if the NMT bit is wrong), or reusing Virtual Memory (mapping all pages into the
half of the virtual address space with the right NMT bit and trapping if the barrier is
triggered). This leads to a trade-off: The trap-based approaches have a cheap fast path and
do not increase the code size substantially, but introduce large overheads when the barrier is
triggered. In contrast, interleaving the barrier with the application code increases the code
size, and therefore mutator and energy overheads (the effect on code size and instruction
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Figure 7.5: Barrier Operation in Pauseless GC. All barrier checks are folded into a single
read barrier. The barrier ensures that references that are loaded into registers are marked
through (replacing write-barrier checks). The most significant bit of each reference indicates
whether this reference was seen before in the current mark phase, and is updated by the
barrier (this is known as “self-healing”). The barrier also ensures that mutators only see
the new location of an object. When trying to access a stale location, they look up the new
location in a forwarding table and update the faulty reference.

cache pressure can be significant, as the barrier adds instructions each time a reference is
loaded from memory). The latter effect is particularly pronounced in data center servers,
which have been shown to be sensitive to instruction cache pressure [129].

7.3 Motivation & Challenges of Hardware GC

The Pauseless GC algorithm almost fully eliminates garbage collection pauses, albeit at the
cost of slowing down the application. While we were unable to find public performance
numbers to quantify this slow-down, it is important to note that the garbage collector still has
to spend at least as much time in the collector as a stop-the-world collector would, but spread
out across different cores and application threads. It is therefore a safe assumption that these
overheads can feasibly reach 38% of execution time and 25% of energy consumption, as they
do with stop-the-world collectors.

We believe that these overheads primarily stem from two sources. These are not limited
to Pauseless GC specifically, but apply to any concurrent garbage collector:

1. CPU cycles spent on garbage collection. As we confirmed in Chapter 6, GC is
a highly parallel workload that is dominated by being able to keep as many memory
requests in-flight as possible. CPUs are bad at this task, since they are limited by the
size of their load-store queue and the instruction window [30]. For this reason, parallel
collectors use a large number of the system’s CPU cores only to issue memory requests.
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These are CPU cycles that are taken away from the application, assuming that the
application could otherwise fully utilize all cores.

Furthermore, CPUs consume a large amount of area and power due to features such as
caches, specialized functional units or instruction fetch and decode, which are not useful
for garbage collection. Specifically, GC does not benefit from large caches, as it only
visits every object once during the GC. As we discovered in Chapter 6, it is possible to
make GC efficient on architectures without caches. A dedicated unit without the caches
and general-purpose hardware available in CPUs should therefore be able to perform
the same GC operation as a CPU, but at a much smaller area and energy footprint.

2. Mutator overheads from barrier executions. Read barriers in software introduce
large overheads due to executing additional instructions, as well as increasing the code
size (and therefore instruction cache pressure). To address this problem, Azul, Sun
and (more recently) IBM introduced hardware implementations of read barriers that
perform the barrier check efficiently in hardware and raise a user-level trap if the barrier
triggers. While this improves the fast path of the barrier, the slow path (when the
barrier is triggered) is still expensive, as it requires an instruction stream redirect that
involves flushing the pipeline. Worse, out-of-order processors cannot speculate over
these instruction stream redirects. As such, even hardware read barriers can cause
substantial overheads when many of them trigger the slow path, which is an effect that
Azul described as “trap storm” [53]. This effect is particularly common on heaps with
a large amount of churn and therefore GC activity.

To address these two sources of overhead, we propose an approach that moves both of them
into hardware, through a GC accelerator close to memory combined with optional barrier
support integrated into the CPU. We are presenting our design in the context of a general
concurrent, relocating mark-compact collector, and use Pauseless as one specific example of
such a collector (while our design generalizes to a wider range of schemes).

We believe a concurrent, relocating collector is the right design point for most modern
server applications, as many of them are affected by GC pauses (even when short) and
fragmentation is a problem for long-running data center workloads. If such a GC can be made
efficient, it may replace OpenJDK’s CMS and G1 (which still have pauses) as the default.

7.4 Hardware Overview

As we observed in Section 7.3, both the mark and relocation phase in the Pauseless GC
algorithm are a poor fit for general-purpose CPUs – as such, they inefficiently use cores that
could otherwise be used for the application. Furthermore, taking a trap for each triggered read
barrier is inefficient, similar to the argument for refilling TLBs with a hardware page-table
walker. Our proposal adds two modifications to an otherwise unmodified SoC, allowing our
design to be integrated in a non-invasive way (Figure 7.6):
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Figure 7.6: Overview of our GC Design. We introduce two specialized units, a Mark
Unit that performs the GC’s breath-first search, and a Reclamation Unit that identifies
and frees dead memory. These units are connected to the interconnect, similar to other
DMA-capable devices. Blue shows optional changes that would be required for any concurrent
GC. Red are changes that would be required for concurrent, relocating GC. The proposed
REFLOAD instruction acts semantically as loading a reference into a register, but automatically
performs read and write barrier checks in hardware. We use the strategy from Pauseless GC
(Section 7.2.1) as an example, using an NMT-bit to check that an edge has not been marked
yet, and virtual memory faults to detect relocation. For simplicity, we show the changes for
an in-order pipeline, but they could be implemented in an out-of-order core as well.

7.4.1 Hardware Accelerator for Tracing GC

We introduce two new hardware units that perform the mark and reclamation operations. For
the mark’s BFS traversal to be efficient, we need to keep as many memory requests in flight
as possible to maximize memory bandwidth. While an out-of-order core is very good at this,
it adds overheads in terms of power and area, since most of its logic, including instruction
fetch, decode, issue window, reorder buffer, etc. are not required for a BFS. Further, the
caching behavior of the mark phase is unfavorable for a general-purpose core: no data is ever
reused except the mark bits (as we mark through every object once). Since caches cannot
hold individual bits, this leaves a choice of not caching the mark bits by using non-allocating
loads (wasting locality and performance) or caching the entire cache line (wasting space).
The latter also pollutes the cache, potentially slowing down mutators. Analogously, the
reclamation phase is an embarrassingly parallel copy or sweep operation, which does not
benefit from caching or out-of-order execution (and can be parallelized well in hardware).

Finally, both phases benefit from being executed close to memory, reducing energy
consumption from data movement. The mark and relocation unit are therefore located
beyond the LLC, share the virtual address space with the process they are operating on (i.e.,
have their own TLBs) and are cache-coherent with the cores. Both units carve out a small
range of the physical address space for communication with the CPUs.
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7.4.2 Hardware Support for Barriers

While our evaluation focuses entirely on the hardware accelerator, we propose two ways
it could be integrated with a concurrent garbage collector in a way that avoids the traps
and instruction stream redirects that are currently associated with read barriers, whether
implemented in software or through hardware support.

Specifically, we propose a scheme to move barrier functionality to the hardware accelerator
without modifying the CPU (Section 7.6.1). While non-invasive, this scheme increases TLB,
instruction and data cache pressure. We therefore also propose a more efficient scheme that
modifies a CPU and adds a new reference load instruction to the CPU’s instruction set
(REFLOAD), similar to Project Maxwell [234]. Figure 7.6 shows an overview of this design. In
contrast to Maxwell and existing hardware read barriers, our proposed instruction does not
raise a trap but handles both the fast and slow path in hardware. In practice, this makes it
semantically equivalent to a memory load that is handled by the load-store queue but may
take longer to resolve (similar to a last-level cache miss). As a result, the processor does not
have to flush the pipeline and can speculate over the barrier, even if it is triggered.

7.5 GC Accelerator Design

We will now describe the two parts of our accelerator, a Mark Unit that performs the BFS,
and a Reclamation Unit that frees up memory and places the resulting allocation lists into
main memory for the application on the CPU to use.

7.5.1 The Mark Unit

The mark unit implements a fully pipelined breadth first search (BFS) in hardware. The
beginning and end of the BFS’s mark queue are held on-chip 1 , and two units – the Marker
2 and the Tracer 3 perform the main operation of taking objects off the mark queue,

marking them and copying their outgoing references back into the mark queue.
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Figure 7.7: Overview of the Mark Unit. The unit performs a breadth-first search (BFS) in
hardware and communicates with the CPU through an address range in physical memory.
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Figure 7.8: The Basic Mark Unit Operation. Our key insight is that memory requests
copying outgoing references into the mark queue do not need to be tagged.

After launching a mark phase, the Reader 4 first loads all roots into the mark queue. It
communicates with the CPUs through a range of the physical address space. This range is
cacheable and each CPU can write to it, to send addresses of reachable objects to the mark
unit. The reader polls the range until it has received all roots (CPUs terminate root lists
with a special word). Roots are collected in software, an infrequent operation that can be
implemented without stalling [185].

The mark queue is implemented as an on-chip SRAM, and is expected to be small. There
is a design space associated with the size of the queue: the smaller the queue, the more often
its middle part has to be spilled to memory. We found that a queue size of 2KB is sufficient,
and will explore this design space in Section 9.7.2.

Once the roots have been loaded, the Marker 2 and the Tracer 3 perform the actual
mark phase. The basic mark operation is shown in Figure 7.8. As on the GPU, there are
two fundamental types of operation. The first is the marking, which takes a reference off the
mark queue and checks and sets its mark bit. We fold this in with reading the number of
outgoing references, by storing both this number and the mark bits in the same word. This
means that this operation becomes a single atomic fetch-or memory request. The second
type of operation is the copying of all outgoing references back into the mark queue, if the
object had not been marked before. We call this a tracing operation.

There are three insights that, taken together, enable our mark unit design to outperform
a CPU both in terms of performance and area: First, we use the same kind of bidirectional
object layout that already enabled our GPU-based garbage collector (Chapter 6.4.2). Second,
we build on our insights from Chapter 6 that the number of outgoing references in objects
is bimodal and therefore, similar to our Reducing Divergence optimization on the GPU,
decouple marking and copying of references, in order to prevent long objects from stalling
the mark operation. Finally, we realized that the order in which references are added to the
mark queue does not affect correctness. We therefore can perform these operations without
tracking the associated memory requests. We now describe each of these aspects in turn.
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Figure 7.9: Bidirectional Object Layout. Recalling Section 6.4.2, to support inheritance,
objects are traditionally laid out with the fields of all parents first, followed by the class’s own
fields. This results in reference fields interspersed throughout the object. In a bidirectional
layout, the header is placed in the middle, all reference fields are stored on one side of the
header, and all non-reference fields on the other. This still supports inheritance, but identifies
reference fields without extra accesses.

1. Bidirectional Object Layout GC does not benefit much from caches, and the mark
unit can therefore save most of this area and power. However, as we discovered in
Chapter 6, if one were to use a cacheless accelerator design with an unmodified language
runtime system, the performance would be poor. As on the GPU, the reason is that
when copying the outbound references of an object back into the mark queue, the
collector has to identify which fields contain these references. While this can be done
using specialized functions or tag bits on architectures that support them [233], most
runtime systems use a layout where the object’s header points to a type information
block (TIB), which contains the offsets of the fields that contain references (Figure 7.9a).

This approach works well on systems with caches, since most TIBs are in cache. However,
it adds two additional memory accesses per object in a cacheless system. To address
this, we use a bidirectional layout (Figure 7.9b). The benefits of the bidirectional layout
on CPUs are limited [90], but as we confirmed on the GPU, such a layout helps greatly
on a system without caches, as it eliminates the extra accesses. Its access pattern
(a unit-stride copy) is beneficial as well. While this approach requires adapting the
runtime system to target our accelerator, the changes are invisible to the application
and contained at the language-runtime level.

2. Decoupling Marking and Tracing With the bidirectional layout in place, we can
store the mark bit and the number of references in a single header word, which allows
us to mark an object and receive the outbound number of references in a single fetch-or
atomic memory operation (AMO). On a CPU, a limited number of these requests can
be in flight, due to the finite load-store queue. Since the outcome of the mark operation
determines whether or not references are being copied, this limits how far a CPU can
speculate ahead in the control flow and causes expensive branch mispredicts.
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Figure 7.10: Mark Unit Operation. The Marker removes objects from the frontier queue,
uses a single AMO to mark the header word and receive the number of outbound references,
and (if the object has not been marked yet), enqueues it in the tracer queue. The Tracer
removes elements from the tracer queue and copies the object’s references into the mark
queue using untagged memory requests.

In our mark unit, the number of outstanding requests can be larger but is still limited
by the number of available tags, similar to MSHRs. If the unit encounters a large
number of objects without outbound references or that have already been marked, our
effective bandwidth is limited by the mark operation. Similarly, if there are very long
objects, we are limited by tracing (i.e., copying) this one long object.

We therefore decouple the marking and tracing from each other. Our mark unit consists
of a pipeline with a Marker and a Tracer connected via a tracer queue (Figure 7.10). If
a long object is being examined by the tracer, the Marker continues to operate and
the queue fills up. Likewise, if there are few objects to trace, the queue is drained.
This design allows us to make better use of the available memory bandwidth than a
control-flow-limited CPU could (Section 9.7.1).

3. Untagged Reference Tracing While the Marker needs to track memory requests (to
match returning mark bits to their objects), the order in which references are added
to the mark queue does not affect the correctness of the BFS. The Tracer therefore
does not need to store request state, but can instead send as many requests into the
memory system as possible, adding responses to the mark queue in the order in which
they return. This increases bandwidth utilization, as we will show in Chapter 9.

Taken together, the previous three strategies enable the mark unit to achieve a higher memory
bandwidth than the CPU, at a fraction of on-chip area and power. Note that there are
multiple components that communicate with the memory system (marker, tracer, mark queue
and root loader). We experimented with several strategies to perform and prioritize these
different types of memory accesses (Section 9.7.2).
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7.5.2 The Reclamation Unit

The task of the reclamation unit is to take the mark bits produced by the mark unit and free
the memory associated with unmarked objects. While this operation is highly dependent
on the underlying GC algorithm, it typically involves iterating through a list of blocks and
either (1) evacuating all live objects in a block into a new location (for relocating GC) or (2)
arranging all dead objects into a free list (for non-relocating GC).
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Figure 7.11: Overview of the Reclamation Unit. The specific reclamation logic depends on
the underlying GC algorithm. For a relocating collector, a forwarding table is required, as
well as a mechanism for the CPU to query it through a memory-mapped region.

Each of these operations can be performed with a small state machine 6 , and can be
parallelized across blocks. It is this property that leads to a potential for improving this
task through a hardware implementation, as it is an embarrassingly parallel operation with
a high degree of parallelism. We now give two examples of how this unit would work in a
non-relocating Mark & Sweep collector as well as within the Pauseless GC algorithm.

Example: Mark & Sweep GC

For a non-relocating Mark & Sweep collector, the relocation logic iterates through all blocks,
parallelizes them across a set of block sweeper units, which each reclaim memory in a block
independently and then return the block either to a list of free or live blocks (Figure 7.12).
As each block sweeper is negligibly small, the design is primarily dominated by the size of
the cross-bar connecting them.

Example: Pauseless GC

For a concurrent, relocating collector such as Pauseless GC, the reclamation logic would
be more complex. As described in Section 7.2.1, the reclamation unit in this case has to
regularly (1) find pages that are mostly garbage and should therefore be evacuated, (2) build
a side-table 7 of forwarding pointers, (3) protect the original page in the page table, and (4)
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Figure 7.12: Reclamation Logic for a Non-Relocating Mark & Sweep Collector. Blocks
are read from a global free list, distributed to parallel blocks weepers that reclaim them in
parallel, and then returned to the respective empty and live free lists.

move objects to the new page. At the same time, the relocation unit receives requests from
CPU cores when they need to find the new location of an object 8 . This can be implemented
by providing a region in the physical address space – similar to the mark unit – from which a
CPU can read a specific location to read the new location of an object.

If the data has already been relocated, the relocation unit will respond immediately with
the new address, otherwise it will relocate the object and then respond. CPUs hence always
get a response with the new location, but it may be delayed, which is seen by the CPU as a
long memory load. One advantage over the software approach is that this makes concurrency
much simpler. Like the mark queue, the forwarding table may have to be spilled to memory,
but a part of it can be cached by the relocation unit. This gives rise to a large design space,
such as whether to use a CAM or hash table.

Once the relocation unit has finished relocating a page and remapping has completed,
it frees the physical memory and writes the addresses of available blocks into a free-list in
memory, which can be accessed by conventional bump-pointer allocators on the CPUs.

7.6 Software Integration

Using the unit in a stop-the-world setting requires minimum integration beyond the new
object layout. The runtime system first needs to identify the set of roots (which can be done
in software without stalling the application [185]) and write them into a memory region visible
to the accelerator. It also has to inform the unit where in memory the allocation regions are
located, as well as configuration parameters (e.g., available size classes). Beyond this, the
unit acts autonomously and the runtime system polls a control register to wait for it to be
ready. Note that no modifications to the CPU or memory system are required. Instead, the
unit acts as a memory-mapped device, similar to a NIC. For a concurrent garbage collector,
further modifications are required.
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Figure 7.13: Read Barrier Without CPU Modifications. The barrier checks object references
and ensures they point to their new location, whether or not they have been moved. By
reinterpreting coherence messages, we can implement the functionality in hardware without
changing the CPU (at the cost of increased TLB and cache pressure).

7.6.1 Software Integration for Concurrent GC

Our design can be integrated into a concurrent GC without modifying the CPU. While our
prototype is evaluated in a stop-the-world setting, we propose a novel barrier design for
efficient integration with concurrent GC. Our insight is that by “hijacking” the cache coherence
protocol, we can implement the barriers without causing traps or branch mispredicts.

Write Barrier When overwriting a reference, write the reference of the object it belongs
to into the same region in memory that is used to communicate the roots. The mark unit
copies all references that are written into this region to the mark queue. This has similarities
to the approach taken by Maxwell [234].

Read Barrier For a relocating collector, the read barrier needs to check whether an object
has moved and get the object’s new location if it has. This is very collector-dependent, but
for the purpose of this description, we will assume Pauseless GC, which invalidates all objects
within a page at the same time, compacts these objects into new locations, and keeps a
forwarding table to map old to new addresses.

Azul’s barrier implementation requires either a hardware barrier that raises a trap when
accessing an object from a page that has moved, or a check in software that may lead to
an instruction-stream redirect. We propose avoiding both of these sources of overhead by
performing the barrier operation in the relocation unit and using the existing cache coherence
protocol to synchronize this operation with the CPU.

We propose adding a new range to the physical address space that nominally belongs
to the Reclamation Unit but is not backed by actual DRAM (Figure 7.13). We then steal
one bit of each virtual address (say, the MSB), mapping the heap to the bottom half of the
virtual address space. Whenever we read a reference into a register, we add instructions that
take the address, flip this special bit, read from that location in virtual memory and add the
result to the original address.
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By default, we map the top half of this virtual address space to a page that is all zeros.
All these loads hence return 0 (i.e., have no impact on the address, as the object has not
moved). However, when we are relocating objects on a page, we map the corresponding VM
page to the reclamation unit’s physical address range instead. The unit then sends out probe
messages across the interconnect to take exclusive ownership of all cache lines in this page.
This means that whenever a thread tries to access an object within this page, the CPU needs
to acquire this cache line from the reclamation unit. When responding to the request, the
unit simply writes the deltas by which the new addresses differ to the original addresses of
the objects in the cache line. It then releases the cache line, the CPU reads from it and adds
the value to the original address, updating it to the new one. This communication only has
to happen once, since the cache line is in the cache the next time the object is accessed.

This operation could be further optimized by storing addresses directly with the MSB bit
set to 1, so that the extra operation of flipping the bit is not necessary. While this operation
does not require modifying the CPU – and allows the CPU to speculate over the read barrier
whether it triggers or not, rather than introducing an instruction stream redirect if it does –
this approach does introduce additional overheads:

• The effective TLB size is divided by half, as every object now occupies two entries
instead of one: one for the cache line including the deltas.

• The effective data cache size is divided by half, as additional cache lines need to be
resident in the cache. However, this is less than a factor of two, since most additional
cache lines are mapped to the same page that contains all zeros.

• Instruction cache pressure is increased from the additional instructions for the read
barrier. An indirect effect is that the distance of some branches may increase, potentially
introducing indirect branches where a direct branch could be used before.

If we allow ourselves to modify the CPU as well, we can avoid these sources of overhead. We
will now describe a scheme that achieves this goal. Note that we have not implemented these
changes (or, in fact, any concurrent collector), but are considering them for future work.

7.7 Optional CPU Extensions

To avoid the overheads introduced by the scheme from the previous section, we propose the
introduction of a REFLOAD instruction which semantically behaves like a load and is loading a
reference from memory into a register. If the object that the reference is pointing to is in a
page that is being relocated, the new location is looked up and returned (the response has to
be delayed until the object has actually been copied). The instruction also takes care of any
other read and write barrier functionality. As a result, the cache and TLB overheads of the
software approach are eliminated, and the operation can be completed in a single instruction
instead of increasing instruction cache pressure.
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Figure 7.14: Overview of the Optional CPU Extensions. A REFLOAD instruction is added
to load a reference into a register. The write barrier path informs the mark unit of the
reference load. The read barrier path uses virtual memory to check whether the page the
loaded reference points to is being relocated, and looks up the new location if it is.

While the precise barrier functionality is, once again, collector dependent, a Pauseless GC
style barrier is representative of a wide range of collector designs. In this case, the REFLOAD

instructions performs two checks. First, it checks whether the NMT bit is set. If not, it
writes the reference into the mark unit’s memory, updates the NMT bit in the cache and
continues. Second, it checks whether the object the reference is pointing to is being relocated.
This can be folded into the virtual memory system, similar to Azul’s approach. Specifically,
accessing a page that is being relocated triggers a protection fault in the TLB.

We can therefore implement this check cheaply in hardware by splitting each REFLOAD

instruction into two instructions during the decode stage (i.e., instruction fission), one regular
load and a custom RB micro-op, which is treated by the TLB like a load from the address
that was just loaded, but does not always proceed into the memory stage. If the object is
not being relocated, RB completes quickly and simply writes its first operand into the target
register, but otherwise, it triggers a TLB fault, which is intercepted and translated into a load
from the reclamation unit’s physical address space (similar to our approach in Section 7.6.1).
This load then proceeds to the memory stage, is added to the load-store queue and can be
speculated over like any other load (the GC unit will not release the cache line until it has
looked up the new location). When the load completes, it results in the new reference being
stored in the REFLOAD instruction’s target register.

This approach means that the read barrier can now be speculated over like any other load,
without introducing any additional traps, instruction stream redirects or pauses longer than
a last-level cache miss. Other than a reduction of trap storms and improvement of overall
performance, this has the advantage that it may make the system more predictable.
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7.8 Related Work

Our work has similarities to Azul System’s Vega [219], a commercial processor specialized for
Java applications. Vega also adds hardware-support for concurrent GC, but still executes
most of the algorithm in software. Its main hardware feature is a read barrier instruction
that delivers a fast user-level trap to respond to relocation. Azul has since stopped producing
hardware, implementing the read barrier in software on commodity CPUs [244]. We believe
that by moving much more of the algorithm into hardware, we may substantially improve
over Vega in terms of energy efficiency, and potentially mutator and GC throughput. This is
a different design point than Vega’s, which appears to prioritize generality and flexibility.

Recent IBM mainframe processors of the z14 series have introduced a new hardware
mechanism called “Guarded Storage Facility” [67]. This mechanism is similar to Azul’s
read barrier instructions, allowing the software to configure up to 64 guarded regions that
trigger a trap when performing a guarded load of a reference to that region. As in Azul’s
Vega hardware, the main garbage collection is still performed on the CPU cores, and the
application incurs regular traps due to barrier activity.

In 2008, Sun worked on a very similar idea to ours [230, 234], with specialized GC units
close to memory and hardware support for barriers. The design provides a fully concurrent
GC but relies on an object-based memory system which requires changes to the caches and
memory hierarchy (e.g., to translate between object IDs and physical addresses, and to keep
track of forwarded objects). This work also proposed the use of a bidirectional layout in a
GC accelerator. However, to our knowledge, the system was never released.

There exists work on GC coprocessors in the embedded and real-time space, including an
extensive body of work on Java processors [154, 157, 195]. Some of these processors have
dedicated features for garbage collection, such as support for non-blocking object copying
in real-time systems [196]. Other work proposes support for read or write barriers [96, 157]
and reference counting in hardware [121] (the latter is non-relocating and requires a backup
tracing collector). Additionally, there exist a range of general mechanisms to support Java
workloads at the micro-architectural level [163], and some of these mechanisms can be applied
to garbage collection [99]. Our work has similarities to many of these projects, but its focus
on energy efficiency and data center workloads is somewhat different.

Finally, a hardware tracing unit was presented by Bacon et al. [24]. However, this work
was in the context of garbage collection for Block RAMs (BRAMs) on FPGAs, which is a
special case and very different from conventional GC on DRAM. Specifically, BRAMs are
multi-ported and have perfectly predictable timing, which allows a garbage collector to give
much stronger timing guarantees.

7.9 Summary

In this chapter, we showed a general version of our Hardware GC design, and described the
associated design space. In the next chapters, we will show a specific incarnation of this
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design, implemented in the context of a real System-on-Chip (SoC). As hardware support for
garbage collection interacts with many layers of both the hardware and the software stack,
we developed research infrastructure and a new hardware-software research methodology to
enable this research. Chapter 8 will present this research methodology. Chapter 9 will then
describe a prototype of our hardware-assisted garbage collector, integrated into a full SoC
and co-designed with the JikesRVM research virtual machine. Through this design, we show
the potential of hardware support for garbage collection and demonstrate that our design
can be integrated into a production-grade system without invasive changes.
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Chapter 8

A RISC-V based Managed-Language
Research Methodology

Existing research methodologies for hardware-software research are inadequate to evaluate
many systems with fine-grained interactions between the different layers of the stack, such as
our proposed hardware-assisted GC design. We therefore present a new approach to managed-
language research, which uses FPGA-based simulation of production-grade RISC-V SoCs
combined with a port of the Jikes Research VM to execute Java workloads. This chapter
describes the details of this port, briefly evaluates its performance and presents a case study
that demonstrates research that is facilitated by this methodology.

8.1 Introduction

One of the challenges in evaluating proposals such as our hardware-assisted GC design is that
they are poorly supported by existing evaluation methodologies for computer architecture
research. Existing research methodologies either employ off-the-shelf hardware, high-level
full-system simulators such as SIMICS [153], or software-based cycle-accurate simulators such
as GEM5 [35]. While these approaches are suitable for simulating non-managed workloads
such as SPEC CPU, they fall short for managed workloads such as Java applications.

This disconnect has existed for a long time, and was pointed out in a prominent Commu-
nications of the ACM article in 2008 [38]. However, not much has changed since then. A
part of the problem is arguably that the properties of managed languages make them a poor
fit for the most widely used computer architecture research methodologies:

• High-level full-system simulators do not provide the fidelity to fully capture managed-
language workloads. These workloads often interact at very small time-scales. For
example, GCs may introduce small delays from barriers (≈ 10 cycles each), scattered
through the application [53]. Cumulatively, these delays may add up to substantial
overheads but individually, they can only be captured with a high-fidelity model.
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• Software-based cycle-accurate simulators are too slow for managed workloads. These
simulators typically achieve on the order of 400 KIPS [179], or 1s of simulated time per
1.5h of simulation per core. Managed-language workloads are typically long-running
(i.e., a minute and more) and run across a large number of cores, which means that
simulating an 8-core workload for 1 minute takes around a month.

• Native workloads often take advantage of sampling-based approaches, or use solutions
such as Simpoints [199] to determine regions of interest in workloads and then only
simulate those regions. This does not work for managed workloads, as they consist of
several components running in parallel and affecting each other, including the garbage
collector, JIT compiler and features with dynamically changing state such as biased
locks, inline caching for dynamic dispatch, etc. In addition, managed application
performance is often not dominated by specific kernels or regions of interests, which
makes approaches that change between high-level and detailed simulation modes (e.g.,
MARSSx86 [179], Sniper [44]) unsuitable for many of these workloads.

For these reasons, a large fraction of managed-language research relies on stock hardware
for experimentation. While this has enabled programming-languages research on improving
garbage collectors, JIT compilers and runtime system abstractions, there has been relatively
little research on hardware-software co-design for managed languages. Furthermore, the
research that does exist in this area typically explores a single design point, often in the
context of a released chip or product, such as Azul’s Vega appliance [53] or IBM’s z14.
Architectural design-space exploration is rare, especially in academia.

We believe that credible hardware-software co-design research requires an experimentation
platform where all layers of the stack can be readily modified, including the hardware, the
operating system and the language runtime system. At the same time, such a platform
needs to capture the essential properties of commercial systems, to be representative of
industry-grade implementations and enable industry adoption.

One approach is to integrate a high-speed software simulator with a language-runtime sys-
tem, to enable modifications across the full stack. This is the approach taken by MaxSim [190],
which combines the Maxine Research JVM [229] with the Zsim simulation framework [193],
and McPAT [141] for power analysis. This infrastructure can simulate the full set of DaCapo
benchmarks in a day and enables the exploration of hardware-software co-designed features
such as object layout transformations and tagged pointers. While such a platform enables a
wide range of studies at the hardware-software interface, it does not model micro-architectural
details beyond those found in a conventional CPU, and is therefore less suited for studying
an accelerator with a new micro-architectural design, such as ours.

An alternative approach is to build a research platform around RTL of real hardware
designs and run these designs on FPGAs, together with a full software stack. Such a platform
was not previously possible, as the vast majority of hardware has traditionally been propri-
etary, and available open-source hardware was either not representative of high-performance
implementations (e.g., OpenRISC [210]) or difficult to modify (e.g., OpenSPARC [178]).
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However, recent years have seen an increase in activity around hardware that is both
open and can be easily modified. One example is OpenPiton [25], an open-source SoC from
Princeton, which can be targeted to FPGAs and has been used in ASIC implementations.
Another strand of activity is based on the RISC-V ISA, which is a free and open instruction set
that originated at UC Berkeley. RISC-V enables both open and proprietary implementations,
and has seen a growing ecosystem of open-source hardware evolve around it.

This open-source hardware enables a new kind of hardware-software co-design research
approach that builds ideas into the same open-source RTL used by industry and contributes
the results back to the community, similar to how Linux is used in OS research. A promising
example for this approach is the open-source Rocket Chip SoC generator [18], which provides
a framework to generate full SoCs that are realistic (i.e., used in products) and can target
both ASIC and FPGA flows. Combining this infrastructure with an FPGA-based simulation
framework such as MIDAS [131] enables simulating the performance of real Rocket Chip
SoCs at full cycle-accuracy, while running at FPGA frequencies of up to 190 MHz.

While FPGA-based simulation infrastructure was traditionally constrained by the size of
available FPGAs, this has changed in recent years, and there are now large FPGA boards
available, including for rent in the public cloud [6]. These boards can address several gigabytes
of DRAM and are capable of running managed workloads on simulated multi-core SoCs. This
means that this infrastructure can achieve the realism, fidelity and simulation speed required
for credibly evaluating complete managed-language applications.

We believe that combining this infrastructure with an easy-to-modify managed-language
runtime system provides an opportunity to perform hardware-software research on managed
runtimes that was infeasible before. We identified the Jikes Research Virtual Machine
(JikesRVM), which we already used in Chapter 6, as the most promising candidate for this
managed-language runtime system. Jikes is Java VM geared towards experimentation and
therefore particularly well-suited for research. Meanwhile, JikesRVM is easy to modify, thanks
to being written in Java and using a modular software design that decouples components
such as the object layout, GC or JIT passes from each other.

We believe that bringing RISC-V and JikesRVM together will enable novel hardware-
software research, while facilitating replicability and industry adoption of research. In this
chapter, we present an important step towards this vision, by porting JikesRVM to RISC-V.
We first discuss why such a port is necessary. We then describe the porting effort in detail.
Finally, we demonstrate the running system, and show the research that it enables.

8.2 The RISC-V Ecosystem

RISC-V is a free and open ISA that was originally developed at UC Berkeley and is now
managed by a standard body, the RISC-V Foundation. Since RISC-V is an open standard,
anyone can implement it, either within the context of a proprietary product or as open-source
hardware. The main benefit of RISC-V stems from its ecosystem: while other ISAs are
largely controlled by individual companies, RISC-V allows different parties to leverage the
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investment that has been made within the software and hardware ecosystems, and contribute
back to these ecosystems themselves. This is similar to the model behind other open-source
software infrastructure such as Linux, Kubernetes [41] or TensorFlow [2].

From a technical perspective, the RISC-V ISA distinguishes itself through simplicity and
modularity. The base ISA contains only 47 instructions and is sufficient for a fully functional
processor. Advanced features such as floating point or atomics are provided as extensions,
which are optional and enabled through compiler flags. RISC-V supports three address sizes –
32, 64 and 128 bit – and separates the supervisor and machine-level portions of the ISA from
the user-level ISA. This modularity means that the same ISA can be used for systems ranging
from microcontrollers to full server SoCs with high-performance out-of-order processors. This
enables a substantial amount of software reuse, as the same compiler and software ecosystem
can target a wide range of microarchitectures and application scenarios.

Since its inception in 2010, there has been a growing ecosystem of both commercial
implementations of RISC-V, as well as RISC-V-based open-source hardware. A major project
in this space is Rocket Chip [18], which is a System-on-Chip (SoC) generator written in
Chisel, a hardware description language developed at UC Berkeley. Rocket Chip contains
a selection of processor designs (including in-order and out-of-order cores), a configurable
on-chip interconnect called TileLink, caches, as well as various peripherals and devices.
All parts of Rocket Chip are implemented as generators, which means that rather than
implementing a single instance, they can instantiate a wide range of designs based on a
central set of configuration parameters. This design – combined with Chisel as the source
language – makes Rocket Chip highly extensible and easy to modify.

While Rocket Chip has been used in over a dozen tapeouts and in several shipped products,
the same RTL can be used in FPGA-based simulation. This is enabled by additional
infrastructure that originated at UC Berkeley, specifically the MIDAS [131] simulation
framework. MIDAS uses a Decoupled FAME approach [209] to simulate ASIC designs on
FPGAs: The target RTL runs cycle-accurately on the FPGA and a token-based mechanism
ensures that timing of any off-chip requests (such as DRAM accesses) is adjusted to ensure
that the relative speed of peripherals is consistent with what it would be if they were attached
to an ASIC. An addition to this methodology, Strober [132], extends this approach to detailed
energy simulation numbers by sampling MIDAS state at random intervals and simulating
these snapshots in a gate-level power modelling tool.

In addition to this hardware infrastructure, RISC-V supports a growing software ecosystem,
including ports of GCC, Linux, glibc, binutils, LLVM, QEMU, Go, FreeBSD and coreboot
(among others). This enables a wide range of real software to run on Rocket Chip, letting
researchers execute a variety of software on hardware that can be easily modified.

8.3 The Jikes RVM

To apply this approach to managed runtimes, we require a runtime system that can be easily
modified as well. We picked the Jikes Research VM [4], which is the de facto standard in



CHAPTER 8. RISC-V BASED MANAGED-LANGUAGE RESEARCH 121

Existing “Bootstrap” JVM

JikesRVM

JIT Compiler

Address ObjectReference Word

JikesRVM

Step 1: Load JikesRVM into itself

Step 2: JIT compiler produces 
code and stores it to memory

Image
Copy compiled code and state

Step 3: Store
Image to disk

Figure 8.1: Building the JikesRVM. Jikes uses a meta-circular design and is written in Java.
To bootstrap Jikes, it is first loaded into an existing JVM, and then loads itself. This results
in Jikes’s JIT compiler compiling Jikes’s own code, which can then be stored to disk.

managed-language research. Jikes is a VM for Java, and is representative of other managed-
runtime systems. We ported JikesRVM and its non-optimizing Baseline JIT compiler
to RISC-V1. To our knowledge, this results in the first RTL-based full-system platform
for hardware-software research on Java applications that allows modification of the entire
hardware and software stack. In the following section, we describe our port.

8.3.1 Jikes’s Software Design

In order to make the runtime system easy to modify, JikesRVM embraces object-oriented
design principles and is written in Java. This design is often called a meta-circular runtime
system, a runtime system written in the same language it executes.

This approach introduces new challenges, as Java is not intended for the low-level system
programming required to implement a runtime system such as a JVM. Jikes solves this problem
by providing a library called VM Magic, with classes representing low-level primitives such
as pointers (Address) or references (ObjectReference). From a Java perspective, these
primitives are normal objects with methods such as Address.loadInt(addr). However,
Jikes’s own JIT compiler detects them and handles them specially.

8.3.2 Bootstrap Process

JikesRVM requires an existing “bootstrap” JVM, such as OpenJDK’s Hotspot JVM (Fig-
ure 8.1). To compile Jikes, it is first loaded into this existing JVM, as a normal Java program

1The lack of an optimizing compiler means that we cannot compare against highly tuned systems directly,
but need to account for this difference when conducting experiments. We show an example in Section 9.7.
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Figure 8.2: Running the JikesRVM. To run the JVM, a small “bootloader” program maps
the image that was generated during the bootstrap process into the virtual address space.
This image contains JITed code of the essential classes of the JVM, as well as a basic heap to
operate on. The bootloader then sets up a Java stack and jumps to the JVM’s entrypoint.

where the VM Magic primitives are regular objects with an implementation that emulates
their intended behavior. Once JikesRVM runs in the bootstrap VM, it loads an instance of
itself, which results in Jikes’s own classes being loaded and compiled by its JIT compiler (this
initial set of classes is called primordials). However, as this is now Jikes’s JIT and not the
bootstrap VM’s, it will detect calls to VM Magic classes and replace them with the actual
machine code executing low-level operations, such as memory stores.

In a final step, the instantiated objects belonging to the nested JikesRVM instance –
including their JIT-compiled code – are taken and copied into an image, which is then stored
to disk. This image now contains compiled code for all of Jikes’s core classes, which can be
executed without the bootstrap JVM in place.

8.3.3 Running Jikes RVM

Once Jikes has been compiled, it can be run by executing a small bootloader program written
in C, which takes the image generated during the boostrapping process and maps it into its
address space (Figure 8.2). This part of the address space represents the initial heap that
the JVM is executing on. The bootloader then sets up the Java stack and jumps into a boot
function that initializes the different components of the JVM. This process involves many
steps and requires loading and executing initializers for 93 classes.

Once the JVM has booted up, it parses the command line arguments, uses them to
determine a .jar or .class file to load, and then jumps into the main function of the
program. Jikes will almost exclusively operate without intervention from the bootloader at
this point, except for handling traps such as null pointer exceptions, spawning new threads
and executing low-level functions such as writing to the console.
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8.4 Porting the Jikes RVM to RISC-V

Porting JikesRVM to a new ISA is complicated by Jikes’s meta-circular nature. Luckily, the
JVM already supports two ISAs (x86 and PowerPC), and therefore has infrastructure in place
to factor out ISA-specific portions of code, such as the assembler, compiler, native-function
interface or stack walker. Porting JikesRVM therefore primarily required creating RISC-V
implementations of these different components. Overall, our port involved modifications to
86 files and added around 15,000 lines of code.

8.4.1 Bringing up the Environment

The first step in porting JikesRVM was to bring up an environment that contains all of its
dependencies. Specifically, this included a Linux distribution with a basic set of tools and
libraries, such as glibc and bash. JikesRVM also requires compiling the GNU Classpath
class library for a RISC-V target, which further depends on various different libraries.

To facilitate building these different dependencies, we ported the Yocto Linux distribution
generator to RISC-V [189]. Yocto provides an environment that can cross-compile the Linux
kernel and a range of packages on a host system, and generates an image that can then be
booted in a RISC-V emulator or on actual RISC-V hardware. We used Yocto to generate an
image which we then used as the environment to run JikesRVM in riscv-qemu.

In addition to generating the image, targeting JikesRVM to RISC-V also required us to
have the cross-compiler and libraries available during the build process, to compile components
such as the bootloader or the C libraries backing GNU Classpath. Yocto facilitates this by
creating an SDK, which is a package that includes the entire cross-compile toolchain and
development packages such as common libraries or autoconf. This SDK can be installed on
any machine and contains a script that adds the cross-compilers to the current environment.
Using a Yocto SDK provides us with all the tools and libraries we need to build Jikes, without
setting up a full RISC-V development environment.

8.4.2 Debugging Infrastructure

To achieve a fast compile loop, we used a Python script that cross-compiles JikesRVM on an
x86-64 host system, copies the output into the Yocto-generated image and runs this image
in QEMU. We also modified the image with a custom /etc/inittab script that launches
JikesRVM, redirects the output into a file and then shuts down the QEMU instance. This
approach provided us with a fast turnaround for debugging.

After setting up these scripts, the next step consisted of porting JikesRVM’s bootloader
code. The code only includes a small number of architecture-dependent portions, specifically
the assembly code that sets up the Java stack and jumps into a Java function.

Once this step was completed, the next task was to port the JIT compiler. To do this
incrementally, we added test code at the beginning of the JVM’s boot function (VM.boot()),
which is the first function the bootloader jumps into after setting up the stack. This allowed
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Figure 8.3: Part of the Python script that auto-generates the assembler, and the code that
it emits. Note that registers are typed and common flags are replaced by enums.

us to first implement simple Java opcodes such as integer operations, static function calls or
conditionals, and then incrementally extend our implementation.

8.4.3 Porting the Assembler

Before we could start porting the JIT compiler, we had to implement an assembler that
can generate RISC-V instructions. While Jikes’s assemblers for PPC and x86 are hand-
written, we were able to automate this process for RISC-V, by using the open-source
riscv-opcodes repository [188]. This repository provides a machine-readable version of all
RISC-V instructions. Building on a Python script that is available as part of riscv-opcodes,
we generated most of Jikes’s assembler automatically, creating an emitX() function for every
instruction X in the instruction set (Figure 8.3).

One case that needed special attention were branches. The JIT compiler often generates
branches with placeholders for the target offset, which are rewritten at a later point. In
RISC-V, we had to be careful to distinguish between short branches (that fit into the branch
instruction’s 12-bit offset) and general branches, for which we need to emit a branch followed
by a jal instruction. The assembler provides functions to emit both types of branches. If
the target is unknown in advance, a general branch is emitted.
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8.4.4 Porting the JIT Compiler

The non-optimizing JIT compiler is template-based. It contains a set of functions correspond-
ing to Java bytecode instructions. Each of these functions calls into the assembler to emit a
RISC-V instruction sequence that implements the specific Java bytecode. The JIT compiler
also provides instruction sequences for the VM Magic functions described in Section 8.3.1.
Finally, the JIT compiler provides functions that emit code for special circumstances, such as
function prologues, epilogues and yield points. Yield points are emitted at certain points
throughout the program and check whether a thread is supposed to block – e.g., because of
garbage collection or revoking a biased lock.

We started by implementing prologues, epilogues and several basic integer instructions.
This allowed us to run small test programs by injecting them into Jikes’s boot function.
However, for programs that were more complex, we required additional information to debug
the execution. Due to the lack of debug information, it is difficult to debug this code with
traditional debuggers such as GDB. We therefore chose a different approach.

We instrumented the JIT compiler to emit a trace of its execution. For each executed
bytecode, we print the name of the opcode, the corresponding instruction sequence, and the
current state (i.e., the top elements of the stack). We achieve this by prefixing the instruction
sequence for each bytecode with an invalid load that will trigger a SEGFAULT. Additionally,
we also include auxiliary information:

0x...000: LD X0, 1024(X0) # SEGFAULT

0x...004: (Number of instructions)

0x...008: (Opcode)

0x...00c: (Stack Offset)

When the load is reached, it will trigger an exception that can be caught in the bootloader
program. The bootloader then reads the auxiliary information and outputs the desired
debug information, including a disassembled version of the instructions associated with this
bytecode (Figure 8.4). Note that we did not have to write our own disassembler to achieve
this. Instead, we printed DASM(INST) to the standard output, and redirected the output to
the spike-dasm program that ships with the Spike ISA simulator.

As the test programs grew, we found that the debug output became too cumbersome to
work with. We therefore added a modification to JikesRVM which allows us to only selectively
inject this instrumentation. Specifically, we added a @SoftwareBreakpoints annotation that
can be attached to a function in JikesRVM. If this annotation is present, the instrumentation
code will be injected by the JIT compiler (and we will receive a trace of its execution),
otherwise the function will be compiled normally.

8.4.5 Foreign-Function Calls

One of the most challenging aspects of porting Jikes was to support foreign-function calls.
Jikes provides two mechanisms to call into C code: JNI calls (which is Java’s mechanism to
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Figure 8.4: Debug output for the JIT compiler.

call into C functions) and a simpler mechanism named syscalls. JNI is a complex framework
that enables calls in both directions (C to Java and Java to C). This makes it possible that a
mix of both Java and C stack-frames can co-exist on the same stack. Jikes therefore needs to
be able to unwind both types of frames for delivering exceptions, and scan them for spilled
pointers at the beginning of GC passes. This means that JNI calls require maintaining a side
table of pointers for stack scanning, check for yield points when crossing a language barrier,
and support the full C calling convention.

Avoiding this complexity, Jikes’s syscalls mechanism is intended to implement simple
functions such as writing bytes to a stream or executing math functions like sqrt. Instead
of supporting the full calling convention, it only supports simple calls, does not check for
yield points and cannot call back into Java. For debugging purposes, we found it important
to implement syscalls early. Meanwhile, as JNI functions require a large amount of work,
we decided to leave them to the end. Note that syscalls are emitted by the JIT, while JNI
calls are generated by a special JNICompiler. Implementing syscalls is sufficient to run test
programs with simple command line output, provided they are added to VM.boot().
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8.4.6 Exceptions & Run-time Checks

Java checks for a number of corner cases and triggers exceptions if necessary, such as array
bounds checks or divide-by-zero checks. We found that the best approach in RISC-V was to
trigger exceptions through loads to invalid addresses. This causes execution to drop back into
the bootloader, where we can determine which exception was triggered (based on the failing
instruction) and then jump into a Java function that delivers the exception and unwinds the
stack. The exception delivery itself requires architecture-specific code for unwinding both
Java and JNI (i.e., native) stack-frames.

8.4.7 Additional Features

While the features discussed so far enable simple test programs and executing a large part
of the VM.boot function, completing the full boot sequence requires a large number of
architecture-specific features, including locks, lazy compilation trampolines, dynamic bridges
(which are necessary for JIT-compiling a function by running the JIT on the same stack, and
then transparently transferring execution to the JITed code) and interface method tables
(which require synthesizing architecture-specific code to traverse a search tree). Completing
the boot sequence therefore requires a mostly complete port.

8.4.8 Summary

Our port of the baseline compiler is complete enough to pass all of the unit tests that are
part of JikesRVM and runs the subset of DaCapo [37] benchmarks that are supported by our
version of JikesRVM (avrora, luindex, lusearch, pmd, sunflow, xalan). We successfully
ran these benchmarks both in simulation and on Rocket Chip mapped to an FPGA.

Figure 8.5 shows one of these benchmarks running on a RISC-V Rocket Chip instance
captured from an FPGA setup. Being able to run DaCapo benchmarks gives us a high degree
of confidence in the functional correctness of our port, as the DaCapo suite consists of large
and complex benchmarks. For example, the benchmarks presented here include a raytracer,
the Lucene search engine, and a code analyzer.

8.5 Running Java on RISC-V Hardware

With a complete port of JikesRVM, we now have the ability to run Java workloads on
RISC-V systems and modify both the JVM and the underlying hardware. To demonstrate
this experimental setup, we ran JikesRVM on Rocket Chip in FPGA-based simulation.

We use Xilinx ZC706 development boards, which are comprised of an Zynq XC7Z045
FPGA with 8 GB of fabric-attached DRAM. We use an FPGA-based simulation framework
based on an early version of MIDAS [131], with timing models to simulate DRAM accesses.
This setup simulates a single Rocket 5-stage in-order CPU, with 16 KB L1 instruction and
data caches and a simulated 1 MB L2 cache.
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Using this setup, we achieved effective simulation speeds of 10 MIPS and more. We
simulate a design with an operating frequency of 1 GHz, a L2 latency of 23 cycles and
a DRAM latency of 80 cycles. Running these experiments for the DaCapo benchmarks
(default input size) allowed us to collect performance data, as well as instruction counts and
other metrics on our platform. Executing the full set of benchmarks takes over 1.2 trillion
instructions, which would take 35 days if simulated at 400 KIPS.

The following table presents the number of dynamic instructions for each of the benchmarks,
as well as their simulated runtime in this setup:

Benchmarks Instructions (B) Runtime (s)
avrora 118.0 311.8
luindex 47.7 103.5
lusearch 263.5 597.2

pmd 158.5 346.8
sunflow 504.8 1,352.9
xalan 190.8 466.4

JikesRVM is configured to use the Mark & Sweep garbage collector. With a 100 MB maximum
heap size, the JVM spends the following fraction of time in GC for each benchmark:

Benchmarks GC Pauses Time in GC
avrora 10 6%
luindex 8 13%
lusearch 90 35%

pmd 26 30%
sunflow 52 9%
xalan 39 27%

While this implies that the JVM’s performance can be improved substantially, note that the
baseline compiler’s primary responsibility is to run code that executes rarely. In order to
generate performance-competitive code, we need to port the optimizing JIT compiler as well
(for which the baseline compiler is a prerequisite).

8.6 Research Case Study

We believe that FPGA-based full-system simulation of JikesRVM workloads on RISC-V
hardware enables studies that are difficult to perform in a traditional setup. Specifically,
we can modify the software stack as well as the underlying hardware, while collecting cycle-
accurate numbers that can capture fine-grained interactions for full workload executions with
short simulation times. This enables design-space explorations that modify both hardware
and software layers, and detailed instrumentation of the entire system.
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Figure 8.5: Output of JikesRVM running one of the DaCapo benchmarks, with verbose GC
output. This is a processed log file – all MIDAS debug output was removed.

To demonstrate these capabilities, we conduct a study inspired by a 2005 paper by
Hertz and Berger [101]. In order to investigate trade-offs between manual and automatic
memory management, the authors instrumented JikesRVM to extract a trace of allocated
memory addresses, and – in a second pass – inject another trace of addresses produced by
an oracle. The authors found that this was difficult to achieve in software, as the software
instrumentation led to a 2-33% perturbation in execution time, which was larger than the
effect they were measuring. They therefore used a software architectural simulator.

This problem is common: Many interactions in managed-runtime systems are fine-grained
and therefore difficult to measure. One example of these interactions are memory allocations,
which occur frequently but complete quickly most of the time. We are often interested in the
causes of long allocations, and want to measure time spent in allocation routines.

To record these allocations in a traditional system, we would have two options: we
could either use an instrumentation-based approach or a sampling-based approach. However,
the former introduces observer effects and perturbs the execution time, while the latter
traditionally achieves low sampling frequencies and can hide important details. Figure 8.6
shows an example of this: While sampling at 1 KHz helps us understand the macro-behavior
of the application (Figure 8.6a), it does not tell us about individual allocations (Figure 8.6b).
To gain additional insight into the behavior of the memory allocator, we need to be able to
record every single allocation latency – without perturbing the execution time.
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(a) 600ms slice sampled at 1 KHz (b) 20ms slice sampled at 1 KHz (c) The same 20ms in MIDAS

Figure 8.6: Time spent in allocation routines per sampling interval. We contrast an approach
that samples time spent in allocation at a 1 KHz-granularity with using the MIDAS simulation
framework to record every allocation in hardware without introducing observer effects to
the application (numbers are from the pmd DaCapo benchmark). Results were collected in a
single run and aggregated to demonstrate the effect of different sampling rates.

One approach to this problem would be to use a system like SHIM [237], which enables
high-resolution sampling while minimizing the observer effect. It achieves this by running an
observer thread in a second hardware context on an SMT-enabled multiprocessor, sampling
at a resolution of 1,200 cycles at only 2% overhead. SHIM can also perform measurements
at an extremely fine-grained solution of ≈ 15 cycles, but then the perturbation becomes
large, at an overhead of 61%. While this is sufficient to understand program behavior, it is
limited to counters exposed by the hardware. Specifically, SHIM is designed for existing SMT
processors and cannot instrument arbitrary signals in a modifiable hardware design.

Infrastructure such as JikesRVM running on Rocket Chip enables us to instead instrument
arbitrary signals in hardware: by adding on-chip buffers to the RTL design, we can record
every allocation in the execution of the program, and produce a detailed trace without
perturbing the execution time. In this case, we record the start and end time, as well as the
size class and memory address associated with every allocation.

Figure 8.6c shows the result: by looking at the duration of every allocation, we see that
most allocations complete in ≈ 4, 000 cycles, while some allocations take 10–100× longer.
This gives us insight into the behavior of the memory allocator (in this case, a segregated
free-list allocator). In the common case, the allocator consumes a set of per-size-class free
lists, and completes quickly if a cell is available on the list. If not, the allocator has to remove
a new block from the global free list, zero the block’s memory, and create a new free list.

There are other insights that can be gained from this trace as well. For example, looking
at allocations for the same size class and counting how many of them use the fast path, we
can deduce the amount of memory fragmentation. We can also analyze locality: looking
at the addresses that are returned by the allocator (Figure 8.7), we see that subsequent
allocations to the same size class are typically contiguous, but overall locality is low. This
confirms that segregated free-list allocators produce poor locality.
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Figure 8.7: Virtual addresses returned by the JikesRVM free-list allocator over time. Colors
indicate the allocation size class. Segregated free list allocators provide poor locality.

Memory allocators are only one example of experiments that are possible with this
infrastructure, and we believe that it will open up new research directions in a wide range of
areas. We are particularly interested in using this infrastructure to evaluate our hardware-
assisted garbage collector design from Chapter 7.

8.7 Summary

In this chapter, we presented our port of JikesRVM to RISC-V, and demonstrated how it runs
on FPGA-based RISC-V hardware. We believe that the combination of a managed-runtime
system and hardware that can be easily modified will enable new kinds of hardware-software
research, as demonstrated by our case study.

Equipped with this infrastructure, we can now implement our hardware-assisted GC
design by modifying JikesRVM to use our bidirectional object layout, add our hardware
extensions to Rocket Chip and add a driver to Linux to connect them to one another. The
next chapter will describe the prototype that resulted from using this infrastructure, and
shows a performance evaluation and design space exploration for this prototype.
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Chapter 9

The GC Accelerator Prototype

In this chapter, we present a prototype of a specific incarnation of our general Hardware GC
design, built using the research infrastructure from the previous chapter. We demonstrate
an end-to-end RTL prototype, integrated into a Rocket Chip RISC-V System-on-Chip (SoC)
executing full Java benchmarks within JikesRVM running on top of Linux on FPGAs. Our
prototype performs the mark phase of a tracing GC at 4.2× the performance of an in-order
CPU, while using only 18.5% the area (an amount equivalent to 64KB of SRAM). By
prototyping our design in a real system, we show that our accelerator can be adopted without
invasive changes to the SoC, and estimate its performance, area and energy.

9.1 Our Prototype Implementation

Following a description of our general Hardware GC scheme in Chapter 7, we now describe
our specific implementation of this general design. We focus on the accelerator portion and
implemented an RTL prototype of the GC unit within a Rocket Chip [18] SoC. As in our
GPU garbage collector, the unit is integrated with JikesRVM, using our JikesRVM RISC-V
port described in the previous chapter. We evaluate our prototype in a stop-the-world setting,
but as shown in Section 7.6.1, it could be used in a concurrent collector as well. Figure 9.1
shows an overview of how our design is integrated into the system.

We start by presenting our prototype in detail, describe how it is integrated into Rocket
Chip and the modifications that we had to make to the hardware and software layers. We
then present a detailed evaluation of this design, to show that it outperforms a CPU by
4.2× on the mark phase, while only consuming 18.5% the area and reducing the energy
consumption per GC cycle by 14.5% . By building out the full design and integrating it
into a real SoC, we also show that it is non-invasive enough to be integrated into a realistic
system. This allows us to evaluate the potential and the feasibility of integrating such an
accelerator into real-world production SoCs.
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Figure 9.1: System Integration. Green boxes refer to components we added to the system.
Identically colored boxes on the left and the right refer to the same memory spaces.

9.2 JikesRVM Modifications

We build on our RISC-V port of JikesRVM from Chapter 8. In order to integrate this
port with our hardware unit, we had to make several modifications to JikesRVM. These
modifications are representative of changes any language runtime system would have to make
to target our hardware unit, and are limited to the language-runtime level (i.e., nothing
changes from the perspective of an application running on top of the JVM).

9.2.1 Memory Management Toolkit (MMTk) Integration

MMTk [36] is the framework within JikesRVM that implements most memory-management
functionality. By factoring out all memory-management related functionality into a single
frameworks, MMTk makes it easier to change GC logic within the runtime system.

The integration of our GC unit is reminiscent of the way we integrated our GPU garbage
collector into Jikes (Section 6.4). Specifically, we implemented our collector as a new HWGC

plan in MMTk. A plan describes the spaces that make up the heap, as well as allocation and
GC strategies for each of them. We base our work on the MarkSweep plan, which consists of
9 spaces, including large object space, code space and immortal space.

Our collector traces all of these spaces, but only reclaims the main MarkSweep space
(which contains most of the newly allocated objects). The other spaces, such as the code
space, are still managed by Jikes (however, there is no fundamental reason they could not
use the GC unit). This is particularly relevant in the case of the large object space, which by
default uses a treadmill-based collector (i.e., objects are moved into the new space as they
are discovered, not during a sweep phase). We therefore had to modify this collector to use
the mark bits generated by our unit instead.
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Figure 9.2: JikesRVM Integration. Memory is divided into blocks, which are split into
equisized cells (each field represents a 64-bit word). Cells either include objects or free list
entries. References point to the second object field to facilitate array offset calculation.

At a high level, the HWGC plan uses a similar strategy to our GPU collector, redirecting
calls to perform the mark and sweep portions of the GC to C functions which are running
within the JVM’s address space and interact with our GC unit.

We also modified the root scanning mechanism in JikesRVM to not write the references
into the software GC’s mark queue but instead write them into a region in memory that is
visible to the GC unit (heap-space). We implement this region as a new space within our
garbage collector, and ensure that this memory is fully mapped and contiguous (as it will be
accessed by the GC unit, which cannot currently handle page faults).

9.2.2 Bidirectional Object Layout

In contrast to our reference-graph-based approach on the GPU (Chapter 6), we modified
JikesRVM to fully implement the bidirectional object layout described in Chapter 7. JikesRVM
factors the object layout into a small number of classes. In particular, a FieldLayout class
is responsible for calculating the offsets of all fields within a class, and a JavaHeader class is
responsible for interpreting and modifying header fields. Beyond these classes, several other
changes were required for the JVM to work correctly with the new layout, including fixing a
bug in the thin lock implementation that was not triggered without our changes. We also
had to ensure that weak references are treated as regular references in our layout.

One important question when implementing the bidirectional layout is where to store the
number of references. We found 34 unused bits in the header’s status word (Figure 9.2). We
use 32 of these bits to store the number of references in an object (for arrays, we set the
MSB of these 32 bits to 1 to distinguish them). The remaining two bits are used for the
actual mark bit and for a tag bit that we set to 1 for all objects (this will be useful for the
reclamation unit). Furthermore, we also replicate the reference count at the beginning of the
array, which is necessary to enable linear scans through the heap.
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We had to be particularly careful how this layout integrates with Jikes’s memory allocator.
Jikes’s Mark & Sweep plan uses a segregated free list allocator: Memory is divided into blocks,
and each block is assigned a size class, which determines the size of the cells that the block is
divided into. Each cell either contains an object or a free list entry, which link all empty cells
together. During the sweep phase, the collector has to be able to distinguish between objects
and empty cells containing free list entries (this is the purpose of the previously mentioned
tag bit). The collector then has to generate the same kinds of free lists and make them
available for the memory allocator to use (by writing them into a list of head pointers).

9.3 Integration into Rocket Chip

As mentioned previously, we prototyped our design in the context of Rocket Chip (Section 8.2).
By implementing our accelerator in an SoC that is used in commercial projects, we show
that it is realistic, non-invasive and can be adopted in an existing design. Building on Rocket
Chip also facilitated our development, as it provided us with a library of parameterizable
components such as cores, devices, caches and other functional units. For example, we were
able to reuse Rocket’s TLB and page-table walker (PTW) implementations.

Rocket Chip is written in Chisel [22], a hardware description language embedded in Scala.
Chisel is not a high-level synthesis tool but operates directly at the RTL-level. By being
embedded in Scala, it makes it easier to write parametrizable generators. Rocket Chip takes
advantage of this flexibility to allow developers to describe SoC instances at a high level.
These SoC designs connect devices and cores together using a shared-memory interconnect
called TileLink, which automatically negotiates communication contracts between endpoints
using a framework called Diplomacy [58].

To integrate our GC accelerator into this system, we created a new Chisel module which
we register as a TileLink client and connect it to the system bus (which is the Rocket Chip
equivalent of the Northbridge). We also connect a set of memory mapped (MMIO) registers
to the periphery bus (Southbridge), for configuration and communication with the CPU.
Diplomacy automatically infers the necessary protocol logic, connects the module into the
SoC and produces a device-tree structure that can be used to configure Linux drivers.

9.4 Mark Unit Implementation

The mark unit closely follows the design in Figure 7.6. We explored several versions of the
marker and tracer: one version connects to a shared 16KB data cache, one partitions this
cache among the units and one directly talks to the TileLink interconnect. As the GC unit
operates on virtual addresses, we added a page-table walker and TLBs to the design (the
PTW is backed by an 8KB cache, to hold the top levels of the page table).

At the beginning of a GC, a reader copies all references from the hwgc-space into the
mark queue. Then, the marker and tracer begin dequeuing references from their respective
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Figure 9.3: Mark Queue Spilling. When the main mark queue (Q) fills up, requests are
redirected to outQ, which is written to memory. When Q empties, these requests are read
back from memory and buffered within inQ.

input queues and pass their results to their output (the queues exert back-pressure to avoid
overflowing, and marker and tracer can only issue requests if there is space). This repeats
until all queues and the hwgc-space are empty.

9.4.1 Mark Queue Spilling

As the mark queue can theoretically grow arbitrarily, we need to spill it to memory when it
fills up. Figure 9.3 shows our approach. We add two additional queues, inQ and outQ. A
small state machine writes entries from outQ into a physical memory range not shared with
JikesRVM, and reads entries from this memory into inQ if there is space (and outQ is empty).
We always give priority to the main queue, but if it is full, we enqueue to outQ (when it is
empty, we dequeue from inQ). When outQ reaches a certain fill level, we assert a signal that
tells the tracer to stop issuing memory requests, to avoid outQ from filling up. If there are
elements in outQ and free slots in inQ, we copy them directly into inQ, reducing the number
of memory requests. By prioritizing memory requests from outQ, we avoid deadlock.

9.4.2 Marker

We started out with a design that sends atomic memory operations (AMOs) to a non-blocking
L1 cache. However, this limits the number of requests in flights (a typical design has 32
MSHRs). MSHRs operate on 64B cache lines, and need to store an entire request. In contrast,
all requests in the marker are the same, operate on less than a cache line, and do not need
to be ordered. We therefore built a custom marker that talks to the interconnect directly
(Figure 9.4). We only hold a tag and a 64-bit address for each request, translate them using a
dedicated TLB, send the resulting reads into the memory system and then handle responses
in the order in which they return. For each response, we then also issue the corresponding
write-back request to store the updated mark bit and free the request slot (note that we can
elide write-backs if the object was already marked).
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9.4.3 Tracer

We built a custom tracer that can keep an arbitrary number of requests in flight. After
translating the virtual address of the object, it enters a request generator, which sends Get

coherence messages into the memory system. Our interconnect supports transfer sizes from
8 to 64B, as long as they are aligned. If we need to copy 15 references (15 × 8 bytes) at
0x1a18, we therefore issue requests of transfer sizes 8, 32, 64, 16 (in this order). Note that
we need to detect when we reach a page boundary; in this case, the request is interrupted
and re-enqueued to pass through the TLB again.

9.4.4 Address Compression

We operate on 64-bit pointers, but runtime systems do not typically use the whole address
space. For example, our JikesRVM heap uses the upper 36 bit of each address to denote the
space, and the lowest 3 bit are 0 since pointers are 64-bit aligned. Many runtime systems
also use bits in the address to encode meta-data, which may be safely ignored by the GC
unit. Our design provides a general mechanism to exploit this property: before enqueuing a
reference to the mark queue, it can be mapped to a smaller number of bits using a custom
function. The reverse function is applied when the object is dequeued. We demonstrate this
strategy by compressing addresses into 32 bits, which doubles the effective size of the mark
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queue and halves the amount of traffic for spilling. Runtime systems with larger heaps may
use a larger number of bits instead (e.g., 48).

9.4.5 Mark Bit Cache

Most objects are only accessed once and therefore do not benefit from caching (Figure 9.11a).
However, we found that there are a small number of objects that are an exception to the rule:
about 10% of mark operations access the same 56 objects in our benchmarks. We therefore
conclude that a small mark bit cache that stores a set of recently accessed objects can be
efficient at reducing traffic. This has similarities to dynamic filtering, which has been shown
to be effective in similar scenarios [96].

9.5 Reclamation Unit Implementation

In our prototype, we implement the simplest version of the reclamation unit, which executes
a non-relocating sweep. As such, it does not require the forwarding table or read-barrier
backend from Section 7.6.1. Each block sweeper receives as input the base address of a block,
as well as its cell and header sizes. It then steps through the cells in a linear fashion.

The unit first needs to identify whether a cell contains an object or free list entry (recall
Figure 9.2). It first reads the word at the beginning of the cell – if the LSB is 1, it is an
object with the bidirectional layout. Otherwise, it is a next-pointer in a free cell, or a TIB
for an object without references or an array. Based on each of these cases, we can calculate
the location of the word containing the mark bit, which then allows us to tell whether the
cell is free (i.e., the tag bit is zero), it is live but not reachable (the tag bit is one, the mark
bit is not set) or contains a reachable object (both bits are set). In the first two cases, we
rewrite the first word of the cell to add it to the free list, otherwise we skip to the next cell.

9.6 System-Level Integration

With the JikesRVM modifications and the GC unit in place, the missing part is to allow the
two components to communicate. This communication is established through a Linux driver
that we integrated into the kernel. This driver installs a character device that a process can
write to in order to initialize the settings of the GC unit, initiate GC and poll its status.
When a process accesses the device, the driver reads its process state, including the page-table
base register and status bits, which are written to memory-mapped registers in the GC unit
and used to configure its page-table walker. This allows the GC unit to operate in the same
address space as the process on the CPU.

When the driver is initialized at boot time, it allocates a spill region in physical memory,
whose bounds are then passed to the GC unit. This region has to be contiguous in physical
memory and we currently allocate 4MB by default. To communicate with the driver, we
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Processor Design (Rocket In-Order CPU @ 1 GHz)

Physical Registers 32 (int), 32 (fp)
ITLB/DTLB Reach 128 KiB (32 entries each)
L1 Caches 16 KiB ICache, 16 KiB DCache
L2 Cache 256 KiB (8-way set-associative)

Memory Model (2 GiB Single Rank, DDR3-2000)

Memory Access Scheduler FR-FCFS MAS (16/8 req. in flight)
Page Policy Open-Page
DRAM Latencies (ns) 14-14-14-47

Table 9.1: Rocket Chip Configuration

also extend JikesRVM with a C library (libhwgc.so). Our MMTk plan uses Jikes’s SysCall
foreign function interface to call into this C library, which in turn communicates with the
device to configure the hardware collector (e.g., setting the pointer to the hwgc-space) and
to initiate a new collection. By replacing libhwgc with different implementations, we can
swap in a software implementation of our GC, as well as a version that performs software
checks of the hardware unit (or produces a snapshot of the heap). This approach helped for
debugging, as it allowed us to work on hardware and software modifications in parallel.

9.7 Evaluation

To evaluate our design, we ran it in FPGA-based simulation, using the simulation infrastruc-
ture described in Chapter 8. We run our design within Rocket Chip on MIDAS, using Amazon
EC2 F1 instances [6]. This allowed us to run cycle-accurate simulation at effective simulation
rates of up to 125 MHz (on Xilinx UltraScale+ XCVU9P FPGAs). While our target RTL
executes cycle-accurately on the FPGA, we use MIDAS’s timing models to simulate the
memory system (in particular, DRAM and memory controller timing).

Table 9.1 shows the configuration of our Rocket Chip SoC and the parameters of the
memory model that we are using. Note that we currently compare against an in-order Rocket
core, rather than Rocket Chip’s BOOM out-of-order core. Through preliminary analysis of
running heap snapshots on an older version of BOOM with DRAMSim, we found that it
outperformed Rocket on these workloads by only around 12% on average. This may seem
surprising, but limited benefits of out-of-order cores over in-order cores for GC have been
confirmed on Intel systems [43]. We therefore consider Rocket a reasonable baseline.

The goal of our prototype and evaluation is (1) to demonstrate the potential efficiency
of our unit in terms of GC performance and area use, (2) characterize the design space of
parameters, and (3) show that these benefits can be gained without invasive changes to the
SoC. While we integrated our design into Rocket Chip, our goal is not to improve this specific
system, but instead understand high-level estimates and trade-offs for our GC unit design.
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Figure 9.6: GC Performance. On average, the GC Unit outperforms the CPU by a factor
of 4.2× for mark and 1.9× for sweep.

Figure 9.7: Memory Bandwidth. Measured for the last GC pause of the avrora benchmark,
based on 64B cache line accesses.

9.7.1 Garbage Collection Performance

As in Chapter 6, we evaluate performance using the subset of DaCapo benchmarks [37] that
runs on our version of JikesRVM. We use the small benchmark size on a 200 MB maximum
heap and average across all GC pauses that occur during the benchmark execution.

Our JikesRVM port does not include the optimizing JIT compiler. As Jikes JIT-compiles
itself, this would have resulted in a slow baseline of the CPU-version of the GC. We therefore
rewrote Jikes’s GC in C, compiling it with -O3 and linking it into the JVM using the same
libhwgc.so library that we use to communicate with our hardware unit.
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Figure 9.8: GC Performance with 1 cycle DRAM and 8 GB/s bandwidth. As some request
sizes are smaller than a full cache line, the amount of usable data is smaller than the theoretical
peak bandwidth.

Overall Performance

Our baseline GC unit design contains 2 sweepers, a 1,024 entry mark-queue, 16 request slots
for the marker, 32-entry TLBs and a 128-entry shared L2 TLB. This configuration outperforms
Rocket by 4.2× on mark and 1.9× on sweep (Figure 9.6). Figure 9.7 shows the source of this
gain: our unit is more effective at exploiting memory bandwidth, particularly during the mark
phase. This was confirmed by experimenting with different memory scheduling strategies:
While Rocket was insensitive to the configuration, we found that our performance was
significantly improved changing from FIFO MAS to FR-FCFS and increasing the maximum
number of outstanding reads from 8 to 16.

Potential Performance

While the previous experiment showed a specific design point with a realistic memory model,
we want to fundamentally understand how much memory bandwidth our unit can exploit if it
was given a faster memory system. We therefore replaced our model with a latency-bandwidth
pipe of latency 1 cycle and bandwidth 8 GB/s.

In this regime, we outperform the CPU by an average of 9.0× on the mark phase. We
believe that this is similar to the speed-ups we could see in a high-end SoC, based on
preliminary evaluations. Note that the limited speedup for the sweep phase is based on using
only two sweepers, and can be increased (Section 9.7.2).

Instrumenting our unit, we found that our TileLink port is busy 88% of all mark cycles.
Figure 9.8b shows that this translates to a request being sent into the memory system every
8.66 cycles. With 64B cache lines, one request every 8 cycles would be the full bandwidth of
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Figure 9.9: Mark Unit Memory Requests. In order to reduce contention, we partition the
L1 cache into smaller caches.

the 8GB/s system, but as our requests are less than 64B in size, we sometimes exceed this
limit. Using small requests also means that, depending on the memory system, we may not
be able to make full use of all 8 GB/s (we consume a maximum 3.3GB/s of data).

Performance Limits and Impact of TLBs

To understand what prevents our baseline from reaching this 9.0× speedup, we instrumented
the unit to explore sources of stalls. We also compared to preliminary simulations on
DRAMSim [224] with 8 banks and no virtual memory, which showed 8.5× speedup over
Rocket. While not directly comparable, one of the major differences between the two
experiments was the presence of virtual memory.

One bottleneck are currently TLB accesses in Marker and Tracer. Our current TLB
is blocking (i.e., cannot respond to TLB requests while waiting for a page-table walk to
complete), and TLB misses can therefore serialize execution. Future work should therefore
introduce a non-blocking TLB that can perform multiple page-table walks concurrently while
still serving requests that hit in the TLB. As the unit is pipelined, there is also an opportunity
to use bigger multi-cycle TLBs, which might reduce TLB pressure and improve area, as they
can use sequential SRAM memories.

9.7.2 Impact of Design Parameters

Cache Partitioning As described in Section 9.4, we started with a design that had a
small, shared cache. We found that this performed barely better than the CPU. Figure 9.9a
shows why: 2/3 of requests to the cache are from the page-table walker, as the mark phase
has little locality and therefore introduces a large number of TLB misses.
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Figure 9.10: Mark Queue Size Trade-Offs. Sizes include inQ/outQ and we show numbers
for two different tracer queue (TQ) sizes, as well as with compressed references.

This creates a large amount of contention on the cache’s crossbar, effectively drowning out
requests by other units. This led us to apply cache partitioning: The PTW benefits from a
small 8 KB cache to hold the top levels of the page table, while the mark queue and sweeper
access memory sequentially and therefore only need 2 cache lines. Meanwhile, the marker
and tracer can connect to the interconnect directly. Another advantage of this setup is that
we can remove features from caches that are not needed. For example, the mark queue only
operates on physical memory and therefore does not need a TLB.

The result is shown in Figure 9.9b: In terms of memory requests that are sent into the
actual memory system, marker and tracer now dominate. This is the intention, as these are
the units that perform the main work.

Impact of Mark Queue Size The mark queue is the largest data structure of our unit
and we assumed that its size has a major impact on performance. As expected, Figure 9.10
shows that the size has an impact on the amount of spilled data. However, spilling accounts
for only ≈ 2% of memory requests.

We were surprised to find that the mark queue’s impact on overall performance is small.
The reason is that most of the parallelism in the heap traversal exists at the beginning:
The queue fills up, almost all of this data is spilled into memory and then enqueuing and
dequeueing happen at a similar rate, which means that the queue stays mostly full.

We can therefore choose a very small queue size (e.g., 2 KB) without sacrificing performance.
An interesting trade-off is that we can throttle the tracer to match the dequeueing rate of
the mark queue. As every reference in the tracer queue expands to multiple references in the
mark queue, this may help manage the amount of spilling.
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Figure 9.11: Impact of the Mark Bit Cache. 56 objects account for 10% of accesses (8th
GC of luindex ), and we can filter these duplicate requests with a cache.
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Figure 9.12: Scaling the number of block sweepers. Performance is reported as speed-up
relative to the software implementation.

Mark Bit Caching A small number of objects account for 10% of all memory accesses
(Figure 9.11). Storing the most recently seen references therefore helps reduce the number of
marks requests. The largest gain per area can be achieved with a small cache (< 64 elements).
At the same time, we found this to not have a substantial impact on the mark performance.
We believe that this may change closer to peak bandwidth.

Mark Queue Compression Figure 9.10 shows that our compression scheme from Sec-
tion 9.4 reduces spilling by a factor of 2. Note that this scheme compresses to 32 bit – real
implementations would likely need to preserve at least 48 bit.

Sweeper Parallelism Figure 9.12 shows how additional block sweepers improve sweep
performance. We found that we scale linearly to 2 sweepers but that beyond this point,
speed-ups start to reduce. At 8 sweepers, the contention on the memory system starts to
outweigh the benefits from parallelism. 4 sweepers outperform the CPU by 2–3×.
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Figure 9.13: Area Synthesis Results. Estimated using Synopsys DC with the SAED EDK
32/28 standard cell library. Note that Rocket is a small CPU.
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Figure 9.14: Power and Energy Synthesis Results. Due to higher bandwidth utilization,
DRAM power is much higher, but the overall energy is still lower.

9.7.3 Area & Power Synthesis Results

We ran our design through Synopsys Design Compiler in topographical mode with the SAED
EDK 32/28 standard cell library [208]. This provides us with ballpark estimates of area and
power numbers. Figure 9.13 shows that our GC unit is 18.5% the size of the CPU, most of
which is taken up by the mark queue. This is comparable to the area of 64KB of SRAM.
Note that we are comparing to a small CPU – the trade-off would be much more pronounced
in a server or mobile SoC, where a block of this size is negligible.

To estimate energy, we collected DRAM-level counters for the GC pauses in Figure 9.7
and ran them through MICRONs DDR3 Power Calculator spread sheet [158]. Power numbers
for the GC unit and processor were taken from Design Compiler. Using these power numbers
and execution times, we calculate the total energy for mark and sweep (Figure 9.14). Without
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activity counters, these results are not exact, but we conclude that the overall energy for the
GC unit will likely improve over the CPU (by 14.5% in our results).

9.8 Summary

In this chapter, we presented a prototype of our hardware accelerator for GC that can be
integrated into a server or mobile SoC and performs GC for the application on the CPU.
The unit can be implemented at a very low hardware cost (equivalent to 64KB of SRAM),
generalizes to stop-the-world and concurrent collectors and does not require modifications to
the SoC beyond those required by any DMA-capable device.

By implementing a prototype of this design in the context of a real SoC, we demonstrate
that the integration effort is manageable, and that the collector design takes up 18.5% the
area of a small CPU core, while performing GC at 3.3× the speed. At this low cost, we
believe that a case can be made to integrate such accelerators into production SoCs.
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Chapter 10

Discussion & Future Work

In this chapter, we discuss implications of the work presented in this thesis, and future research
directions that result from it. We then summarize why we believe that future data center
research should not consider the managed runtime system in isolation, but instead co-design
it with the hardware and the software systems layers.

10.1 Hardware Support for Garbage Collection

Chapter 9 presented a prototype of a basic GC accelerator design. We showed that such a
unit is small enough to be integrated into future SoCs at an area cost comparable to 64 KB
of SRAM. As this size is negligible within the context of a high-performance SoC, we believe
that there is little reason not to add such an accelerator.

The performance benefits may be significant. Moving garbage collection to the accelerator
frees up the CPU cycles that are currently spent on GC, accounting for up to 38% of cycles
(10% on average [43]). In the context of a data center, these savings are substantial, especially
if they are available across a wide range of workloads. Due to its higher GC performance,
the accelerator may also improve memory utilization if used in a concurrent collector.

At the same time, we are seeing a trend towards systems software being written in
languages such as Go, which have concurrent GC that runs continuously. If the operating
system is implemented in such a garbage-collected language, it is important to ensure that
the kernel never blocks due to memory pressure, as this would stall other threads and may
require the kernel to deschedule applications to run GC instead. This problem could be
solved by our hardware accelerator, since it would never require CPU cores to run GC.

In addition to the performance benefits, the accelerator not only decreases on-chip area
and power, but also overall energy for the GC operation – this is in contrast to accelerator
designs which increase performance but not the energy of the overall operation.

Finally, our design is simple and consists of only 3,122 lines of Chisel code (and less than
50 lines to integrate it into the RocketChip SoC). This is important, since it indicates that
verification effort is limited and that the accelerator is unlikely to add significant design effort.
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We also confirmed this through our own development, where we found that the design was
very amenable to testing using snapshots from previous GC runs.

In order to adopt our accelerator design in a real system, several other problems need to
be solved as well. On one hand, the unit needs to be extended to support concurrent GC,
which is becoming increasingly important in data centers. The techniques for one possible
integration were presented in Section 7.6.1. On the other hand, there are several additional
extensions that future work could explore:

• Supporting Different Object Layouts: While the bidirectional layout is key to
performance, forcing runtimes to adapt it to support our unit is limiting. A more
general accelerator could support arbitrary layouts by replacing the marker with a
small RISC-V microcontroller (only implementing the base ISA). We could then load a
small program into this core which parses the object layout, schedules the appropriate
requests and enqueues outgoing references for the tracer.

One interesting question is how to handle dynamic languages where the same field may
either contain a reference or a non-reference value. This could be handled through tag
bits (like in SOAR [217]), and allowing the microcontroller to install a predicate that
checks these tag bits before adding an entry to the mark queue. This is similar to how
the unit currently filters out null pointers when adding references to the mark queue.

• Bandwidth Throttling: Our GC unit aims to maximize bandwidth, potentially
interfering with applications on the CPU. This interference could be reduced by com-
municating with the memory controller to only use residual bandwidth. This could
allow the accelerator to reduce interference with the application, as it would only use
memory bandwidth when it is not needed by the application.

• Proportionality and Parallelism: The accelerator bandwidth could potentially be
increased by replicating units. Switching these units on and off would allow a concurrent
GC to throttle or boost tracing, depending on memory pressure in the application.
This approach can improve energy consumption [114].

• Supporting Multiple Applications: Our current design only supports one process
at a time, but the same unit could perform GC for multiple processes simultaneously.
In this case, the unit would handle references from different processeses at the same
time, sharing the same mark queue, marker and tracer (similar to simultaneous mul-
tithreading). To enable this strategy, the unit would have to support multiple page
tables and tag references by process as they travel through the design (to ensure that it
always uses the correct page table to translate references).

• Page Faults: The JVM currently has to map the entire address space (in our prototype,
we force all pages to be mapped before the JVM begins execution). A more general
system may want to handle page faults as well (likely by forwarding them to the CPU).



CHAPTER 10. DISCUSSION & FUTURE WORK 149

• Generational GC: Most production-grade collectors are generational, as the gener-
ational approach helps to significantly reduce GC pressure. Our collector design is
compatible with this strategy and could be extended to a generational collector, similar
to C4’s approach of extending Pauseless GC to a generational design [211].

None of these aspects represents a limitation. Instead, they open up a new design space
that could explore further trade-offs along each of these directions. Taking these directions
together would lead to a light-weight GC accelerator that performs garbage collection for
all applications on the CPU and communicates with the memory controller to make use of
any residual memory bandwidth that is not used by the application. This accelerator would
support different language runtime systems and replace their concurrent GC schemes.

The overarching vision is a system that makes garbage collection invisible and free from
the application’s perspective. Instead of incurring traps and slow-downs, all GC functionality
is handled by the accelerator, without slowing down the application. Using the barrier scheme
from Section 7.7, the only visible effect of GC would be REFLOAD instructions that may
occasionally take longer to complete. Similar to LLC misses, speculation may help to tolerate
these latencies. As such, the application does not need to be aware of garbage collection and
while constantly receiving new buffers to allocate from.

10.2 Holistic Runtime Systems

Our work around Holistic Runtime Systems opens up several new research directions as
well. While our prototype was applied to coordination of garbage collection pauses, the same
Holistic Runtime approach could also be applied to other areas, such as sharing the content
of code caches, or establishing communication fast paths (Section 3.6).

We also believe that there is potential to improve how policies are developed. Currently,
the application developer or administrator has to manually specify a policy and tune it to
the specific application scenario. An alternative approach could instead use reinforcement
learning to learn and tune policies automatically. Machine learning techniques have been
successfully used in this type of scenarios [236].

As the cloud is further moving towards a Platform-as-a-Service (PaaS) model, we believe
that the scope of what a Holistic Runtime System could do will expand. With cloud data
centers moving towards a serverless model, rack-scale disaggregation and FPGA accelerators,
the language runtime system will need to adapt to support these future scenarios. Specifically,
we believe that the language runtime system could improve composition of serverless function,
transparently access and manage disaggregated storage (reusing existing managed-runtime
machinery), and map high-level managed code to FPGA-based accelerators.

We believe that these trends only exacerbate the need to rethink the way that managed
language runtime systems are designed for these future data center scenarios. Our Holistic
Runtime approach provides a foundation for this work, and could be expanded into a general
runtime system design for future cloud data centers.
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10.3 Summary

Through two different projects, we showed that several problems related to managed runtime
systems in data centers can be solved by working across multiple layers of the data center
stack. We therefore argue that research should not consider the language runtime system in
isolation, but instead co-design it with the hardware and software systems layers.

Both projects presented in this thesis only represent a first step in this direction and
there are several future research directions that may result from this initial work. We also
believe that our cross-layer approach generalizes and has the potential to be applied to other
areas as well, from using the managed runtime system to transparently manage disaggregated
memory in rack-scale machines, to programming FPGAs using high-level programming models
embedded into managed languages.
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Chapter 11

Conclusion

In this thesis, we showed that it is possible to improve the performance, efficiency and
responsiveness of managed data center applications by co-designing the managed runtime
system with both the hardware and the software systems layer.

On the software side, we demonstrated that a Holistic Runtime System can be used to
improve distributed managed-language workloads by treating the managed runtime systems
underpinning the application as a distributed system themselves. Using this approach, we
built a prototype Holistic Runtime system that can improve tail-latencies of latency-sensitive
workloads by 2-4×, while speeding up a large-scale data-parallel computation by 21% without
modifications to the application.

On the hardware side, we showed that we can design a hardware accelerator for garbage
collection that performs GC at 3.3× the performance of a CPU, at only 18.5% the area. This
design is small and non-invasive enough to be integrated into data center SoCs. We also
showed the potential of this approach for eliminating GC-related pauses, by presenting a
theoretical design for integrating it into a concurrent collector.

Taken together, these two results demonstrate that the data center operator’s full control
of the entire stack provides a potential to significantly improve managed workloads running
in this scenario. We therefore argue that future cloud data centers should co-design the
language runtime system with the underlying hardware and system software.
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tin Maas, Tim Harris, Krste Asanović, John Kubiatowicz. 15th Workshop on Hot
Topics in Operating Systems (HotOS ’15), Kartause Ittingen, Switzerland, May 2015

• The Case for the Holistic Language Runtime System. Martin Maas, Krste
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