
A Case for OS-Friendly Hardware Accelerators

Huy Vo, Yunsup Lee, Andrew Waterman, Krste Asanović
University of California, Berkeley

{huytbvo, yunsup, waterman, krste}@eecs.berkeley.edu

Abstract
Modern SoCs make extensive use of specialized hardware
accelerators to meet the demanding energy-efficiency re-
quirements of demanding applications, such as computer
graphics and video encoding/decoding. Unfortunately, the
state of the art is a sea of heterogeneous fixed-function pro-
cessing units wired together in an ad-hoc fashion, with dedi-
cated memory spaces and a wide variety of host-accelerator
synchronization mechanisms. This cumbersome approach
complicates acceleration of a mix of multi-programmed ap-
plications running on a conventional operating system, and
adds considerable communication overhead that reduces
achievable speedups on a wide range of applications. We
propose that accelerators should adopt a more standardized
OS-friendly interface, to ease integration and improve per-
formance on a wider range of code. Our framework stan-
dardizes the host-accelerator communication interface, pro-
vides a memory consistency model, and specifies the min-
imal requirements for virtual memory support. To evaluate
the feasibility of our proposal, we conduct a case study in
which we modify an existing data-parallel accelerator. When
the integrated accelerator and processor system is pushed
through TSMC’s 45nm process, we observe that the over-
head is only 1.8% in area and 2.5% in energy, illustrating
that the overhead in building OS-friendly accelerators can
be minimal.

1. Introduction
Transistor density improvements are continuing, but energy
scaling is lagging behind due to threshold-voltage scaling
limitations. This has led to the increasing popularity of spe-
cialized hardware accelerators [16] for a wide variety of ap-
plications since these accelerators are much more energy-
efficient than general-purpose processors. Modern SoCs, for
example, tend to integrate numerous accelerators [1] in order
to better carry out their myriad required tasks. These accel-
erators usually have little to no interaction with the general-
purpose operating system, making it difficult to share the ac-
celerators in a fine-grained way across multiple time-shared
applications. To address this problem, we propose a frame-
work for building OS-friendly hardware accelerators.

In Section 2, we present the general framework we pro-
pose for attaching OS-friendly hardware accelerators. In




















 

Figure 1: Accelerator Interface Specification.

Section 3 we conduct a case study in which we augment
an existing Hwacha data-parallel accelerator with an OS-
friendly interface to allow close integration with a general-
purpose CPU. We chose to examine a data-parallel acceler-
ator because it has similar functionality to a GPU. Then in
Section 3.3, we push our combined CPU and data-parallel
accelerator system through an ASIC toolflow. We report area
and energy numbers, showing that our OS-friendly interface
to the parallel accelerator introduces very little overhead. We
discuss related work in Section 4 before concluding.

2. A Framework for OS-Friendly Hardware
Accelerators

In this section we present a framework for building OS-
friendly accelerators, suitable for use with multi-programmed
applications running on a general-purpose operating system.
Our framework specifies a generic connection interface, a
memory consistency model, and requirements for virtual-
memory support, all of which will together standardize the
interactions between the CPU and the accelerator, thus al-
lowing integration between a general-purpose processor and
any accelerator regardless of the processor or accelerator’s
implementation.

Request/Response Interface. Figure 1 shows a generic
interface for integrating a control processor with an acceler-
ator. The majority of communication between the CPU and
the accelerator will use the request-response interface. The
CPU pushes work to the accelerator using the request in-

Krste Asanovic


Krste Asanovic
Appears in the Seventh Annual Workshop on the Interaction amongst Virtualization, Operating Systems, and Computer Architecture (WIVOSCA 2013), at the 40th International Symposium on Computer Architecture (ISCA-40)

Krste Asanovic


Krste Asanovic


Krste Asanovic




terface. If the accelerator is unable to accept work, then the
CPU must block until the accelerator is ready to accept work
from the CPU. The accelerator uses the response interface to
return any results produced from the work received. If the
CPU expects a response value from the accelerator, then the
CPU must block when it executes an instruction that reads
the value until there is a valid response from the accelerator
on the response interface.

Inserting a command queue into the accelerator can re-
duce the amount of time the processor spends stalling on
the request interface. Whenever the CPU pushes work to the
accelerator, the work is enqueued onto the command queue
if there is room. Whenever ready, the accelerator dequeues
work off the queue. The interface will look the same (the
CPU still sees a request-response interface), but the proces-
sor is able to run ahead and push work to the accelerator until
the command queue fills up. The accelerator must have logic
to peek at the CPU request port to capture high priority CPU
requests that require immediate responses, such as interrupt
cause requests and memory fence operations.

Our Hwacha data-parallel accelerator uses a command
queue to allow the strip-mining loop on the CPU to run
ahead and enqueue work from multiple iterations. This is
particularly useful when pushing vector loads since Hwacha
has a vector prefetcher that looks at the CPU request in-
terface for incoming vector memory commands that can be
prefetched [4].

Memory Consistency Model. Accelerators that share
memory space with the CPU require additional memory con-
sistency semantics. To this end, the memory consistency
model specifies the use of a fence instructions to order the
memory operation of the control processor and accelerator.
The fence.ctoa instruction ensures that the accelerator sees
all the memory operations committed by the CPU. The ex-
ample code sequence in Figure 1 shows a possible use case
of the fence.ctoa instruction. In this example, the CPU wants
to push some work to the accelerator and it wants the accel-
erator to see the results that it had previously committed to
memory. The CPU thus inserts a fence.ctoa after the store
and before pushing work to the accelerator. The fence.ctoa
instruction would then block the CPU until all in flight loads
and stores are committed. Then when the CPU pushes work
to the accelerator, the accelerator is guaranteed to see the
results that the CPU has committed. The CPU follows a dif-
ferent procedure if it wants to see results that the accelera-
tor commits. In this scenario, the processor would execute
the loop in Figure 1. The pending instruction is pushed to
the accelerator through the request interface. The accelera-
tor will then put a 0 or 1 on the response interface depending
on whether or not it has work. The subsequent branch in-
struction will read the register and loop if there is pending
work in the accelerator. Repeatedly executing this loop can
be energy inefficient, so as an optimization the accelerator
can choose to not respond to the pending request for some

number of cycles. This will cause the CPU to block on the
branch instead of needlessly executing the loop. Once the ac-
celerator has written a 0, the processor can read results that
the accelerator has committed to memory.

CPU Interrupting the Accelerator. Occasionally, the
CPU might need to stop and reschedule the process running
on the accelerator (due to an expired time quota for exam-
ple). The CPU can use the request interface to stop the ac-
celerator and push an address that the accelerator can then
use to save its execution state out to memory. To make sure
that the accelerator has finished saving its execution state,
the CPU can use the pending loop that we describe previ-
ously. When the CPU wants to restart the accelerator at a
later point, it can read the saved state from memory and push
it back into the accelerator though the request interface.

Accelerator Interrupting the CPU. The accelerator sig-
nals an interrupt whenever it needs assistance from the CPU.
The accelerator might want the CPU to execute some code
on its behalf, in which case it would alert the CPU by raising
the interrupt line in Figure 1. Whenever the CPU is ready
to take the interrupt, it will save its current execution state
and jump into an interrupt handler to take the interrupt. The
CPU can figure out the interrupt cause by using the request-
response interface. If the CPU wants to use the accelerator in
another process while it handles the interrupt, the CPU can
have the accelerator save its execution state out to memory
using the process discussed above.

Virtual Memory Support. In a system that supports vir-
tual memory, the CPU, which sees only virtual addresses,
can push either physical or virtual addresses to the acceler-
ator. Pushing physical addresses to the accelerator requires
more work on the CPU side in order to offload work to the
accelerator since the CPU has to perform the address trans-
lation. Pushing virtual addresses requires less work on the
CPU side but the accelerator is now responsible for address
translation. The accelerator can use its own TLB to speed
up translation. If an address translation fails, the accelera-
tor can use the interrupt interface described above to request
help from the processor.

We have the CPU push virtual addresses since it is not
always possible to know all the addresses that an accelerator
will touch for a given task. Even in the case when we do
know the addresses, pushing physical addresses presents
a problem as the command queue in the accelerator can
represent committed architectural state. If the OS swaps out
the current process, the virtual to physical address mapping
can change which would invalidate the committed physical
address.

3. Case Study: An OS-Friendly Data-Parallel
Accelerator

In this section we make a case for OS-friendly hardware
accelerators. We carefully discuss the necessary changes to






(a) Vectorizable C loop
















(b) Traditional Vector






















(c) Vector-Thread

Figure 2: Vector Code Example. Vectorizable C code compiled for the traditional vector architecture and the vector-thread
architecture.

our Hwacha data-parallel accelerator. We then show that
these changes introduce very little overhead.

3.1 The Baseline Hwacha Data-Parallel Accelerator
We first describe the baseline microarchitecture of our
Hwacha vector-threaded (VT) data-parallel accelerator in
detail. We present only a brief overview of VT machines
here before diving into the details of our microarchitecture,
but a fuller survey of data-parallel accelerators is available
in [12]. In a VT architecture, the control thread (CT) is re-
sponsible for configuring and managing the data-parallel
accelerator as well as pushing work to the data-parallel ac-
celerator. The microthreads (µT) execute the work that they
receive from the CT. The CT can push work through the use
of a vector-fetch instruction. When the CT executes this in-
struction, it sends the PC of the start of a scalar instruction
stream to the data-parallel accelerator. The µTs will then
start fetching and executing instructions from this PC until
they reach a stop instruction.

Figure 2 shows an example vectorizable C loop compiled
for both a traditional vector and a VT architecture. In a tradi-
tional vector architecture, the CT fetches and executes all of
the instructions in Figure 2b. Instructions 3–8 of Figure 2b,
when executed, will push work to the data-parallel accel-
erator. The remaining instructions comprise the stripmining
loop. Compare the compiled traditional vector code to the
compiled vector-thread code in Figure 2c. In this example,
the CT will fetch and execute instructions 2-12. The major
difference between the code in Figure 2b and Figure 2c is

that CT does not explicitly push the vector gather-scatter and
vector multiply instructions to the data-parallel accelerator.
Instead, instruction 6 in Figure 2c will push the start address
(utcode at line 13 in this example) of a code block meant
to run on the data-parallel accelerator. The accelerator will
then start fetching instructions at this address until it hits the
stop instruction. Notice that the instructions in the utcode

section appear to be scalar instructions, but the accelerator
applies them to each µTs.

Figure 3 shows the block diagram for the Hwacha data-
parallel accelerator. The control thread is mapped to the CPU
while the µTs are mapped to Hwacha. Hwacha is meant
to be decoupled from the control processor and thus has
a command queue [8]. This allows the strip-mining loop
on the CPU to run ahead and enqueue work from multiple
vector-fetch commands. Whenever ready, the issue unit de-
queues a vector-fetch command and starts fetching instruc-
tions from Hwacha’s instruction cache at the PC indicated
by the vector-fetch command. In addition to vector fetches,
Hwacha also understands vector memory operations such
as vector loads and vector stores. These instructions make
it possible to hide memory latencies since the CPU can
prefetch the data as it pushes the instruction to Hwacha.

Hwacha has a single lane which consists of 8 256⇥64b
register banks with 1 read port and 1 write port. We use
SRAMs to build the register file and opt for the more area-
efficient banked register file as opposed to a monolithic reg-
ister file with many read and write ports. All of the registers
corresponding to a µT are grouped into the same register





















 






































































Figure 3: Hwacha Microarchitecture. AIW = active instruction window, D$ = data cache, EVAC = evacuator, FMA = fuse
multiply-add, I$ = instruction cache, L2$ = level two cache, VCMDQ = vector command data queue, VLDQ = vector load data
queue, VPAQ = vector physical address queue, VSDQ= vector store data queue, VVAQ = vector virtual address queue, XCPT
= exception handling logic, EVAC = state machine that saves out the architectural state.



bank and the µT are striped across the 8 banks. Using the
code from Figure 2c as an example and suppose we had a
vlen of 64, there would be 64 total µTs. Each µT would
have its own set of registers (b, c, d, e and t in this example).
All of the registers for µT 0 would live in register bank 0,
all of the registers for µT 1 would live in the first bank, and
so on. There are 8 integer ALUs connected directly to each
of the register banks. The lane also has long-latency func-
tional units (integer multiplier and single/double-precision
floating-point fused multiply-adders). The data crossbar is
responsible for sending data between the long-latency func-
tional units and the register file.

The sequencer converts instructions it receives from the
the issue unit into µoperations, which are a sets of control
signals, for each µT in the vector. As an example, instruc-
tion 14 in Figure 2c is a two-operand ALU instruction. The
sequencer will turn this instruction into two sets of µop: a
read µop and a read-execute-write µop. The sequencer sys-
tolically sends these µops down the lane, accessing a differ-
ent register bank every cycle as it iterates through the µT.
It is the responsibility of the issue unit to not push instruc-
tions into the sequencer that would cause structural hazards
such as bank conflicts (e.g., pushing two back-to-back two-
operand ALU instruction would cause a conflict since the
first instruction would read its second operand while the sec-
ond instruction would be reading its first operand from the
same bank).

The LDST sequencer, LDST queues, and memory unit
coordinate data movements between the register file and the
data cache. The LDST sequencer transforms memory in-
structions into a generate address µop and a read µop (for
stores) or a write µop (for loads). For stores, addresses and
data are buffered up into the VVAQ and the VSDQ. The
memory consumes the address and data whenever possible.
For loads, data is buffered up into the VLDQ until there
is enough data. Once the appropriate amount of data re-
turns from the memory system, the LDST sequencer pushes
a write µop down the lane to writeback the data from the
VLDQ into the register file. As an example, let us look at
the load instruction on line 15 of Figure 2c. The LDST se-
quencer will first issue a read µop to read out the addresses
contained in register e into the address queue. Eventually,
the memory unit will consume these addresses and produce
the corresponding load data which it will enqueue into the
load data queue. Once enough data has come back from the
memory system (one word for each bank in this implemen-
tation), the LDST sequencer will issue a write µop to write
back data from the VLDQ into the register file.

3.2 An OS-Friendly Hwacha Accelerator
In order to improve integration with a conventional OS run-
ning on a general-purpose CPU, we augment Hwacha to sup-
port virtual memory and handle restartable exceptions. The
highlighted parts in Figure 3 show all the necessary augmen-
tations to the datapath. Since Hwacha now sees virtual ad-







Figure 4: Active Instruction Window. The resulting in-
struction window at a certain point in time when execut-
ing the code in Figure 2. This example uses a vlen of 64.
A grayed out box indicates that corresponding µT has com-
mitted that instruction.

dresses, the addresses sitting in the VVAQ must be sent out
to the TLB for translation. Once they are translated, they are
enqueued into the VPAQ. Once the VPAQ buffers up enough
addresses, the sequencer will issue the appropriate read or
write µop.

We also augment Hwacha to handle restartable excep-
tions to allow for multiprogramming. Whenever the machine
is busy, the sequencer will have a set of instructions in flight,
as shown in Figure 4. We refer to this as the active instruc-
tion window. The AIW in Figure 3 is the hardware encoding
of this structure. Every issued instruction is allocated a slot
in the AIW. A slot consists of the PC of the instruction as
well as the number of µTs that have committed that instruc-
tion. Recall that the sequencer systolically iterates through
each µT of the vector, pushing down the appropriate µop.
We consider a µT to have committed an instruction once the
sequencer has pushed down the final µop corresponding to
that instruction. When this happens, the AIW is updated ac-
cordingly. Once all the µTs have committed that instruction,
the instruction is removed from the AIW.

Assume the code in Figure 2c will fill up the AIW as
shown in Figure 4. Since instruction 14 is fetched and issued
first, it fills up the first slot in the AIW. Instruction 14 con-
tinues to make progress as the issue unit fetches and issues
the other instructions, filling up the other slots in the AIW.
The AIW is updated whenever a µT commits an instruction
(indicated by the gray box in Figure 4.

The AIW along with the register file encapsulates the
execution state of Hwacha. On an exception, the XCPT
block halts the vector machine. The EVAC block then writes
out the contents of the AIW out to memory. Once that is
finished, the CPU then issues vector stores to save out the
register file. The CPU can execute a special instruction to
read out the exception cause from Hwacha. If Hwacha took
a recoverable exception, its state can be restored as follows.
The CPU first issues vector loads to restore the register file.
Next the CPU tells Hwacha to start fetching instructions
at the address of the earliest instruction in the saved AIW.
The CPU will also send the amount of progress that the
instructions have made. When the instruction is issued, only
the µTs which have not yet committed that instruction will
execute it.



To see how this works, we will assume that Hwacha took
an exception when executing the code in Figure 2c (the load
on line 15 failed a translation, for example) and that the
AIW looks like Figure 4. Hwacha will first raise a flag to
indicate that it wants to take an exception. The CPU will
then give Hwacha an address to save its state. Hwacha will
then write out the AIW state to this address. For example,
it will write the PC of the instruction at line 14 and the
number of µTs that have committed the instruction. The
same is done for each of the remaining instructions in the
AIW. Next, the CPU issues vector stores to save the register
state. Finally, the CPU will ask Hwacha for the exception
cause so it can run the appropriate exception handler. On
recovery, the CPU issues vector loads to restore register file
state. Next, the CPU reads the saved Hwacha state and sees
that the instruction at line 14 needs to be reissued. It pushes
the address of the instruction as well as the progress that
the instruction has made to Hwacha. Hwacha will fetch and
issue this instruction and every instruction following it along
with the progress information that it receives from the CPU.
The sequencer and AIW will see that non-zero progress has
been made. For the sequencer, this means that the add on line
14 will only issue µops for µTs that have not yet committed
the instruction. For the AIW, the add instruction will occupy
the first slot as before, but the progress count will start at
however many µTs have committed the instruction instead
of 0.

3.3 Area and Energy Results
To quantify the area and energy overhead of adding vir-
tual memory and restartable exception support to the data-
parallel accelerator, we wrote RTL for the processor in
Chisel HDL [3] and pushed the design through a Synopsys-
based ASIC toolflow. This section describes the target ma-
chine in more detail, and the hardware and software infras-
tructure we used to generate accurate estimates for silicon
area and energy, and finally discusses the results.

Target Machine. We built the Hwacha data-parallel ac-
celerator described in the previous section alongside a 5-
stage in-order decoupled RISC-V Rocket CPU [17]. The
CPU has a 16KB 2-way set-associative L1 instruction cache
with an 8-entry TLB, and the Hwacha data-parallel acceler-
ator has an 8KB direct-mapped L1 instruction cache with a
2-entry TLB. The CPU and the accelerator share a 32KB
4-way set-associative L1 data cache. Both the CPU and
the accelerator have a private 8-entry data TLB. The pri-
mary caches are all backed by a unified 256KB 8-way set-
associative L2 data cache.

Hardware Toolflow. We targeted TSMC’s 45nm GP
CMOS library using a Synopsys-based ASIC toolflow us-
ing methodologies described in [6, 12]. We use VCS for
simulation, Design Compiler for synthesis, IC Compiler
for place-and-route, and PrimeTime for power analysis. We
make use of Design Compiler’s retiming functionality to
retime our long-latency functional units. The vector regis-

Module Hierarchy Area (mm2) Power (mW)
Total 2.156 81.10
Tile 0.978 100.0% 69.80 100.0%
Tile/CPU 0.105 10.7% 16.00 22.9%
Tile/CPU/ICache 0.092 9.4% 3.48 4.9%
Tile/CPU/FPU 0.064 6.5% 7.13 10.2%
Tile/CPU/FPU/DFMA 0.025 2.6% 2.21 3.2%
Tile/CPU/FPU/SFMA 0.008 0.8% 2.49 3.6%
Tile/Hwacha 0.422 43.1% 37.50 53.7%
Tile/Hwacha/ICache 0.044 4.5% 1.46 2.1%
Tile/Hwacha/Lane 0.274 28.0% 22.30 31.8%
Tile/DCache 0.357 36.5% 13.20 18.9%
L2$ 1.147 6.78

Overhead
Tile/Hwacha/ITLB 0.0025 0.2% 0.21 0.3%
Tile/Hwacha/DTLB 0.0033 0.3% 0.22 0.3%
Tile/Hwacha/AIW 0.0077 0.8% 0.69 1.0%
Tile/Hwacha/EVAC 0.0008 0.1% 0.07 0.1%
Tile/Hwacha/XCPT 0.0008 0.1% 0.12 0.2%
Tile/Hwacha/VPAQ 0.0034 0.3% 0.44 0.6%

Figure 6: Area and Power Breakdown. Note that area num-
bers only account for the actual area used for the standard
cells and SRAM macros. We used a 70% utilization factor
for place-and-route, so to calculate the actual silicon area,
multiply the area number by 10/7 to calculate the actual sili-
con area. To calculate energy numbers multiply 804us, since
the sgemm benchmark ran for 803,664 cycles at 1GHz. Per-
centages are calculated with respect to the Tile which con-
sists of CPU+Hwacha.

ter file, instruction caches, and data cache are implemented
with SRAMs. We do not have access to a memory com-
piler for our target process, so we model SRAMs by cre-
ating abstracted black-box modules, with area, timing, and
power models generated by CACTI [13]. We simulate the
post place-and-route gate-level Verilog netlist with the logic
and wire delay information generated from the layout to
capture accurate switching activities. We combine this ac-
tivity count with the layout information to generate detailed
power/energy numbers. Figure 5a shows the ASIC layout
from IC Compiler.

Software Toolchain. We use our RISC-V GCC (4.6.1)
cross compiler and the Three Fingered Jack (TFJ) sys-
tem [15], an in-house loop vectorizer to map microbench-
marks, kernels, and applications to our CPU and Hwacha
data-parallel accelerator. For this case study, we use a 64
⇥ 64 single-precision floating-point matrix multiplication
routine that runs on the vector unit.

Area Overhead. Figure 5b highlights the modules we
added to the Hwacha data-parallel accelerator in order to
support virtual memory and restartable exceptions. Table 6
shows the post-PAR area results of the processor. The area





































(a) Rocket CPU/Hwacha Data-Parallel Accelerator
















(b) Overhead

Figure 5: VLSI Layouts. The scales are listed in the layout. This design meets timing at 1GHz. The Rocket CPU, the Hwacha
data-parallel accelerator, register file, L1 instruction caches, L1 data cache, and the unified L2 cache are highlighted. The
modules we added to support virtual memory and restartable exceptions are shown on the right.

overhead of the added modules (TLB+AIW+EVAC+XCPT+
VPAQ) turns out to be only 4.4% of the total data-parallel
accelerator area, 1.8% of the CPU + data-parallel accelerator
area, or 0.9% of the total area including the L2 cache.

Power/Energy Overhead. Table 6 also shows the power
breakdown of various modules. The power/energy overhead
of supporting virtual memory and restartable exceptions are
only 4.7% of the total power/energy consumption of the
data-parallel accelerator, 2.5% of the CPU + data-parallel
accelerator, or 2.3% of the entire chip.

4. Related Work
Early vector machines such as Cray-1 [14] required all pages
it accessed to be pinned in physical memory, due to the dif-
ficulty of implementing precise exceptions or restartable ex-
ceptions. The IBM Vector Facility supported restartable ex-
ceptions by limiting the machine to only one vector instruc-
tion in execution at a time [7]. Asanović [2] proposed a de-
coupled vector pipeline design that issues vector instructions
to the vector datapath only when all addresses from previ-
ous vector memory instructions are known to not cause an
exception. Espasa et al. [9] and Kozyrakis [11] renamed
vector destination registers to implement precise exceptions.
Once a vector instruction faults, the destination registers of
all subsequent vector instructions are rolled back to the pre-
vious mapping to maintain preciseness. Since the Hwacha
data-parallel accelerator eschews vector register renaming,
it must allow partial completion of more than one vector in-
struction (see Figure 4), at the expense of larger architectural
state.

Hampton [10] presented software restart markers as a
foundation to handle exceptions in parallel architectures.

The compiler is responsible for delimiting the program into
idempotent regions. Once an exception occurs, the operating
system will simply resume execution from the beginning of
the faulting region. Although this approach has very low
implementation overhead, it is constrained by the ability of
the compiler to statically determine the idempotency of a
region, and can hence have large execution overheads on
some codes.

Our proposal is most similar to the DEC Vector Vax [5]
design, which provided the OS with an opaque microarchi-
tectural state save and restore mechanism, and also provided
fence instructions to synchronize vector unit execution with
the scalar processor.

5. Conclusions
In order to remain successful, hardware accelerators must
seamlessly integrate with general-purpose CPUs. We de-
scribe a general framework for building OS-friendly hard-
ware accelerators, consisting of a generic connection inter-
face, a memory consistency model, and requirements for
virtual-memory support.

Our case study details the augmentations we made to
our Hwacha data-parallel accelerator in order to integrate it
into general-purpose systems. We push our combined system
through an ASIC toolflow to extract area and power/energy
numbers. Our results show that there is very little overhead
(1.8% overhead in area and 2.5% overhead in energy over
the combined CPU and Hwacha) in making Hwacha OS-
friendly. In future work, we plan to build a library of general-
purpose hardware accelerators using our proposed frame-
work to allow integration with conventional operating sys-
tems.



6. Acknowledgements
Research partly funded by DARPA Award Number HR0011-
12-2-0016. The content of this paper does not necessarily
reflect the position or the policy of the US government and
no official endorsement should be inferred.

References
[1] AnandTech. LG Optimus 2X & NVIDIA Tegra 2 Review.
[2] K. Asanović. Vector Microprocessors. PhD thesis, EECS Department,

University of California, Berkeley, 1998.
[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,

J. Wawrzynek, and K. Asanović. Chisel: constructing hardware in a
scala embedded language. In Proceedings of the 49th Annual Design
Automation Conference, DAC ’12.

[4] C. Batten, R. Krashinsky, S. Gerding, and K. Asanović. Cache re-
fill/access decoupling for vector machines. In 37th International Sym-
posium on Microarchitecture, pages 331–342, Portland, OR, Decem-
ber 2004.

[5] D. Bhandarkar and R. Brunner. VAX vector architecture. In ISCA-17,
1990.

[6] H. Bhatnagar. Advanced ASIC Chip Synthesis Using Synopsys R� De-
sign Compiler R� Physical Compiler R� and PrimeTime R�. Springer,
2001.

[7] W. Buchholz. The IBM System/370 vector architecture. IBM Systems
Journal, 25(1):51–62, 1986.

[8] R. Espasa and M. Valero. Decoupled vector architectures. In Proc.
2nd High Performance Computer Architecture Conf., pages 281–290.

IEEE Computer Society Press, Feb 1996.
[9] R. Espasa, M. Valero, and J. E. Smith. Out-of-order vector architec-

tures. In Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture, MICRO 30, 1997.

[10] M. Hampton. Reducing Exception Management Overhead with Soft-
ware Restart Markers. PhD thesis, Massachusetts Institute of Tech-
nology, 2008.

[11] C. Kozyrakis. Scalable Vector Media-processors for Embedded Sys-
tems. PhD thesis, EECS Department, University of California, Berke-
ley, 2002.

[12] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanović. Exploring the tradeoffs between programmability and
efficiency in data-parallel accelerators. In ISCA, 2011.

[13] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Cacti 6.0:
A tool to model large caches. HP Laboratories, 2009.

[14] R. M. Russell. The Cray-1 computer system. Communications of the
ACM, 21(1):63–72, Jan. 1978.

[15] D. Sheffield, M. Anderson, and K. Keutzer. Automatic generation
of application-specific accelerators for fpgas from python loop nests.
In 22nd International Conference on Field Programmable Logic and
Applications (FPL), 2012.

[16] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, S. Bryskin,
J. Lugo-Martinez, S. Steven, and M. B. Taylor. Conservation cores:
Reducing the energy of mature computations. In Architectural Sup-
port for Programming Languages and Operating Systems, Asplos ’10.

[17] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović. The RISC-
V Instruction Set Manual, Volume I: Base User-Level ISA. Number
UCB/EECS-2011-62.


