
CS162
Operating Systems and
Systems Programming

Lecture 5

Cooperating Threads

September 15, 2010
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 5.29/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Per Thread State
• Each Thread has a Thread Control Block (TCB)

– Execution State: CPU registers, program counter,
pointer to stack

– Scheduling info: State (more later), priority, CPU time
– Accounting Info
– Various Pointers (for implementing scheduling queues)
– Pointer to enclosing process? (PCB)?
– Etc (add stuff as you find a need)

• OS Keeps track of TCBs in protected memory
– In Arrays, or Linked Lists, or …

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Head
Tail

Ready
Queue

Lec 5.39/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Yielding through Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

computePI() {
while(TRUE) {

ComputeNextDigit();
yield();

}
}

– Note that yield() must be called by programmer
frequently enough!

Lec 5.49/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Later in lecture */

}
• How does dispatcher switch to a new thread?

– Save anything next thread may trash: PC, regs, stack
– Maintain isolation for each thread

yield

ComputePI Stack growthrun_new_thread

kernel_yield
Trap to OS

switch

Lec 5.59/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Two Thread Yield Example

• Consider the following
code blocks:

proc A() {
B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2
threads:
– Threads S and T

Thread S

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

Thread T

A

B(while)
yield

run_new_thread
switch

Lec 5.69/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Goals for Today

• More on Interrupts
• Thread Creation/Destruction
• Cooperating Threads

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 5.79/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software
– Interrupt identity specified with ID line

• CPU can disable all interrupts with internal flag
• Non-maskable interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable

Lec 5.89/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Example: Network Interrupt

• Disable/Enable All Ints Internal CPU disable bit
– RTI reenables interrupts, returns to user mode

• Raise/lower priority: change interrupt mask
• Software interrupts can be provided entirely in

software at priority switching boundaries

add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

Raise priority
Reenable All Ints
Save registers
Dispatch to Handler

Transfer Network

Packet from hardware
to Kernel Buffers

Restore registers
Clear current Int
Disable All Ints
Restore priority
RTI

“I
nt

er
ru

pt
 H

an
dl
er

”

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

Ex
te

rn
al
 I

nt
er

ru
pt

Pipeline Flush

Lec 5.99/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Preemptive Multithreading

• Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
TimerInterrupt() {

DoPeriodicHouseKeeping();
run_new_thread();

}
• This is often called preemptive multithreading, since

threads are preempted for better scheduling
– Solves problem of user who doesn’t insert yield();

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack growth

Lec 5.109/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Administrivia
• Information about Subversion on Handouts page

– Make sure to take a look
• Other things on Handouts page

– Synchronization examples/Interesting papers
– Previous finals/solutions

• Sections in this class are mandatory
– Make sure that you go to the section that you have been

assigned!
• Reader is available at Vics Copy on Hearst

– Any problems getting copies of it?
• Should be reading Nachos code by now!

– Get working on the first project
– Set up regular meeting times with your group
– Try figure out group interaction problems early on

• Chance that I cannot be here on Wednesday 9/29.
However:
– If this is true, Eric Brewer will take over for that lecture
– He should be a great lecturer!

Lec 5.119/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Lifecycle of a Thread (or Process)

• As a thread executes, it changes state:
– new: The thread is being created
– ready: The thread is waiting to run
– running: Instructions are being executed
– waiting: Thread waiting for some event to occur
– terminated: The thread has finished execution

• “Active” threads are represented by their TCBs
– TCBs organized into queues based on their state

Lec 5.129/15/10 Kubiatowicz CS162 ©UCB Fall 2010

ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue
– We called this CreateThread() earlier

• Arguments to ThreadFork()
– Pointer to application routine (fcnPtr)
– Pointer to array of arguments (fcnArgPtr)
– Size of stack to allocate

• Implementation
– Sanity Check arguments
– Enter Kernel-mode and Sanity Check arguments again
– Allocate new Stack and TCB
– Initialize TCB and place on ready list (Runnable).

Lec 5.139/15/10 Kubiatowicz CS162 ©UCB Fall 2010

How do we initialize TCB and Stack?
• Initialize Register fields of TCB

– Stack pointer made to point at stack
– PC return address OS (asm) routine ThreadRoot()
– Two arg registers (a0 and a1) initialized to fcnPtr and
fcnArgPtr, respectively

• Initialize stack data?
– No. Important part of stack frame is in registers (ra)
– Think of stack frame as just before body of
ThreadRoot() really gets started

ThreadRoot stub

Initial Stack

Stack growth

Lec 5.149/15/10 Kubiatowicz CS162 ©UCB Fall 2010

How does Thread get started?

• Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()
– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 5.159/15/10 Kubiatowicz CS162 ©UCB Fall 2010

What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping

– Includes things like recording
start time of thread

– Other Statistics
• Stack will grow and shrink

with execution of thread
• Final return from thread returns into ThreadRoot()

which calls ThreadFinish()
– ThreadFinish() will start at user-level

ThreadRoot

Running Stack

Stack growth
Thread Code

Lec 5.169/15/10 Kubiatowicz CS162 ©UCB Fall 2010

What does ThreadFinish() do?
• Needs to re-enter kernel mode (system call)
• “Wake up” (place on ready queue) threads waiting

for this thread
– Threads (like the parent) may be on a wait queue
waiting for this thread to finish

• Can’t deallocate thread yet
– We are still running on its stack!
– Instead, record thread as “waitingToBeDestroyed”

• Call run_new_thread() to run another thread:
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping();

}
– ThreadHouseKeeping() notices waitingToBeDestroyed
and deallocates the finished thread’s TCB and stack

Lec 5.179/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Additional Detail

• Thread Fork is not the same thing as UNIX fork
– UNIX fork creates a new process so it has to
create a new address space

– For now, don’t worry about how to create and
switch between address spaces

• Thread fork is very much like an asynchronous
procedure call
– Runs procedure in separate thread
– Calling thread doesn’t wait for finish

• What if thread wants to exit early?
– ThreadFinish() and exit() are essentially the
same procedure entered at user level

Lec 5.189/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Parent-Child relationship

• Every thread (and/or Process) has a parentage
– A “parent” is a thread that creates another thread
– A child of a parent was created by that parent

Typical process tree
for Solaris system

Lec 5.199/15/10 Kubiatowicz CS162 ©UCB Fall 2010

ThreadJoin() system call
• One thread can wait for another to finish with the
ThreadJoin(tid) call
– Calling thread will be taken off run queue and placed on
waiting queue for thread tid

• Where is a logical place to store this wait queue?
– On queue inside the TCB

• Similar to wait() system call in UNIX
– Lets parents wait for child processes

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Head
Tail

Termination
Wait queue

TCBtid

Lec 5.209/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Use of Join for Traditional Procedure Call
• A traditional procedure call is logically equivalent to

doing a ThreadFork followed by ThreadJoin
• Consider the following normal procedure call of B()

by A():
A() { B(); }
B() { Do interesting, complex stuff }

• The procedure A() is equivalent to A’():
A’() {

tid = ThreadFork(B,null);
ThreadJoin(tid);

}
• Why not do this for every procedure?

– Context Switch Overhead
– Memory Overhead for Stacks

Lec 5.219/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Kernel versus User-Mode threads
• We have been talking about Kernel threads

– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on different

things
• Downside of kernel threads: a bit expensive

– Need to make a crossing into kernel mode to schedule
• Even lighter weight option: User Threads

– User program provides scheduler and thread package
– May have several user threads per kernel thread
– User threads may be scheduled non-premptively relative to

each other (only switch on yield())
– Cheap

• Downside of user threads:
– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads
– Option: Scheduler Activations

» Have kernel inform user level when thread blocks…

Lec 5.229/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Threading models mentioned by book

Simple One-to-One
Threading Model

Many-to-One Many-to-Many

Lec 5.239/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Multiprocessing vs Multiprogramming
• Remember Definitions:

– Multiprocessing Multiple CPUs
– Multiprogramming Multiple Jobs or Processes
– Multithreading Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 5.249/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way,

programs must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic Input state determines results
– Reproducible Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that
bugs can be intermittent
– Sometimes called “Heisenbugs”

Lec 5.259/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Interactions Complicate Debugging
• Is any program truly independent?

– Every process shares the file system, OS resources,
network, etc

– Extreme example: buggy device driver causes thread A to
crash “independent thread” B

• You probably don’t realize how much you depend on
reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

– Example: Debugging statements can overrun stack
• Non-deterministic errors are really difficult to find

– Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

Lec 5.269/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives,
so computers must cooperate
– By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

Lec 5.279/15/10 Kubiatowicz CS162 ©UCB Fall 2010

High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
• What are some disadvantages of this technique?

Lec 5.289/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Threaded Web Server

• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Looks almost the same, but has many advantages:

– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• Question: would a user-level (say one-to-many)
thread package make sense here?
– When one request blocks on disk, all block…

• What about Denial of Service attacks or digg /
Slash-dot effects?

Lec 5.299/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads,

representing the maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool

queue

Lec 5.309/15/10 Kubiatowicz CS162 ©UCB Fall 2010

Summary
• Interrupts: hardware mechanism for returning control

to operating system
– Used for important/high-priority events
– Can force dispatcher to schedule a different thread
(premptive multithreading)

• New Threads Created with ThreadFork()
– Create initial TCB and stack to point at ThreadRoot()
– ThreadRoot() calls thread code, then ThreadFinish()
– ThreadFinish() wakes up waiting threads then
prepares TCB/stack for distruction

• Threads can wait for other threads using ThreadJoin()
• Threads may be at user-level or kernel level
• Cooperating threads have many potential advantages

– But: introduces non-reproducibility and non-determinism
– Need to have Atomic operations

