
CS252
Graduate Computer Architecturep

Lecture 20
April 12th, 2010

Distributed Shared Memory

Prof John D. Kubiatowicz
http://www.cs.berkeley.edu/~kubitron/cs252

Recall: Sequential Consistency Example

LD1 A 5LD1 A 5 LD5 B 2
Processor 1 Processor 2 One Consistent Serial Order

LD1 A 5
LD2 B 7
LD5 B 2
ST A 6

LD1 A 5
LD2 B 7
ST1 A,6

LD5 B 2
…

LD6 A 6
ST B 21 ST1 A,6

LD6 A 6
ST4 B,21

…
LD3 A 6
LD4 B 21

ST4 B,21
…

LD7 A 6
LD3 A 6
LD4 B 21
LD7 A 6

ST2 B,13
ST3 B,4

…
LD8 B 4

LD7 A 6
ST2 B,13
ST3 B,4
LD B 4

4/12/2010 cs252-S10, Lecture 20 2

LD8 B 4

Recall: Ordering: Scheurich and Dubois

R WR R RP0: R WR R

RR R

R

R

P0:

P1:

RR R R RP2:

“Instantaneous” Completion pointExclusion Zone

• Sufficient Conditions
– every process issues mem operations in program order

Instantaneous Completion point

– after a write operation is issued, the issuing process waits
for the write to complete before issuing next memory
operation

– after a read is issued the issuing process waits for the read

4/12/2010 cs252-S10, Lecture 20 3

after a read is issued, the issuing process waits for the read
to complete and for the write whose value is being returned
to complete (gloabaly) before issuing its next operation

Basic Operation of Directory

• k processors.
With h h bl k i

P P

Cache Cache

• With each cache-block in memory:
k presence-bits, 1 dirty-bit

• With each cache-block in cache:
1 valid bit, and 1 dirty (owner) bit• ••Memory Directory

Interconnection Network

, y ()e o y ecto y

presence bits dirty bit

• Read from main memory by processor i:y y p
– If dirty-bit OFF then { read from main memory; turn p[i] ON; }
– If dirty-bit ON then { recall line from dirty proc (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply
recalled data to i;}recalled data to i;}

• Write to main memory by processor i:
– If dirty-bit OFF then {send invalidations to all caches that have

the block; turn dirty-bit ON; supply data to i; turn p[i] ON; }

4/12/2010 cs252-S10, Lecture 20 4

the block; turn dirty-bit ON; supply data to i; turn p[i] ON; ... }
– If dirty-bit ON then {recall line from dirty proc (invalidate);

update memory; keep dirty-bit ON; supply recalled data to i}

Example: How to invalidate read copies
E l f d h d d• Example: from read-shared to read-write

Node XINV A

WREQ A

INV A

ACK A

Proc 1 Home A Node Y
ACK A

ACK AWACK A

Node Z
INV A

ACK AWACK A

• Advantages: No need to broadcast to hunt down copies
– Some entity in the system knows where all copies reside
– Doesn’t need to be specific – could reflect group of processors each

4/12/2010 cs252-S10, Lecture 20 5

p g p p
of which might contain a copy (or might not)

Scaling Issues
• Memory and directory bandwidth

– Centralized directory is bandwidth bottleneck, just like centralized
memorymemory

– How to maintain directory information in distributed way?

• Performance characteristics
t ffi : n f n t k t n ti n h tim p t l i in k d– traffic: no. of network transactions each time protocol is invoked

– latency = no. of network transactions in critical path

• Directory storage requirements
– Number of presence bits grows as the number of processors

• Deadlock issues:
– May need as many networks as longest chain of request/response pairsMay need as many networks as longest chain of request/response pairs

• How directory is organized affects all these,
performance at a target scale, as well as coherence
management issues

4/12/2010 cs252-S10, Lecture 20 6

management issues

Insight into Directory Requirements
• If most misses involve O(P) transactions, might as

well broadcast!
St d I h t h t i ti Study Inherent program characteristics:
– frequency of write misses?
– how many sharers on a write miss
– how these scale

• Also provides insight into how to organize and p g g
store directory information

4/12/2010 cs252-S10, Lecture 20 7

Cache Invalidation Patterns

LU Invalidation Patterns
91.22

80

90

100

20
30

40

50
60

70
80

8.75

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22
0

10

20

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

Ocean Invalidation Patterns

80.98

60

70

80

90

15.06

3 04 0 49 0 34
10

20

30

40

50

60

4/12/2010 cs252-S10, Lecture 20 8

0
3.04 0.49 0.34 0.03 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0.02

0

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

Cache Invalidation Patterns

Barnes-Hut Invalidation Patterns
48.35

40
45

50

22.87

10.56

5 33
10

15
20

25
30
35

1.27

5.33
2.87 1.88 1.4 2.5 1.06 0.61 0.24 0.28 0.2 0.06 0.1 0.07 0 0 0 0 0.33

0
5

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

Radiosity Invalidation Patterns
58.35

50

60

6.68

12.04

4 16
10

20

30

40

4/12/2010 cs252-S10, Lecture 20 9

4.16
2.24 1.59 1.16 0.97

3.28 2.2 1.74 1.46 0.92 0.45 0.37 0.31 0.28 0.26 0.24 0.19 0.19 0.91
0

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

Sharing Patterns Summary
• Generally, few sharers at a write, scales slowly with P

– Code and read-only objects (e.g, scene data in Raytrace)
» no problems as rarely writtenp y

– Migratory objects (e.g., cost array cells in LocusRoute)
» even as # of PEs scale, only 1-2 invalidations

– Mostly-read objects (e.g., root of tree in Barnes)
l d l b f l l » invalidations are large but infrequent, so little impact on

performance
– Frequently read/written objects (e.g., task queues)

» invalidations usually remain small, though frequenty , g q
– Synchronization objects

» low-contention locks result in small invalidations
» high-contention locks need special support (SW trees, queueing

locks)locks)
• Implies directories very useful in containing traffic

– if organized properly, traffic and latency shouldn’t scale too badly
Su sts t chniqu s t r duc st r v rh d

4/12/2010 cs252-S10, Lecture 20 10

• Suggests techniques to reduce storage overhead

Organizing Directories

Directory Schemes

Centralized Distributed

HierarchicalFlat
How to find source of
directory information Hierarchical

Memory-based Cache-based

directory information

How to locate copies
Memory-based Cache-based

4/12/2010 cs252-S10, Lecture 20 11

How to Find Directory Information
• centralized memory and directory - easy: go to it

– but not scalable

di t ib t d d di t• distributed memory and directory
– flat schemes

» directory distributed with memory: at the home
» location based on address (hashing): network xaction sent

directly to home
– hierarchical schemes

??» ??

4/12/2010 cs252-S10, Lecture 20 12

How Hierarchical Directories Work

processing nodes

level-1 directory

(Tracks which of its children
processing nodes have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree

level-2 directory

cached outside this subtree.
Inclusion is maintained between
processor caches and directory.)(Tracks which of its children

level-1 directories have a copy
of the memory block. Also tracks

hi h l l bl kwhich local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory.)

• Directory is a hierarchical data structure
– leaves are processing nodes, internal nodes just directory

l i l hi h t il h i l

4/12/2010 cs252-S10, Lecture 20 13

– logical hierarchy, not necessarily phyiscal
» (can be embedded in general network)

Find Directory Info (cont)
• distributed memory and directory

– flat schemes
» hash» hash

– hierarchical schemes
» node’s directory entry for a block says whether each

subtree caches the blocksubtree caches the block
» to find directory info, send “search” message up to parent

• routes itself through directory lookups

» like hiearchical snooping, but point-to-point messages p g p p g
between children and parents

4/12/2010 cs252-S10, Lecture 20 14

How Is Location of Copies Stored?
• Hierarchical Schemes

– through the hierarchy
– each directory has presence bits child subtrees and dirty bit– each directory has presence bits child subtrees and dirty bit

• Flat Schemes
– vary a lot
– different storage overheads and performance characteristics

– Memory-based schemes
» info about copies stored all at the home with the memory block» info about copies stored all at the home with the memory block
» Dash, Alewife , SGI Origin, Flash

– Cache-based schemes
» info about copies distributed among copies themselves

• each copy points to next

» Scalable Coherent Interface (SCI: IEEE standard)

4/12/2010 cs252-S10, Lecture 20 15

Flat, Memory-based Schemes
i f b i l d i h bl k h h• info about copies co-located with block at the home
– just like centralized scheme, except distributed

• Performance Scaling
P

Performance Scaling
– traffic on a write: proportional to number of sharers
– latency on write: can issue invalidations to

sharers in parallel
M

p

• Storage overhead
– simplest representation: full bit vector,

(called “Full-Mapped Directory”), i.e. one presence bit per node(pp y), p p
– storage overhead doesn’t scale well with P; 64-byte line implies

» 64 nodes: 12.7% ovhd.
» 256 nodes: 50% ovhd.; 1024 nodes: 200% ovhd..; .

– for M memory blocks in memory, storage overhead is proportional
to P*M:
» Assuming each node has memory Mlocal= M/P, P2Mlocal

4/12/2010 cs252-S10, Lecture 20 16

» This is why people talk about full-mapped directories as scaling
with the square of the number of processors

Reducing Storage Overhead
• Optimizations for full bit vector schemes

– increase cache block size (reduces storage overhead proportionally)
– use multiprocessor nodes (bit per mp node not per processor)– use multiprocessor nodes (bit per mp node, not per processor)
– still scales as P*M, but reasonable for all but very large machines

» 256-procs, 4 per cluster, 128B line: 6.25% ovhd.

R d i “ idth”
P

• Reducing “width”
– addressing the P term?

• Reducing “height”

M
lo

ca
l

P

g g
– addressing the M term?

M
 =

 M

4/12/2010 cs252-S10, Lecture 20 17

Storage Reductions
• Width observation:

– most blocks cached by only few nodes
– don’t have a bit per node, but entry contains a few pointers to don t ha e a b t per node, but entry conta ns a few po nters to

sharing nodes
» Called “Limited Directory Protocols”

– P=1024 => 10 bit ptrs, can use 100 pointers and still save space
h i tt i di t f i t h ld ffi (fi)– sharing patterns indicate a few pointers should suffice (five or so)

– need an overflow strategy when there are more sharers
• Height observation:

b f bl k b f h bl k– number of memory blocks >> number of cache blocks
– most directory entries are useless at any given time
– Could allocate directory from pot of directory entries

» If memory line doesn’t have a directory no one has copy» If memory line doesn t have a directory, no-one has copy
» What to do if overflow? Invalidate directory with invaliations

– organize directory as a cache, rather than having one entry per
memory block

4/12/2010 cs252-S10, Lecture 20 18

Case Study: Alewife Architecture
• Cost Effective Mesh Network

– Pro: Scales in terms of hardware
– Pro: Exploits Localityp y

• Directory Distributed along with
main memory
– Bandwidth scales with number of

processorsprocessors
• Con: Non-Uniform Latencies of

Communication
– Have to manage the mapping of

processes/threads onto processors dueprocesses/threads onto processors due
– Alewife employs techniques for latency

minimization and latency tolerance so
programmer does not have to manage

• Context Switch in 11 cycles between • Context Switch in 11 cycles between
processes on remote memory request
which has to incur communication
network latency
C h C ll h ld d

4/12/2010 cs252-S10, Lecture 20 19

• Cache Controller holds tags and
implements the coherence protocol

LimitLESS Protocol (Alewife)
• Limited Directory that is Locally Extended through

Software Support
H dl th (ll k t) i • Handle the common case (small worker set) in
hardware and the exceptional case (overflow) in
software

• Processor with rapid trap handling (executes trap
code within 4 cycles of initiation)

• State SharedState Shared
– Processor needs complete access to coherence related

controller state in the hardware directories
– Directory Controller can invoke processor trap handlersDirectory Controller can invoke processor trap handlers

• Machine needs an interface to the network that
allows the processor to launch and intercept
coherence protocol packets

4/12/2010 cs252-S10, Lecture 20 20

coherence protocol packets

The Protocol

Al if 5 t li it d di t ith ft • Alewife: p=5-entry limited directory with software
extension (LimitLESS)

• Read-only directory transaction:

4/12/2010 cs252-S10, Lecture 20 21

– Incoming RREQ with n p Hardware memory controller responds
– If n > p: send RREQ to processor for handling

Transition to Software

• Trap routine can either discard packet or store it to memory
• Store-back capability permits message-passing and block

transfers
• Potential Deadlock Scenario with Processor Stalled and waiting

f t h fill

4/12/2010 cs252-S10, Lecture 20 22

for a remote cache-fill
– Solution: Synchronous Trap (stored in local memory) to empty input queue

Transition to Software (Con’t)

• Overflow Trap Scenario
– First Instance: Full-Map bit-vector allocated in local memory and hardware

i t t f d i t thi d t t d i t h h t blpointers transferred into this and vector entered into hash table
– Otherwise: Transfer hardware pointers into bit vector
– Meta-State Set to “Trap-On-Write”
– While emptying hardware pointers Meta-State: “Trans-In-Progress”While emptying hardware pointers, Meta State: Trans In Progress

• Incoming Write Request Scenario
– Empty hardware pointers to memory
– Set AckCtr to number of bits that are set in bit-vectorSet AckCtr to number of bits that are set in bit vector
– Send invalidations to all caches except possibly requesting one
– Free vector in memory
– Upon invalidate acknowledgement (AckCtr == 0), send Write-Permission and

t M St t t “R d W it ”

4/12/2010 cs252-S10, Lecture 20 23

set Memory State to “Read-Write”

Flat, Cache-based Schemes
• How they work:

– home only holds pointer to rest of directory info
– distributed linked list of copies weaves through caches– distributed linked list of copies, weaves through caches

» cache tag has pointer, points to next cache with a copy
– on read, add yourself to head of the list (comm. needed)

on write propagate chain of invals down the list– on write, propagate chain of invals down the list

• Scalable Coherent Interface (SCI) IEEE Standard
– doubly linked list

Main Memory
(Home)

P

Cache

P

Cache

P

Cache

Node 0 Node 1 Node 2

4/12/2010 cs252-S10, Lecture 20 24

Scaling Properties (Cache-based)
• Traffic on write: proportional to number of sharers
• Latency on write: proportional to number of sharers!

– don’t know identity of next sharer until reach current one
– also assist processing at each node along the way
– (even reads involve more than one other assist: home and first

h n li t)sharer on list)

• Storage overhead: quite good scaling along both
axes
– Only one head ptr per memory block

» rest is all prop to cache size

• Very complex!!!Very complex!!!

4/12/2010 cs252-S10, Lecture 20 25

Summary of Directory Organizations
• Flat Schemes:
• Issue (a): finding source of directory data

– go to home based on addressgo to home, based on address
• Issue (b): finding out where the copies are

– memory-based: all info is in directory at home
– cache-based: home has pointer to first element of distributed linked cache based home has pointer to first element of distributed linked

list
• Issue (c): communicating with those copies

– memory-based: point-to-point messages (perhaps coarser on overflow)
» can be multicast or overlapped

– cache-based: part of point-to-point linked list traversal to find them
» serialized

Hi hi l S h• Hierarchical Schemes:
– all three issues through sending messages up and down tree
– no single explict list of sharers
– only direct communication is between parents and children

4/12/2010 cs252-S10, Lecture 20 26

– only direct communication is between parents and children

Summary of Directory Approaches
• Directories offer scalable coherence on general

networks
– no need for broadcast media– no need for broadcast media

• Many possibilities for organizing directory and
managing protocols

• Hierarchical directories not used much
– high latency, many network transactions, and bandwidth

bottleneck at root

• Both memory-based and cache-based flat
schemes are alive
– for memory-based full bit vector suffices for moderate scalefor memory based, full bit vector suffices for moderate scale

» measured in nodes visible to directory protocol, not
processors

– will examine case studies of each

4/12/2010 cs252-S10, Lecture 20 27

Summary
• Memory Coherence:

– Writes to a given location eventually propagated
– Writes to a given location seen in same order by everyone

• Memory Consistency:
– Constraints on ordering between processors and locations

• Sequential Consistency:q y
– For every parallel execution, there exists a serial interleaving

• Distributed Directory Structure
– Flat: Each address has a “home node”Flat Each address has a home node
– Hierarchical: directory spread along tree

• Mechanism for locating copies of data
– Memory-based schemesMemory based schemes

» info about copies stored all at the home with the memory block
– Cache-based schemes

» info about copies distributed among copies themselves

4/12/2010 cs252-S10, Lecture 20 28

p g p

