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Abstract

Parallel workstations, each comprising 10-100 processors, promise
cost-effective general-purpose multiprocessing. This paper ex-
plores the coupling of such small- to medium-scale shared mem-
ory multiprocessors through software over a local area network to
synthesize larger shared memory systems. We call these systems
Distributed Scalable Shared-memory Multiprocessors (DSSMPs).

This paper introduces the designof a sharedmemory system that
uses multiple granularities of sharing, and presents an implementa-
tion on the Alewife multiprocessor, called MGS. Multigrain shared
memory enables the collaboration of hardware and software shared
memory, and is effective at exploiting a form of locality called multi-
grain locality. The system provides efficient support for fine-grain
cache-line sharing, and resorts to coarse-grain page-level sharing
only when locality is violated. A framework for characterizing
application performance on DSSMPs is also introduced.

Using MGS, an in-depth study of several shared memory ap-
plications is conducted to understand the behavior of DSSMPs.
We find that unmodified shared memory applications can exploit
multigrain sharing. Keeping the number of processors fixed, ap-
plications execute up to 85% faster when each DSSMP node is a
multiprocessor as opposed to a uniprocessor. We also show that
tightly-coupled multiprocessors hold a significant performance ad-
vantage over DSSMPs on unmodified applications. However, a
best-effort implementation of a kernel from one of the applications
allows a DSSMP to almost match the performance of a tightly-
coupled multiprocessor.

1 Introduction

Large-scale shared memory multiprocessors have traditionally been
built using custom communication interfaces, high performance
VLSI networks, and special-purpose hardware support for shared
memory. These systems achieve good performance on a wide range
of applications; however, they are costly. Despite attempts to make
cost (in addition to performance) scalable, fundamental obstacles
prevent large tightly-coupled systems from being cost effective.
Power distribution, clock distribution, cooling, and other packag-

ing considerations do not scale linearly with size. Perhaps most
important, the large-scale nature of these machines prevents them
from capitalizing on the economy of cost that high volume smaller-
scale machines enjoy.

In response to the high cost of traditional multiprocessors,
many researchers have proposed building large-scale multiproces-
sors from commodity uniprocessor workstations that communicate
across commodity networks. A “building wide” machine is cost ef-
fective because the components are high volume items and because
specialized tightly-coupled packaging is not required. Achieving
good performance across a wide range of applications, however,
is difficult on these systems. While communication interfaces for
commodity workstations have made impressive improvements, the
best reported inter-workstation latency numbers are still an order
of magnitude higher than for tightly-coupled machines [1]. High
latency limits the granularity of sharing that can be effectively sup-
ported by a shared memory implementation that runs on uniproces-
sor workstations.

We believe that an important class of systems is quickly emerg-
ing that enables another way to build large-scale multiprocessors.
This class of systems is the parallel workstation. A parallel work-
station is any small- to medium-scale multiprocessor. A familiar
example is the bus-based Symmetric Multiprocessor (SMP). An-
other example is the small- to medium-scale NUMA multiproces-
sor. The latter architecturally resembles large-scale tightly-coupled
machines, but is targeted for smaller systems. We call these ma-
chines Scalable Shared-memory Multiprocessors (SSMPs). While
all the issues in this paper apply equally to SMPs, we focus on
SSMPs because they scale to larger configurations.

SSMPs are an attractive building block for large-scale multi-
processors. Because they are more affordable than their large-scale
tightly-coupled ancestors, they will enjoy higher demand, thereby
benefiting from the lower cost of high volume production. Further-
more, SSMPs have efficient hardware support for shared memory.
A larger system that can leverage this efficient hardware support has
the potential for higher performance than a network of conventional
uniprocessor workstations which pay the cost of inter-workstation
communication on every access to a remote memory module. We
call a large-scale system built from SSMPs a Distributed Scalable
Shared-memory Multiprocessor (DSSMP). Although the DSSMP
concept has received attention in recent literature [2], the design
issues remain unexplored, no working system has been developed,
and no analysis of how applications behave on real DSSMP systems
has been provided.

This paper proposes a shared memory system for DSSMPs. Our



work introduces a complete shared memory protocol that allows
hardware and software shared memory to collaborate in a way that
is transparent to the programmer. The feasibility and correctness
of our design is demonstrated in a working system that runs on the
MIT Alewife platform [3]. We call this system MGS.

Our work also provides a framework for reasoning about how
applications behave on DSSMPs. We define a form of locality,
called multigrain locality, that multigrain shared memory systems
can efficiently exploit. Applications that demonstrate multigrain
locality can achieve good performance on DSSMPs. Furthermore,
we define three metrics that characterize application performance
on DSSMPs: the breakup penalty, the multigrain potential, and the
multigrain curvature.

Using this framework, we conduct an in-depth study of five
shared memory applications on the MGS system. We show that un-
modified shared memory applications can exploit multigrain shar-
ing. Keeping the total number of processors fixed, applications
execute up to 85% faster when each DSSMP node is a multiproces-
sor as opposed to a uniprocessor. We also show that tightly-coupled
multiprocessors still hold a significant performance advantage over
DSSMPs on unmodifiedapplications. However, a best-effort imple-
mentation of a kernel from one of our applications allows DSSMP
performance to almost match the performance of a tightly-coupled
multiprocessor.

Section 2 motivates the need for multigrain shared memory
on DSSMPs, and introduces the notion of multigrain locality. It
also presents our framework for reasoning about application per-
formance on DSSMP systems. Section 3 presents a platform-
independentimplementation of MGS, and Section 4 discussessome
implementation issues related to the Alewife platform. Section 5
presents our results on the MGS prototype. Section 6 discusses
related work, and finally, Section 7 presents our conclusions.

2 Multigrain Shared Memory

This section describes what we mean by a DSSMP, and motivates
the need for multigrain shared memory on DSSMPs. Then, the
notion of multigrain locality is introduced. Finally, a framework
for reasoning about application behavior on DSSMP systems is
presented.

2.1 DSSMPs

Figure 1 shows a group of SSMPs that are interconnected by an
external network. We call such a system a Distributed SSMP
(DSSMP). DSSMPs have two types of networks that form the
communication substrate: an internal network that connects pro-
cessors within each SSMP, and an external network that connects
the SSMPs. Each SSMP has efficient support for shared mem-
ory. Larger shared memory systems can be built by extending the
shared memory mechanisms in each SSMP to other SSMPs through
the external network. Shared memory at the inter-SSMP level is
synthesized in software using the external network for messaging.

The network hierarchy in DSSMPs is matched by a hierarchy
of shared memory latencies. A shared memory access that is satis-
fied within a single SSMP uses efficient hardware mechanisms for
shared memory, and is, therefore, inexpensive. A shared memory
access that spans SSMP boundaries needs to invoke software shared
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Figure 1: Building large-scale multiprocessors using SSMPs as
the basic building block, and an external network for inter-SSMP
communication.

memory, and is, therefore, expensive. Moreover, inter-SSMP com-
munication uses the external network, likely to be a commodity
local area network that is both unreliable and untrusted. Providing
reliability and security on these networks requires software protocol
stacks that contribute additional overhead.

2.2 Grain

In a shared memory system, grain refers to the unit of coherence.
Choosing a grain size can significantly impact performance. A
larger coherence grain amortizes the coherence overhead on a region
of memory over more data, thus potentially reducing the overhead
of shared memory actions. However, false sharing limits the effec-
tiveness of larger grains. As grain becomes large, shared memory
accesses to different parts of a memory region can interfere with
one another and cause coherence actions to occur even though no
true dependences exist between the accesses.

The optimal grain size depends on both the cost of maintain-
ing coherence on each memory region, and the sharing behavior
of applications. In DSSMPs, the cost of a shared memory access
can vary significantly depending on whether the access is handled
in hardware or in software. This suggests the use of two sepa-
rate grains: a cache-line sized grain when using hardware shared
memory, and a larger page-sized grain when using software shared
memory.

Other solutions to the grain size problem have explored variable
grains [4, 5]. These solutions leverage application-specific knowl-
edge to select the optimal grain. While this can be effective, it is
difficult for a compiler and painful for a programmer. Multigrain
shared memory does not rely on application-specific knowledge.
Instead, it supports fine-grain sharing when access patterns exhibit
locality, and resorts to coarse-grain sharing only when locality is
violated.

2.3 Locality

DSSMPs exploit cluster locality and multigrain locality, each of
which can be informally defined based on the notion of working
sets.

The working set property [6] exhibited by a processor’s memory
references is a statement about locality of reference. The working
set property states that the size of the set of unique memory blocks
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Figure 2: Two hypothetical curves that plot execution time as a
function of cluster size. Breakup penalty, multigrain potential, and
multigrain curvature are labeled for curve A.

accessedby a processor in a given interval of time is small compared
to the total number of memory blocks in the program’s dataset.

Cluster locality, as defined in [7], states that the working sets of
processors in the same cluster are more likely to intersect than those
of processors in different clusters. Cluster locality can be exploited
by any hierarchical shared memory system.

In addition to cluster locality, we introduce multigrain locality.
We define multigrain locality in the following way.

Multigrain Locality. Let the union of the individual processor
working sets in a cluster be the cluster working set. Multi-
grain locality states that the sharing between processors in
different clusters resulting from the intersection of cluster
working sets uses a coarser grain than the sharing between
processors in the same cluster resulting from the intersection
of processor working sets.

Multigrain locality is an extension of cluster locality. The exis-
tence of multigrain locality implies the existence of cluster locality,
but the converse is not true. While cluster locality can be exploited
by any hierarchical shared memory system, multigrain locality can
only be exploited by hierarchical systems that use different grains
of sharing at different levels in the hierarchy. The implication of
multigrain locality on applications is that some fine-grain sharing is
supported.

2.4 DSSMP Performance Framework

Two key system parameters describe a DSSMP configuration: the
total number of processors, P , and the number of processors per
SSMP or cluster size, C . In our framework, we keep P fixed and
vary C from 1 to P . The endpoints of this range are interesting
because each represents a collapse of the DSSMP network hier-
archy. At C = 1, each SSMP is a uniprocessor, so there is no
internal network. This means that all shared memory accesses to
remote locations use software and share at page granularity. Con-
versely, atC = P , there is only 1 SSMP, and it is the entire system.
There is no external network. All remote accesses are handled in
hardware and share at cache-line granularity. Larger values of C
correspond to DSSMPs that rely more on hardware for its shared
memory implementation.

Figure 2 shows two hypothetical curves that plot performance
on a DSSMP. Execution time is plotted against the cluster size
parameter,C , in powers of 2 for a total system size,P . We compare
the time at cluster size C = P against the times at cluster sizes
C = 1:::P2 . This ratio is the slowdown suffered by breaking a
tightly-coupled machine of P processors into N clusters of size P

N

processors each, for a range of N .

We identify three metrics that characterize an application’s be-
havior on DSSMP systems. The curve named “curve A” in Figure 2
has been labeled with these metrics.

Breakup Penalty. The execution time increase between the P
cluster size and the P

2 cluster size is called the “breakup
penalty.” This is the minimum performance penalty incurred
by breaking a tightly-coupled machine into a clustered ma-
chine.

Multigrain Potential. The difference in execution time between
a cluster size of 1 and a cluster size of P

2 is called the
“multigrain potential.” The multigrain potential measures
the performance benefit derived by capturing fine-grain shar-
ing within a cluster.

Multigrain Curvature. The shape of the curve across the multi-
grain potential is the “multigrain curvature.” A concave cur-
vature indicates most of the multigrain potential is achieved
at large cluster sizes, while a convex curvature indicates most
of the multigrain potential is achieved at small cluster sizes.

Curve A in Figure 2 represents an application that has a high
breakup penalty. The multigrain potential is small, and the multi-
grain curvature is concave. Curve A type applications are not well
suited for DSSMPs. In contrast, Curve B has a very small breakup
penalty indicating essentially no loss in introducing some software
in the shared memory implementation. It has a large multigrain
potential indicating good benefits derived from capturing fine-grain
sharing in clusters, and the multigrain curvature is convex with a
steep slope at small cluster sizes. This indicates that most of the
multigrain potential is achieved using small cluster sizes. The im-
plication for Curve B type applications is that they will perform
well on DSSMPs constructed from small-scale multiprocessors.

3 MGS System Design

This section discusses the design of the MGS system including the
multigrain shared memory protocol we developed, and the sup-
port for synchronization. The discussion defers platform-specific
implementation details of the system to Section 4.

3.1 MGS Shared Memory

MGS supports replication of data at both page and cache-line granu-
larities. Between SSMPs, coherenceactions occur at the granularity
of a page. Once a page is resident in the memory of an SSMP, pro-
cessors within the SSMP can map the page and further replicate the
data at cache-line grain via hardware cache coherence.

Every virtual page in the MGS system has a unique home that
contains the physical home copy. The location of the home is based
on the virtual address and remains fixed for all time. SSMPs other
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Figure 3: Distribution of a page of data across three SSMPs in the MGS system. Only the processors involved in sharing are shown; there
are other processors in each SSMP that are not shown.

than the home which desire access to the page can replicate the page.
Replicated pages can carry either read-only or read-write privilege.
Once an SSMP has a physical local copy, processors in the SSMP
can gain access to the data by first creating mappings for the page.
Read pages can be mapped in read-only mode, while read-write
pages can be mapped in either read-only or read-write mode. Once
mapped, accesses can be made to the page, and replication of the
data in the page occurs via hardware cache coherence.

Figure 3 illustrates how data from a single page gets distributed
to SSMPs and processors. SSMP0 contains the physical home
copy which is itself in read mode. A single processor in SSMP0
has a read-only mapping and has read some of the data. SSMP1
and SSMP2 have read-only and read-write physical local copies,
respectively. Since SSMP1 has a read-only copy, its processors can
only map it in read-only mode. Processors in SSMP2, however, can
map their physical local copy in either mode. One of the processors
has a read-write mapping, while another has a read-only mapping.

3.1.1 Memory Consistency

The page-based software protocol in MGS is release consistent 1,
invalidation-based, and supports multiple writers. The specifics
of the page-based protocol borrow heavily from Munin [8]. Like
Munin, MGS uses a delayed update queue (DUQ) to track dirty
pages and to propagate their changes back to the home location
at release time. Also like Munin, MGS supports multiple writers
by “twinning” all pages with read-write privilege, and computing
diffs between the page and its twin at release time. Only portions
of the page that have changed are propagated back to the home
copy. Finally, the consistency in MGS is eager. At a release
point, invalidations are performed immediately, and the home copy
becomes consistent with respect to all processors and SSMPs. Eager
invalidation was chosen for implementation simplicity.

In addition to the basic Munin techniques, MGS employs a
novel optimization, called the single-writer optimization. Twins
are made at request time for read-write pages as in Munin. At
invalidation time, if there is only one write copy outstanding, the
entire page is sent to the home instead of computing a diff, and
the read-write copy is allowed to remain cached. This optimization
presents two benefits. First, diff computation overhead is traded

1We assume that hardware cache coherence on the SSMPs presents a memory
model that is release consistent, or that is stronger than release consistency. Since
software shared memory between SSMPs is release consistent, the overall model seen
by the programmer is release consistency.

off for higher communication bandwidth to send the entire page;
for our implementation of MGS, this is a worthwhile tradeoff. And
second, leaving a cached copy with the writer after a release rewards
sharing within the same SSMP across release points at the expense
of slowing down data migration between SSMPs. This policy gives
preference to multigrain sharing.

3.1.2 Protocol Engines

Three software protocol engines implement the MGS Protocol: the
Local Client, the Remote Client, and the Server. Figure 4 shows
the state transition diagram for these protocol engines.

The Local Client maintains consistency on mapping state, and
implements the client-side protocol for requesting page data. The
Local Client runs on the processor that suffers a TLB fault. Three
states in the Local Client correspond to the three states that a map-
ping can have in a processor’s TLB: TLB INV, TLB READ, and
TLB WRITE. If the faulting processor finds a mapping in the local
SSMP, it copies the mapping and immediately transitions to the
TLB READ or TLB WRITE state; otherwise, the page does not
exist in the local SSMP. In this case, the faulting processor enters
the BUSY state and negotiates with the Server on the home SSMP
for replication of the page. We use a first-touch placement policy
for replicated pages; once placed, pages do not migrate within the
SSMP. Mutual exclusion within an SSMP on page table state during
TLB fault handling is achieved via a shared memory lock. There is
one such lock for each mapping on each SSMP.

The Remote Client performs page invalidation on the client side,
and runs on the processor that owns the client-side copy of a page.
When a request for page invalidation occurs, the Remote Client
invalidates the physical page, and sends TLB invalidation requests
to all processors that have mapped the page. The INV IN PROG
state is entered to wait for the TLB invalidations to complete. The
Remote Client also performs page upgrade operations. A page
upgrade happens when a processor tries to write to a page for which
the local SSMP only has read privilege. The Remote Client makes
a twin of the read page, upgrades the privilege from read to write,
and notifies the home SSMP of the upgrade.

Finally, the Server handles the server-side protocol for page
replication and release operations, and runs on the processor whose
memory is home for the page. The Server has three states: READ,
WRITE, and REL IN PROG. The READ state indicates that only
read copies of the page are in the system, while the WRITE
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Figure 4: State transition diagram for the MGS Protocol.

Arc Event Precondition L Side Effects Out Message

1 RTLBFault pagestate != INV +/R mapping! TLB, tlb dir = tlb dir [ fsrcg
2,5 WTLBFault pagestate == READ +/H mapping! TLB, tlb dir = tlb dir [ fsrcg UPGRADE ) l home
3,4 WTLBFault pagestate == WRITE +/R mapping! TLB, tlb dir = tlb dir [ fsrcg

DUQ = DUQ[ faddrg
5 RTLBFault pagestate == INV +/H RREQ ) g home

WTLBFault pagestate == INV +/H WREQ ) g home
6 RDAT –/R map page, tlb dir = fsrcg, pagestate = READ
7 WDAT –/R map page, tlb dir = fsrcg, pagestate = WRITE

DUQ = DUQ[ faddrg
UP ACK –/R DUQ = DUQ[ faddrg

8 Release +/H addr = DUQ–>head, DUQ = DUQ–>tail REL ) g home(addr)
9 RACK DUQ == � –/R
10 RACK DUQ != � addr = DUQ–>head, DUQ = DUQ–>tail REL ) g home(addr)
11 PINV invalidate TLB PINV ACK) l home
12 PINV invalidate TLB, DUQ = DUQ – faddrg PINV ACK) l home

13 UPGRADE make twin, pagestate = WRITE UP ACK) src, WNOTIFY ) g home
14 INV pagestate == READ +/H clean page, free page, count = j tlb dir j, tt = 1 PINV ) tlb dir

INV pagestate == WRITE +/H make diff, free page, count = j tlb dir j, tt = 2 PINV ) tlb dir
1WINV +/H clean page, count = j tlb dir j, tt = 3 PINV ) tlb dir

15 PINV ACK count != 0 count = count – 1
16 PINV ACK count == 0, tt == 1 –/R tlb dir = �, pagestate = INV ACK) g home

PINV ACK count == 0, tt == 2 –/R tlb dir = �, pagestate = INV DIFF ) g home
PINV ACK count == 0, tt == 3 –/R tlb dir = � 1WDATA) g home

17,19 RREQ read dir = read dir [ fsrcg RDAT ) src
18,19 WREQ write dir = write dir [ fsrcg WDAT ) src
18 WNOTIFY read dir = read dir – fsrcg,

write dir = write dir [ fsrcg
20 REL j write dir j != 1 count = j read dir [ write dir j, INV) read dir [ write dir

rl = fsrcg, rd = wr = �

REL j write dir j == 1 count = j read dir [ write dir j, INV) read dir, 1WINV) write dir

rl = fsrcg, rd = wr = �

21 REL count = j read dir [ write dir j, INV) read dir

rl = fsrcg, rd = wr = �

22 ACK count != 0 count = count – 1
DIFF count != 0 count = count – 1, buffer diff data
1WDATA count != 0 count = count – 1, copy data to home
RREQ rd = rd [ fsrcg
WREQ wr = wr [ fsrcg
REL rl = rl [ fsrcg
WNOTIFY

23 ACK count == 0 merge diffs, read dir = write dir = � RACK) rl, RDAT ) rd, WDAT ) wr

DIFF count == 0 merge diffs, read dir = write dir = � RACK) rl, RDAT ) rd, WDAT ) wr

1WDATA count == 0 read dir = write dir = � RACK) rl, RDAT ) rd, WDAT ) wr

Table 1: State transition table for the MGS Protocol. Italicized identifiers represent sets of processor IDs. <message>) <pid> denotes that
we send <message> to <pid>. <message>) <set> denotes that we send <message> to every processor specified in <set>. j<set>j denotes
the number of elements in <set>. <set>–>tail returns <set> minus the first element. “l home” and “g home” denote the ID of the processor
that owns the local physical copy and the home copy of a page, respectively. “pagestate” refers to the access privilege, and “mapping” refers
to the page mapping, for the local physical copy of the page in question. “src” refers to the source processor ID of the current message.
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Local Client ) Remote Client Messages Remote Client ) Local Client Messages
UPGRADE Upgrade Local Page from Read to Write Privilege PINV Invalidate TLB Entry
PINV ACK Acknowledge TLB Invalidation UP ACK Acknowledge Upgrade

Local Client) Server Messages Server) Local Client Messages
RREQ Read Data Request RDAT Read Data
WREQ Write Data Request WDAT Write Data
REL Release Request RACK Acknowledge Release

Remote Local Client ) Server Messages Server) Remote Client Messages
ACK Acknowledge Read Invalidate INV Invalidate Page
DIFF Acknowledge Write Invalidate and Return Diff
1WDATA Acknowledge Single Writer Invalidate and Return Data 1WINV Invalidate Single-Writer Page
WNOTIFY Notify Upgrade from Read to Write Privilege

Table 2: Message types used to communicate between the Local Client, Remote Client, and Server engines in the MGS Protocol.
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Figure 5: A load operation on MGS. Labels correspond to state
transitions in the state diagram shown in Figure 4.

state indicates the presence of at least one read-write copy. The
REL IN PROG state is entered when a release operation is in-
voked. All requests for replication that arrive when a page is in the
REL IN PROG state are queued and then satisfied after the release
completes.

Table 1 gives the annotations for the transition arcs in Figure 4,
and is a complete specification for the MGS Protocol. Most of the
notation is given in the caption of Table 1. The column labeled “L”
is part of the state transition precondition and refers to the shared
memory lock necessary for mutual exclusion on page table state. A
“+” indicates that the lock must be acquired via spin-waiting 2 before
the precondition is satisfied; otherwise, a “–” appears indicating
that no lock acquire is necessary. A second value indicates the
state of the lock after the state transition completes. The lock is
either released or held, denoted by “R” and “H,” respectively. The
messages used to communicate between the three protocol engines
are described in Table 2.

To illustrate how the different parts of the MGS protocol interact,
Figure 5 shows a load operation. When a processorperforms a load,
it first checks its local TLB for a mapping. If a mapping is found
in the TLB, a translation produces a physical address, and the data
is provided to the processor through the hardware cache coherence
mechanism on the SSMP. If, however, a TLB fault occurs, the Local

2In actuality, only tasks spin-wait on locks. Handlers that acquire locks test the
lock, and queue if the lock is busy in order to avoid deadlock.

Client is invoked and tries to find a mapping on the local SSMP. If
the SSMP has a local physicalcopy of the desired page, the mapping
will be found and the TLB filled. This corresponds to state transition
1 in Figure 4. If a local physical page cannot be found, the Local
Client transitions to the BUSY state (transition 5) and sends an
RREQ message to the home SSMP to request a read copy of the
page. On the home SSMP, the Server protocol is invoked to send
an RDAT message back to the client SSMP (transition 17). When
this data arrives at the client SSMP, the Local Client transitions to
READ state (transition 6), and the mapping is filled in the original
processor’s TLB.

3.2 MGS Synchronization

The MGS system is accompaniedby a user-level synchronization li-
brary that is cognizant of the hierarchy inherent in the MGS system.
The goal of the synchronization primitives is to contain commu-
nication within an SSMP whenever possible. In this section, we
discuss the techniques used for barriers and locks; both of these
have been proposed by Cox et al [2].

The MGS barrier is a tree barrier that is structured to match
the hierarchical structure of the DSSMP. The first level in the tree
synchronizes all processors on the same SSMP. The second level
synchronizes all the SSMPs. This achieves a minimum inter-SSMP
message count of two messages per SSMP (one for the combine,
and one for the release).

The MGS lock is a token-based distributed lock. Each MGS
lock consists of a local lock on each SSMP, and a single global
lock. A token is passed among the local locks; obtaining owner-
ship of the token requires acquiring the global lock. Acquires to
the local lock succeed if the local lock owns the token. Once a
local lock owns a token, repeated acquires from the same SSMP
succeed without inter-SSMP communication. Communication be-
tween SSMPs occurs only when consecutiveacquires from different
SSMPs necessitates acquiring the global lock.

4 MGS on Alewife

In this section, we discuss the implementation of MGS on the
Alewife platform. We give a brief overview of Alewife, and then
discuss four concerns for supporting MGS on Alewife: address
translation, inter-SSMP communication, use of active messages,
and global coherence.
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4.1 The Alewife Multiprocessor

Alewife is a distributed memory multiprocessor that has hardware
support for the shared memory abstraction. An Alewife machine
consists of a number of homogeneous processing nodes connected
in a 2-D mesh topology. Each Alewife node consists of a modi-
fied SPARC integer core, a floating point unit, 64K-bytes of static
cache RAM, 8M-bytes of dynamic RAM, a 2-D mesh routing chip,
and the CMMU, Communications and Memory Management Unit.
Alewife supports sequential consistency, and maintains cache co-
herence using a single-writer write-invalidate cache coherence pro-
tocol. Also, Alewife provides a fast messaging interface with DMA
capability [9]. DMA data in messages are locally coherent.

4.2 Support for MGS

4.2.1 Software Virtual Memory

MGS relies on virtual memory. On machines with hardware sup-
port for virtual memory, MGS would require special TLB fault
handlers. Because Alewife does not support virtual memory, MGS
performs address translation in software. The compiler identifies
which memory accesses need translation and emits code in-line
prior to these accesses to handle translation. The in-lined code
obtains a page table entry from the processor’s local page table,
and checks access rights in addition to forming a physical address.
Accesses that violate access rights trap into a fault handler.

Two types of accesses are translated in MGS, pointer deref-
erences and accesses to elements of distributed arrays. All other
accesses, including instruction fetches, stack accesses, and local
variables, are assumed to be unmapped and incur no translation
overhead. Translation for pointer dereferences is slightly more ex-
pensive than translation for distributed arrays. This is because all
distributed arrays are mapped objects whereas pointers can point to
both mapped and unmapped objects. The extra overhead in trans-
lating pointer dereferences is spent determining whether the pointer
address is virtual or physical; this is possible because the virtual
and physical spaces have disjoint address assignments.

Since software translation does not happen atomically, it is pos-
sible for an invalidation to occur in between the translation lookup
and the data access. To prevent this from happening, the translation
code includes markers that indicate a processor is in a translation
critical section. Requests to invalidate a mapping interrupt the pro-
cessor owning the mapping; the interrupt handler checks to see if
this processor is in a translation critical section. If so, the proces-
sor’s trap return PC is rolled back to the beginning of the critical
section (the translation code was designed to be reentrant).

4.2.2 Simulating LANs

Alewife is a tightly-coupled multiprocessor. We emulate a DSSMP
on Alewife by logically partitioning the Alewife nodes into SSMPs.
The entire machine is still tightly coupled; however, we only allow
processors to map pages that reside in their local logical SSMP. An
access to a page that resides outside the local SSMP causes a fault
and subsequent invocation of the MGS Protocol.

Communication across logical SSMPs required for the MGS
protocol uses the fast Alewife messaging mechanisms. To better

model the cost of inter-SSMP communication, all messages be-
tween logical SSMPs are queued at the sending processor and a
timer interrupt is set for some amount of delay. When the timer
interrupt occurs after the delay has expired, the message is taken
off the queue and actually sent. This technique models the inter-
SSMP communication cost as a fixed latency. Our implementation
of MGS does not account for contention in the LAN, nor in the
interface to the LAN.

4.2.3 Active Messages

MGS relies heavily on the active message layer supported by
Alewife for efficient communication. Two architectural features
make active messages particularly efficient. First, Alewife provides
support for DMA bulk data transfer in messages. All page-size data
is transferred using DMA thus relieving the processor of per-byte
transfer overheads. Second, there are four hardware contexts in the
Alewife integer core that accelerate active message handler invoca-
tion. The hardware contexts eliminate the need to save and restore
registers on handler entry and exit. In addition, preallocation of
thread meta-data structures such as stacks and task blocks to each
of the hardware contexts allows incoming messages to execute as
handlers immediately. Handler invocation becomesmore expensive
only when there are no free hardware contexts on message entry.

4.2.4 Global Coherence

MGS uses messages with DMA to efficiently transport page-size
data between SSMPs and further requires that data to be globally
coherent with respect to the SSMP. On Alewife, DMA in messages
is only locally coherent; global coherence [9] is synthesized in
software through a process called page cleaning.

Cleaning a page requires generating invalidations for every
cache line in the page. A reasonably efficient way to accomplish
this is to issue write prefetches some number of cache lines ahead in
a tight loop, and at each iteration of the loop, to do a store instruction
followed by a flush of the cache line. The write prefetch causes the
cache line to be invalidated from all other caches. If initiated far
enough in advance, the write prefetch will hide the latency of the in-
validation and the store instruction will hit in the processor’s cache.
The store instruction is necessary because Alewife ignores prefetch
requests when system resources are limited, or if the memory di-
rectory for that cache line is busy. The store instruction ensures
that the invalidation actually happens in the event that the prefetch
is ignored. After the flush completes, the cache line is guaranteed
to be cleaned from the system.

One problem with this scheme is that the latency of invalida-
tion for widely read shared data can be very high and hard to hide
with prefetching. However, invalidation of read-only data can be re-
moved from the critical path of page invalidation because there is no
coherence issue with read-only data. While MGS does not currently
make use of this observation, we are exploring an optimization in a
future implementation of MGS that will.

5 Results

We first present measurements that show the cost of primitive MGS
operations, and then we present extensive results showing the per-
formance of five shared memory applications running under MGS.
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Hardware Shared Memory
Cache Miss Local 11
Cache Miss Remote 38
Cache Miss 2-party 42
Cache Miss 3-party 63
Remote Software 425

Software Virtual Memory
Distributed Array Translation 18
Pointer Translation 24

Software Shared Memory
TLB Fill 1037
Inter-SSMP Read Miss 6982
Inter-SSMP Write Miss 16331
Release (1 writer) 14226
Release (2 writers) 32570

Table 3: Shared Memory Costs on MGS.

Application Problem Size Seq S32
Jacobi 1024� 1024 Grid, 10 Iterations 1618 30.0
Matrix Multiply 256� 256 Matrices 3081 26.9
TSP 10-City Tour 54.2 23.0
Water 343 Molecules, 2 Iterations 1993 26.9
Barnes-Hut 2K Bodies, 3 Iterations 977 13.8
Water-kernel 512 Molecules, 1 Iteration 1540 26.7

Table 4: Applications and their problem sizes. The column la-
beled “Seq” reports sequential running time in millions of cycles,
and the column labeled “S32” reports the speedup observed on 32
processors.

5.1 Micro Measurements

Table 3 shows the cost of performing some basic shared memory
operations on MGS. These measurements were taken on an Alewife
machine running at 20 MHz. There are three groups of measure-
ments. The top group measures the cost of the Alewife hardware
shared memory. These latencies represent the penalty for various
types of cache misses. They do not include the overhead of address
translation. The entry labeled “Remote Software” reports the cost
of a read miss to a cache line under software directory control. All
measurements are taken for load misses; store misses take slightly
longer, and can be found in [3].

The second group of measurements shows the cost of software
translation. Translation for both distributed array objects and gen-
eral pointers are shown. Finally, the bottom group of measurements
report on the cost of MGS’ software coherence protocol. All mea-
surements were taken assuming a 1K-byte page size and a 0 cycle
delay for communication between SSMPs.

5.2 Application Performance

In this section, we report on the performance of five shared memory
applications running on the MGS system: Jacobi, Matrix Multiply,
the Traveling Salesman Problem,Water, and Barnes-Hut. Jacobi is a
2-D grid relaxation program. Matrix Multiply multiplies two square
matrices. TSP computes the solution to a 10-city traveling salesman
problem using a branch and bound algorithm,and a centralized work
queue to distribute work. Water is a benchmark from the original
SPLASH suite [10]. It is a 3-D simulation of the motion of water
molecules. Barnes-Hut is also taken from the original SPLASH

suite. It is a 3-D hierarchical n-body simulation. A modification
was made in the way cells are allocated to relieve severe contention
on a centralized lock. The modification is similar to a modification
that is available in the SPLASH-2 [11] version of this code.

Table 4 lists the five applications, including the Water-kernel,
which is a special version of Water to be explained in Section 5.2.3.
For each application, the problem size used, the sequential run-
time, and the speedup achieved on 32 processors is shown. The
sequential runtime includes the overhead for software virtual mem-
ory. The speedups reported are calculated from executions on 32
processors without MGS, but with software virtual memory. Since
the overhead of software virtual memory is perfectly parallelizable,
its inclusion tends to improve speedup. The speedups reported in
Table 4 show that software virtual memory does not render all the
applications embarrassingly parallel.

5.2.1 Runtime Breakdowns

Figures 6 through 10 report the breakdown of runtimes for our
applications. For all applications, we use a 1K-byte page size,
and an inter-SSMP message delay of 1000 cycles. Each graph
shows the execution time for a single application on a 32 processor
Alewife machine running the MGS system. The different bars in
each graph correspond to six different cluster sizes between 1 and
32, increasing by powers of 2. For the 32 processor data points,
we substitute the normal MGS calls with null calls, and instead
of linking with the MGS cluster-based synchronization library, we
link with the P4 libraries. Therefore, the 32 processor data points
show performance on a tightly-coupled multiprocessor without any
MGS overheads, aside from software virtual memory.

All runtimes reported have been broken down into four com-
ponents: time spent in user code, time spent in synchronization
(for both locks and barriers), and time spent in software coherence,
labeled User, Lock, Barrier, and MGS, respectively. The user com-
ponent not only counts useful cycles in user code, but it also counts
cycles spent in software address translation and hardware shared
memory stall time. The synchronization components include both
the overhead of executing synchronization code and waiting on
synchronization conditions. Finally, the software coherence com-
ponent represents all time spent running the MGS Protocol3.

Figures 6 and 7 show the runtime breakdowns for Jacobi and
Matrix Multiply. The breakup penalty, as defined in Section 2.4,
is low for both these applications, 16% for Jacobi, and essentially
0% for Matrix Multiply. However, there is no performance gain
in the multigrain region–the performance of these applications is
independent of cluster size. Both applications have long compu-
tation phases that read and write large contiguous regions of data
without data dependences. The coarse-grain nature of the sharing
patterns allow these applications to run well regardless of the shared
memory implementation.

TSP performs quite differently. Two factors make performance
on TSP poor. First, a centralized work queue that holds partial tours
is a severe bottleneck. Processors require mutual exclusive access
to the queue both when placing new work on the queue, and when
removing work to perform. Second, false sharing is a factor as well.

3The 32 processor data points report only a user component. While the MGS
component is truly zero for these runs, there is a non-zero synchronization component
that has been folded into the user component because we did not instrument cycle
counting in the P4 library.
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Figure 6: Runtime breakdown for Jacobi.
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Figure 7: Runtime breakdown for Matrix Multiply.
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Figure 8: Runtime breakdown for TSP.
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Figure 9: Runtime breakdown for Water.
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Figure 10: Runtime breakdown for Barnes-Hut.

In TSP, the unit of data for computation is the path element which
holds partially evaluated tours. Path elements for a 10-city tour are
56 bytes in size. Because they are contiguously allocated and then
randomly assigned to processors from the work queue, there is large
amounts of false sharing.

Figure 8 shows the runtime breakdown for TSP. The breakup
penalty is quite large. TSP runs more than a factor 25 slower
on a DSSMP than on a tightly-coupled machine. Although the
multigrain potential is good, about 49%, the multigrain curvature
is concave (i.e., most of the multigrain potential is dropped across
large cluster sizes). Extremely high lock overhead reflects the
bottleneck at the centralized work queue. Although the critical
section for work queue operations is very short, the overall lock
overhead is high because of an effect we call critical section dilation.
Under hardware cache coherence, the lock protecting the critical
section is held for a short amount of time. But under software
page coherence, a consistency operation in software happens before
the lock is released. This is a long latency operation and thus
significantly increases the critical section length.

Figure 9 shows the runtime breakdown for Water. Water exhibits
a somewhat better breakup penalty over TSP, 322%, and it shows a
much higher multigrain potential of 67%. The performance gains
are due to reductions in both lock overhead and software coher-
ence overhead. The access patterns in Water encourage multigrain
sharing. In Water, a global molecule array is distributed amongst
processors. Each processor accesses this array linearly starting
from the portion it owns. Adjacent portions are distributed to pro-
cessors that are physically close. Processors residing in the same
SSMP share the global molecule array at fine granularity and can
avoid software coherence. Also, there is a lock associatedwith each
molecule. Ownership of the lock tends to pass among processors
in the same SSMP thus reducing lock latency.

A significant limitation to higher performance in Water is barrier
overhead. This is due to load imbalance in software coherence
processing. The number of molecules in our runs is not divisible by
the number of processors, so the number of molecules that are home
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Figure 11: Hit Rate for MGS lock as a function of cluster size.

on a particular processor is not balanced across all processors. In
addition, the processor that is home to the data structure that tracks
global statistics receives more coherence traffic than the others.
Lock overhead is fairly significant as well and is due to critical
section dilation.

Finally, Figure 10 shows the runtime breakdown for Barnes-Hut.
Again, we see a fairly high breakup penalty (though much better
than Water) of 161%, but Barnes-Hutexhibits the highestmultigrain
potential yet, 85%. Barnes-Hut has convex multigrain curvature.
Performance is surprisingly good considering Barnes-Hut is a much
finer-grained application than Water. Lock overhead is high due to
critical section dilation during a parallel tree build phase which
constructs the main data structure at the beginning of each iteration.
The frequency of software shared memory consistency operations
in this phase of the computation is very high. Also, barrier overhead
is very significant for the same reasons as in Water.

5.2.2 MGS Lock Results

In this section, we look at the performance of the MGS token-based
lock. Our metric for lock performance is the lock hit ratio. Lock
hit ratio is defined as the number of lock acquires that succeed
without inter-SSMP communication divided by the total number
of lock acquires. Figure 11 plots the lock hit ratio as a function
of cluster size for our applications, excluding the embarrassingly
parallel applications.

We find that the lock hit ratio increases monotonically with
increasing cluster size for all the applications. Furthermore, hit
ratio is higher for the applications that exploit multigrain sharing
(i.e., Water and Barnes-Hut have a better lock hit rate than TSP,
especially at small cluster sizes).

5.2.3 Enhancing Multigrain Locality in Water

Previous sections examine the performance of unmodified shared
memory programs on DSSMPs. In this section, we explore in-
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Figure 12: Runtime breakdown for Water-kernel without (left set
of bars) and with (right set of bars) loop transformation.

creases in performance that can be achieved through a best-effort
implementation which improves multigrain locality.

We consider the force interaction kernel from the Water appli-
cation. The kernel accounts for most of the application’s execu-
tion time. It consists of a doubly nested loop that traverses the
main molecule array to perform the N-squared force interactions.
Each iteration through the loop performs a pair-wise interaction and
writes both molecules. Because of read sharing on the molecules,
these writes cause invalidation traffic.

A loop transformation was performed, by hand, to improve the
kernel’s multigrain locality. In this loop transformation, the main
molecule array is tiled such that there are two tiles per SSMP, and
the computation of interactions proceeds in phases. In each phase,
an SSMP chooses two tiles and the processors in the SSMP perform
all possible pair-wise interactions between molecules from the two
tiles. A schedule for tile assignments to SSMPs is computed such
that in any given phase, each tile is assigned to exactly one SSMP
so that the SSMP has exclusive access to the tile.

Figure 12 shows the performance of both the unoptimized and
optimized kernels. The unoptimized kernel performs much like the
original Water application; however, the optimized kernel shows a
large performance improvement. Most notably, the breakup penalty
drops from 334% to 26%. Furthermore, a large multigrain potential
is still observable, 107%, and the multigrain curvature is convex.
The optimized kernel has perfect multigrain locality. Within each
phase, all sharing occurs within the SSMPs, and relies on hardware
cache coherence. Only across phases does software page-grain
communication occur. As cluster size increases, performance im-
proves because the amount of work in each tile grows thus reducing
the frequency of page-based coherence at phase boundaries.

6 Related Work

Several researchers have investigated the potential for clustering
in shared memory systems. Cox et al [2] study a system built

from 8-way bus-based multiprocessors connected over an ATM
network. Three key differences distinguish our work from the Cox
paper. First, the Cox paper is a simulation study, whereas our
work presents a full implementation. The DSM system in the Cox
study makes many simplifying assumptions which are dealt with
directly in our system. Second, we identify the ability to leverage
multiple grains of sharing as the key to achieving performance on
DSSMP-like systems, and we provide a framework for reasoning
about application performance on multigrain systems. Lastly, the
Cox study uses bus-based multiprocessors. Our study provides an
implementation for NUMA machines.

Other systems exploit clustering at a level closer to the processor,
typically in the first or second level cache. These systems include
VMP-MC [12], DASH [13], and KSR [14]. The benefit of clustering
on these systems has been studied [15]. Interference misses due to
limited cache capacity and associativity can reduce the benefits of
clustering close to the processor. MGS clusters at the main memory
level and thus does not suffer from these effects. Also, the use of
MGS-style multiple grains is prohibitive in these systems because
support for both intra- and inter-cluster accessesoccurs in hardware;
using a single cache-line grain is desirable for simplicity.

Several studies have explored multiple or variable grains of shar-
ing. Galactica Net [16] allows both cache-line size and page-size
grains of sharing; however, they rely on hardware support between
clusters to implement update-based protocols at cache-line grain to
efficiently support fine-grain write sharing between clusters. Chan-
dra et al [17], Shared Regions [4], and CRL [5] allow coherence
to happen at variable grains, but treat all processors equally (i.e.,
no clustering), and require user annotations to identify the regions.
MGS runs shared memory applications unmodified. The only re-
quirement is that the programmer uses a release consistent memory
model.

Finally, there is a large body of work on software distributed
shared memory. Our particular DSM implementation borrows from
the Munin system [8]. Other approaches have tried to minimize
message traffic and optimize memory management policies [18,
19, 20, 21]. MGS would benefit from these techniques.

7 Conclusion

Using small- to medium-scale multiprocessors as the basic building
block for large-scale multiprocessors is attractive for two reasons.
First, small- to medium-scale multiprocessors are economically
viable and will have an ever increasing presence in the local area
environment. Second, SSMPs already have hardware support for
shared memory. Systems that can leverage the efficient hardware
mechanisms in each SSMP have an advantage over conventional
uniprocessor workstations.

MGS demonstrates how shared memory for DSSMPs can be de-
signed. We propose a protocol that couples hardware cache coher-
ence with software distributed shared memory. We identify the dif-
ficulty in maintaining consistency on data that has been distributed
in a multigrain fashion, and discuss the problem of reclaiming such
distributed data via page cleaning. The feasibility and correctness
of our design is demonstrated by a working implementation that
runs on the Alewife platform.

The key to good application performance on multigrain shared
memory systems is the ability to exploit multigrain locality. Multi-
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grain locality strikes a balance between the support of tightly-
coupled multiprocessors and networks of workstations in that some
fine-grain sharing can be supported efficiently. Our work quantifies
the extent to which shared memory programs exhibit multigrain
sharing. To enable such a study, we define a framework for rea-
soning about application performance on DSSMPs based on three
metrics: breakup penalty, multigrain potential, and multigrain cur-
vature.

Using our framework,we study five shared memory applications
on the MGS system. Our first conclusion is that the multigrain po-
tential is significant, ranging from 38% to 85%. This is encouraging
because it indicates that applications can leverage multigrain sharing
even without restructuring; therefore, using small-scale multipro-
cessors as software DSM nodes is better than using uniprocessor
workstations. Another conclusion is that for unmodified appli-
cations, the breakup penalty is high. Excluding embarrassingly
parallel applications, the breakup penalty ranges from 161% to
2270%. That is, fully tightly-coupled machines still offer a sig-
nificant performance advantage over DSSMPs on unmodified ap-
plications. However, we found that a multigrain locality enhanced
implementation of the force interaction kernel from the Water appli-
cation was able to reduce the breakup penalty substantially. On our
optimized kernel, the breakup penalty improved by dropping from
334% to only 26%, while a very large multigrain potential, 107%,
was still visible. Shared memory allows a programmer to develop
applications on a DSSMP quickly, and then improve incrementally
the multigrain locality either manually or by using a compiler or
runtime for increased performance. We are currently investigating
compiler and runtime support for multigrain locality.
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