ACM International Conference on Supercomputing 25th Anniversary Volume

Author Retrospective for
Anatomy of a Message In the Alewife Multiprocessor

John Kubiatowicz
Computer Science Division
University of California, Berkeley
kubitron@cs.berkeley.edu

ABSTRACT

The MIT Alewife project, launched in the Spring of 1988,
comprised a dynamic group of researchers who designed and
implemented the Alewife multiprocessor [1]. One of the most
important and unexpected outcomes of this project was the
message-passing interface described in “Anatomy of a Mes-
sage in the Alewife Multiprocessor,” selected for this Ret-
rospective. This interface was essential to the Alewife OS
and runtime systems, was important for I/O, and enabled a
new and innovative cache-coherence protocol, called Limit-
LESS [3]. It also enabled direct comparisons between shared
memory and message-passing [4].

Original paper: http://dx.doi.org/10.1145/165939.165970

Categories and Subject Descriptors

B.4 [Input/Output and Data Communications]: In-
terconnections (Subsystems)—interfaces; C.2 [Computer-
Communication Networks]: Network Architecture and
Design— Packet-switching networks

Keywords

Parallel computing, message-passing interfaces

1. INTRODUCTION

The MIT Alewife project was an amazing collaboration
of students, research staff, and faculty that charted new
ground, produced a wide variety of research results, and ul-
timately built real parallel processing hardware. It spanned
the 10-year period from the Spring of 1988 to Spring of
1998—producing almost 30 papers in conferences and jour-
nals and 7-10 PhD theses (depending on how you count
them). Lead by Anant Agarwal from MIT, the research envi-
ronment was exciting, occasionally contentious, and always
productive. As one of the principle architects of the Alewife
hardware, I had the privilege to work directly with many
outstanding researchers during the project. Together, we
designed the Alewife machine from scratch with a new pro-
cessor, new cache-coherence protocol, new compiler, novel
synchronization support, and a custom operating system.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

ICS 25th Anniversary Volume. 2014

ACM 978-1-4503-2840-1/14/06.

http://dx.doi.org/10.1145/2591635.2591650.

26

Much of the focus behind our papers was aimed at prac-
tical considerations that ultimately lead to the Alewife ma-
chine [1]. This “implementation realism” was one of our
strengths as a research team. Whenever one of us would
propose a new mechanism or protocol, the others would ask
whether or not it was practical. During the course of the
project, we constructed at least three different system-level
simulators—including one called “the New World Order”—
with the express purpose of understanding the complexity
and performance of mechanisms under realistic loads.

One of the most important (and unexpected) outcomes
of the early phase of the Alewife project was the message-
passing interface. The final form of this interface was a col-
laboration between multiple members of the Alewife team.
It rapidly evolved from a novelty to an essential mechanism.

2. THE INTERFACE IS BORN

When I first joined Alewife project in 1989, the team was
investigating the design and implementation of limited direc-
tory cache-coherence protocols. Anant Agarwal “signed me
on” to help design and implement the Alewife machine. At
that time, there were some initial thoughts of what mech-
anisms should be in a good processor (ultimately leading
to the April processor paper [2]) as well as a preference
for packet-switched, low-dimensional networks over alterna-
tives. The remainder of the details were in the very early
stages and quite fungible. Since building a complete ma-
chine from scratch was an exciting prospect, I immediately
began to flesh out the details.

The genesis for the Alewife message-passing interface was
my desire to provide communication support for the op-
erating system and I/O subsystem. In keeping with the
fine-grained communication philosophy of Alewife, my initial
proposal for the messaging interface included a low-overhead
message description process, integrated direct memory ac-
cess (DMA), and fast interrupt handling. At the time, Tech-
nology Square at MIT had a number of competing parallel
computer projects, including the J-machine [8], Monsoon [9],
and *T [7]. The J-machine, in particular, provided much
inspiration to design a low-overhead message-passing inter-
face that was compatible with our standard RISC pipeline!.
I was quite familiar with the J-machine, since Bill Dally’s
research group was right next to ours.

As I recall, others in the group were extremely skeptical
of my initial proposal. Many, including Daniel Nussbaum

'The J-machine included a specialized processor with
hardware-support for method dispatch in object-oriented
programming models such as Smalltalk.

ACM International Conference on Supercomputing 25th Anniversary Volume

Gate Mechanism
Category Count | % || SM | MP | LT | FG
Processor Requests || 11686 | 12 || / N RV
Input Interface Full/Empty Decode 2157 2 \/
ProcGuj—— o Memory Machine 13351 |13 || v/ | V/
g |58 DRAM Control 8720 | 9| v | V
£ . Transaction Buffer 17399 (17 || / | vV | V
£ | £ & [Doram Tracking Vectors 2108 | 2 || v/ v
5 | B g | Remew Network Interface 11805 | 12 || +/ | V/
/ ‘ I Network Queueing 7363 T V|V VIV
Processor i :
1 e ;ratnsgﬂﬂ? ?uffe CMMU Registers 9308 | 9| Vv
| |Conernceaiihe iach Statistics 11958 | 12
e m Miscellaneous 4627 | 5
e e T
Figure 1: Floorplan for the Alewife CMMU Figure 2: Functional block sizes (in gates) for the Alewife CMMU,
(15mm X 15mm). Shaded regions are as well as contributions to shared memory (SM), message passing
standard-cell memories. Remaining blocks (MP), latency tolerance (LT), and fine-grain synchronization (FG).
are formed from sea-of-gates transistors. Total chip resources: 100K gates and 120K bits of SRAM.

and David Chaiken, thought it was a distraction from our
charter of making distributed shared-memory practical. I
persisted, however, and had begun to think about the fact
that “message-passing” (packet-switching) networks were go-
ing to be underneath any shared-memory implementation
for Alewife. Soon, Anant Agarwal and David Chaiken real-
ized that a low-overhead message-passing interface could be
used to provide flexibility for the cache coherence protocol—
allowing the common-case to be handled in hardware with
special cases relegated to software. At that point, both the
Alewife network interface and the LimitLESS cache coher-
ence protocol [3] were born.

With the support of the Alewife team, I began design-
ing the message passing mechanism in earnest—adapting it
as necessary as others began applying it to their own in-
terests. A flurry of activity followed. Specifically, David
Chaiken began designing the LimitLESS coherence proto-
col; Ben-Hong Lim began designing synchronization mech-
anisms using messages; David Kranz and Dan Nussbaum
began integrating messaging into the compiler and runtime
system. Kirk Johnston, Ken Mackenzie, and Donald Yeung
provided valuable insights at this time as well.

It is a testimony to our extensive simulation environment
(complete with the ability to boot a binary version of our
operating system) that we were able to quickly iterate on
the design of the messaging interface.

3. A MATURE DESIGN

The “devil is in the details,” as they stay. The “Anatomy
of a Message” paper, included in this volume, is the result
of an intense design process. It represents the (often collid-
ing) combination of many design goals and implementation
restrictions. I list a few of them here:

e The inclusion of the Atomic Send mechanism was nec-
essary for reasonable integration with operating sys-
tems, since it allows the OS to interrupt user-level pro-
cesses that are sending messages?.

2This is an important design flaw, in my opinion, of the
J-Machine network interface.

27

e The High-Availability interrupt mechanism was crucial
to permit message-passing and shared memory to exist
in the same machine.

e The Locally-Coherent DMA mechanism was a logical
compromise between programmability and ease of im-
plementation.

e Network overflow support (and corresponding queue
topology) was essential, given that Alewife was imple-
mented on top of a network with only a single virtual
channel.

The strength of this paper arose, in my opinion, precisely
because it was founded in real implementation concerns—
without losing the simplicity of mechanism description. At
the time that the paper was published, the Alewife com-
munication and memory management unit (CMMU) was
already well on its way toward implementation.

Figure 1 shows the final floorplan for the CMMU, illus-
trating where the message-passing mechanisms were placed.
The queues and overall control interfaces (for the “Inter-
processor Interrupt” or IPI) can be seen in the upper right
corner of this chip. The upper left corner contains the net-
work queuing and hardware interfaces to the network from
the coherence protocol mechanisms.

This floorplan came directly from our LSI-Logic layout
tool, and represents the final positioning of these compo-
nents. Figure 2 shows that the message-passing mechanism
comprises slightly more than 20% of the chip (it includes
some of the CMMU registers), but that it impacts a number
of important functions.

As a result of our extensive simulation and testing
methodology (which included the ability to run a gate-
level simulation of the CMMU in communication with a
functional multiprocessor simulator), the first versions of
the CMMU and Sparcle processor were substantially func-
tional®. In fact, CMMU chips arrived in our lab on May 4"
of 1994, and we had a 16-node Alewife machine running by
June 17",

3Many thanks to LSI Logic for their help in the design of
the Sparcle processor and support with the layout and fab-
rication of the CMMU.

ACM International Conference on Supercomputing 25th Anniversary Volume

Source
Processor
1 1
| |
L | |
Destination | |
Processor | |
| Message | Network
| Description | Transit
| |
1 1

Figure 3:
handler.
control of the user-level task receiving messages.

Atomic
Section

Global |
Section |
|

€&—— Message Handler —————»

Injection of a User-Direct message and later extraction of this message with a user-level interrupt
A crucial aspect of this version of the message send was the Atomic Section which was entirely under

4. EXTENSIONS TO THE SCHEME

The first version of the Alewife message-passing interface
had some minor deficiencies with respect to user-level ac-
cess to the network. Missing from that version was support
for user-level control of message interrupts. As a result, Ken
Mackenzie and I collaborated with Anant Agarwal and Frans
Kaashoek to develop what we called “User-Direct Messag-
ing” [6]. Support for this style of communication appeared
in the second iteration of the CMMU.

User-Direct Messaging introduced a novel atomicity mech-
anism that allows user-level programs to disable message-
arrival interrupts as long as they do not “abuse” the priv-
ilege; abuses include refusing to consume messages or con-
suming them too slowly. Figure 3 shows the complete life
of a message as embodied in this new interface. Of partic-
ular importance to this figure is the Atomic Section that is
entirely under control of the user.

S. 20 YEARS LATER

I like to think that everyone in the Alewife group eventu-
ally came to love the inclusion of a low-overhead message-
passing interface into the Alewife universe. It altered our
thinking about communication mechanisms significantly,
changing the way we constructed essential software ser-
vices [5] and spurring direct comparisons between message-
passing and shared-memory communication styles [4]. The
LimitLESS cache coherence protocol [3] immediately gar-
nered attention from a wide audience and subsequently in-
spired a variety of follow-on work (both inside and out-
side of MIT) on the benefits of hardware invoked, software-
supported cache-coherence protocols.

To this day, I believe that the Alewife message-passing
interface is one of the most efficient and practical messaging
interfaces ever designed. Its unique features are thanks to a
dynamic group of researchers on the 6! floor of MIT’s tech-
nology square—a group of which I had the distinct privilege
to be a member.

6. REFERENCES

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken,
Kirk Johnson, David Kranz, John Kubiatowicz,
Beng-Hong Lim, Kenneth Mackenzie, and Donald

28

3]

4]

(6]

(8]

(9]

Yeung. The MIT Alewife Machine: Architecture and
Performance. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture,
June 1995.

Anant Agarwal, Beng-Hong Lim, and David Kranz.
April: A Processor Architecture for Multiprocessing. In
Proceedings of the 17th Annual International
Symposium on Computer Architecture, June 1990.
David Chaiken, John Kubiatowicz, and Anant Agarwal.
LimitLESS diectories: A scalable cache coherence
scheme. In Proceedings of the 22nd Annual Conference
on Architectural Support for Programming Languages
and Operating Systems, April 1991.

Fredric T. Chong, Rajeev Barua, Fredrik Dahlgren,
John Kubiatowicz, and Anant Agarwal. The Sensitivity
of Communicaton Mechanisms to Bandwidth and
Latency. In Proceedings of the Fourth Annual
Symposium on High-Performance Computer
Architecture, February 1998.

David Kranz, Kirk Johnson, Anant Agarwal,
Beng-Hong Lim, and John Kubiatowicz. Integrating
Message-Passing and Shared-Memory: Early
Experience, May 1993.

Kenneth Mackenzie, John Kubiatowicz, Matthew
Frank, Walter Lee, Victor Lee, Anant Agarwal, and

M. Frans Kaashoek. Exploiting Two-Case Delivery for
Fast Protected Messaging. In Proceedings of the Fourth
Annual Symposium on High-Performance Computer
Architecture, February 1998.

R. S. Nikhil, Greggory Papadopoulos, and David Culler.
*T: A Multithreaded Massively Parallel Architecture.
In Proceedings of the 19th Annual International
Symposium on Computer Architecture, May 1992.
Michael Noakes, Deborah Wallach, and William Dally.
The J-Machine Multicomputer: An Architectural
Evaluation. In Proceedings of the 20th Annual
International Symposium on Computer Architecture,
May 1993.

Gregory Papadopoulos and David Culler. Monsoon: An
Explicit Token-Store Archiecture. In Proceedings of the
17th Annual International Symposium on Computer
Architecture, June 1990.

