
PAPERS

A Multicore Operating System with QoS
Guarantees for Network Audio Applications

JUAN A. COLMENARES1,4

(juan.col@samsung.com)
, NILS PETERS,1,2,3 AES Member

(nils@eecs.berkeley.edu)
, GAGE EADS1

(geads@eecs.berkeley.edu)
,

IAN SAXTON1,2

(saxton@eecs.berkeley.edu)
, ISRAEL JACQUEZ1

(mrkotfw@eecs.berkeley.edu)
, JOHN D. KUBIATOWICZ1

(kubitron@eecs.berkeley.edu)
, AND

DAVID WESSEL1,2

(wessel@cnmat.berkeley.edu)

1Parallel Computing Laboratory, UC Berkeley, CA, USA
2Center for New Music and Audio Technologies, UC Berkeley, CA, USA

3International Computer Science Institute, Berkeley, CA, USA
4Samsung Research America – Silicon Valley, San Jose, CA, USA

This paper is about the role of the operating system (OS) within computer nodes of network
audio systems. While many efforts in the network-audio community focus on low-latency
network protocols, here we highlight the importance of the OS for network audio applications.
We present Tessellation, an experimental OS tailored to multicore processors. We show how
specific OS features, such as guaranteed resource allocation and customizable user-level run-
times, can help ensure quality-of-service (QoS) guarantees for data transmission and audio
signal processing, especially in scenarios where network bandwidth and processing resources
are shared between applications. To demonstrate performance isolation and service guarantees,
we benchmark Tessellation under different conditions using a resource-demanding network
audio application. Our results show that Tessellation can be used to create low-latency network
audio systems.

0 INTRODUCTION

Responsive real-time performance is essential to many
audio applications [36]. Unfortunately, achieving this goal
is very difficult or impossible with many mainstream oper-
ating systems and operating environments.

Network audio applications, for instance, can suffer from
a variety of variable and unexpected delays: from poten-
tially slow and unstable network connections to variable
interrupt latencies and excessive scheduling delays. For au-
dio applications, the entire processing chain contributes to
the latency. However, many development efforts in the net-
work audio community are directed toward network proto-
cols with quality-of-service (QoS) guarantees (e.g., Audio
Video Bridging (AVB) [19]) and low-latency compression
algorithms (e.g., Fraunhofer’s Ultra Low Delay (ULD) Au-
dio Codec)—neglecting the role of the operating system
(OS) at the beginning and end of the network audio chain.

Fortunately, the computer industry has recently under-
gone a paradigm shift away from sequential to parallel
computing [7], encouraging a reexamination of the tradi-
tional software layers and the structure of the OS. Therefore,

there is a unique opportunity for the audio community to
raise awareness of the importance of QoS and low latency
for network audio applications and eventually to contribute
to the next generation of OSs.

This paper sheds a light on the role of the OS for net-
work audio applications. We show how Tessellation OS
[15,24], an experimental multicore operating system devel-
oped in the Parallel Computing Lab at UC Berkeley, can
help achieve low latency and predictable behavior for real-
time audio applications. Tessellation focuses on enforcing
resource-allocation guarantees for client applications. By
switching the focus away from utilization and toward re-
source management, Tessellation provides an ideal envi-
ronment in which to host network audio applications.

Tessellation has been developed with an eye toward net-
worked real-time audio applications (intended for use in live
performances) [14] and other next-generation client appli-
cations (e.g., a parallel web browser [20] and a meeting
diarist [17]). Not only can such applications benefit from
more computational power than available from a single
CPU, but they can also benefit from an execution environ-
ment with reduced variability and customized scheduling.
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Tessellation has several distinctive features: (1) it pro-
vides performance isolation and strong partitioning of re-
sources; (2) it separates global decisions about resource al-
location from application-specific usage of resources (i.e.,
two-level scheduling); and (3) it implements an Adaptive
Resource Centric Computing (ARCC) approach to pro-
vide adequate support for a dynamic mix of real-time,
interactive, and high-throughput parallel applications. To-
gether, these features provide a unique environment for
next-generation applications.

In particular, the strong performance isolation provided
by Tessellation permits software components running at
the endpoints of a network audio application to yield pre-
dictable, low-jitter audio processing—providing an essen-
tial complement to the network-level improvements men-
tioned above. Further, the presence of user-level customized
scheduling gives flexibility to exploit parallelism in an
application-specific manner.

The remainder of the paper is structured as follows. The
requirements of network audio applications are reviewed
in Section 1. Section 2 introduces Tessellation OS and dis-
cusses some of its salient features. Then, in Section 3, we
present a test network audio application, which involves
a high-bandwidth, low-latency digital music interface for
controlling a computationally demanding polyphonic soft-
ware synthesizer. The experiments in Section 4 measure the
response times of our test application running on Tessella-
tion under different load conditions. Finally, we conclude
the paper in Section 5 with our closing remarks and future
work. Although we focus on audio applications in local
area networks (LANs), the principles discussed here are
also valid for networks covering longer distances.

1 REQUIREMENTS OF AUDIO APPLICATIONS

When performing on musical instruments, musicians
usually receive acoustical feedback from their instruments
within a few milliseconds (e.g., the time between hitting
a drum and hearing its sound). Studies have shown that
humans can perceive artificial delays of as small as 1 ms
added to the acoustical feedback [30]. In multimodal vir-
tual environments, Altinsoy [6] suggested that the tactile
and auditory feedback must be within 10 ms. For a piano
duet, Sawchuk et al. [32] found that the acoustical path-
length between the performers ideally should not be above
10 ms: the longer the pathlength, the harder it is to perform
in synchrony, especially in fast musical sections. For most
small group performances, the authors of [12] report that
the maximum tolerable delay is about 50 ms. From these
delay times we can establish an upper bound for the ideal
end-to-end latency in audio applications.

In real-time networked audio applications, the end-to-
end latency and its variability (jitter) depend on a number
of accumulative factors, such as AD and DA conversions,
buffering and packetization, which are part of communica-
tion protocol processing, queueing delays within the net-
work, transmission delays, which are bounded by speed of
light, and (optional) data compression and decompression.
In distributed performances over large distances using wide

area networks (WANs), these factors can easily accumulate
to latencies much higher than the aforementioned 50 ms.

Further, audio processing stages at the sender’s and re-
ceiver’s sides (e.g., spatialization of audio streams [13]) can
introduce additional delays depending on the completion
times of the (usually) block-wise audio processes. In block-
wise audio processing, a chunk of audio data is processed
at once. Block-wise processing can take advantage of low-
level hardware optimizations such as caching, pipelining,
and single-instruction/multiple-data (SIMD) vectorization.
On the other hand, the larger the block size, the longer the
waiting time to buffer all incoming audio samples before
the next block-wise processing can start. The choice of the
right block size is consequently a tradeoff between tolera-
ble latency and computational speed. To reduce the block
size of the audio computation, the worst-case completion
times of the processing tasks need to be minimized, for
instance by exploiting parallel computing strategies (e.g.,
[11,14,34]).

In LANs the transmission delay is often low enough that
it is not the dominant factor in the end-to-end latencies
of networked music applications. In this case the software
running on each computing node, and the operating sys-
tem in particular, plays a much more significant role in
meeting the latency requirements of such applications. For
instance, device interrupt handling, network protocol pro-
cessing, scheduling decisions, and contention on resources
used by multiple applications, if not controlled properly by
the OS, may result in unpredictable delays.

In the next section we present Tessellation OS and briefly
discuss the salient features that allow us to control the sys-
tems software factors mentioned above in order to meet
the latency requirements of LAN-based live-performance
music applications.

2 OVERVIEW OF TESSELLATION OS

Tessellation [15,24] embodies an Adaptive Resource
Centric Computing (ARCC) approach, illustrated in Fig. 1.
This approach enables a simultaneous mix of interactive,
real-time, and high-throughput parallel applications by au-
tomatically discovering the mix of resource assignments
that maximizes the net system utility for the end user—an
indicator of how well the applications are meeting their re-
quirements and the whole system is satisfying the user’s
needs.

Tessellation treats resources as “first-class citizens” that
can be assigned to sets of application components in order
to provide predictable performance, which is essential for
live-performance musical and other time-sensitive applica-
tions. Application components are grouped and execute in
QoS domains called cells, and Tessellation distributes re-
sources to cells. Further, each cell offers the components
it hosts guaranteed access to its assigned resources. The
stable, performance-isolated environment of a cell makes
it possible to experimentally observe application perfor-
mance metrics (e.g., completion time and throughput) and
predict how these metrics vary with resources—thus en-
abling accurate resource optimization.
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Fig. 1. Adaptive Resource-Centric Computing (ARCC): Resource
allocations are automatically adjusted to maximize the overall
system utility for the end user. Resources are distributed to cells,
which provide performance isolation and guaranteed access to re-
sources to the hosted applications and services. Cells are depicted
as rounded boxes with solid lines.

Fig. 2. Decomposing an application into a set of communicating
components and services running with QoS guarantees within
cells. Tessellation OS provides cells that host device drivers and
OS services.

The Tessellation kernel is a thin software layer that pro-
vides support for ARCC. It implements cells and offers
interfaces for cell composition and assigning resources to
cells. In the rest of this section we briefly discuss the key
aspects of Tessellation OS.

2.1 The Cell Model
Cells provide the basic unit of computation and protec-

tion in Tessellation. They are performance-isolated resource
containers that export their resources to user level. Once re-
sources (e.g., CPU cores and memory pages) have been
assigned to cells, the Tessellation kernel gives cells full
control over the usage of the resources allocated to them.
Cells control their resource usage at user-level (i.e., outside
the kernel) and the kernel is just minimally involved.

Applications in Tessellation are created by composing
cells that communicate via efficient and secure channels,
which enable fast asynchronous message-passing commu-
nication at user level (see Fig. 2). Channels allow an ap-
plication component in a cell to access OS services (e.g.,
network and file services) and to interact with other appli-
cation components residing in other cells.

Fig. 3. Space-time partitioning (STP) in Tessellation OS: a snap-
shot in time with four spatial partitions.

Space-Time Partitioning [25,24]: Tessellation divides
the hardware into a set of spatial partitions (see Fig. 3). Par-
titionable resources include CPU cores, pages in memory,
and guaranteed fractional services from other cells (e.g.,
a throughput reservation of 150 Mbps from the network
service). They may also include guaranteed cache-memory
units, portions of memory bandwidth, and fractions of the
energy budget, when the supporting hardware mechanisms
are available (e.g., [5,22,29,31]).

Tessellation OS virtualizes spatial partitions by time-
multiplexing the whole partitions onto the available hard-
ware in a strictly controlled manner. Thus, at any given
point in time some partitions can be active while others
are standing by. Tessellation exports partitions to applica-
tions and OS services through the cell abstraction. The
kernel implements a scheduling algorithm that coordinates
cell switching and ensures that each cell has simultane-
ous access to the entire “gang” of resources assigned to its
associated partition. In other words, CPU cores and other
resources are gang-scheduled [28,16] such that cells are
unaware of this multiplexing.

Tessellation provides several time-multiplexing policies
for cells, some of them offering high degrees of time pre-
dictability; they are: (1) no multiplexing (cell given ded-
icated access to its assigned resources), (2) time trigger-
ing (cell active during predetermined and periodic time
windows), (3) event triggering (cell activated upon event
arrivals, but its contribution to the total utilization never ex-
ceeds its assigned fraction of processor time), and (4) best
effort (cell with no time guarantees).

Two-Level Scheduling [26,15]: Two-level scheduling
in Tessellation separates global decisions about resource
allocation to cells (first level) from management and
scheduling of resources within cells (second level). Re-
source redistribution occurs at a coarse time scale to amor-
tize the decision-making cost and allow time for second-
level scheduling decisions (made by each cell) to become
effective.

The user-level runtimec within each cell may utilize its
resources as it wishes—without interference from other
cells. The cell’s runtime can thus be customized for specific
applications or application domains with, for instance, a
particular CPU scheduling algorithm.
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2.2 Service-Oriented Architecture
Cells provide a convenient abstraction for building OS

services (such as network interfaces, file systems, and win-
dowing systems) with QoS guarantees. Such services can
reside in dedicated cells, have exclusive control over de-
vices, and encapsulate user-level device drivers (see Fig. 1).
Each service can thus arbitrate access to its enclosed de-
vices and leverage the cell’s performance isolation and cus-
tomizable QoS-aware schedulers to offer service-time guar-
antees to applications and services residing in other cells.1

Services may exploit parallelism to reduce service times
or increase service throughput. Further, services can shape
data and event flows coming from external sources with
unpredictable behavior and prevent other cells from being
affected.

Each service in Tessellation comes with a library to fa-
cilitate the development of client applications. The client
libraries offer friendly, high-level application programming
interfaces (APIs) to manage connections and interact with
the services (i.e., they hide most of the details of inter-cell
channel communication).

Two examples of services in Tessellation that offer QoS
guarantees to client cells are the network service and the
GUI service. The former in particular is key to low-latency
networked music applications.

Network Service: This service provides access to net-
work adapters through an API similar to the socket API
[33] found in Linux and other Unix-like OSs. The net-
work service is implemented using the lightweight TCP/IP
protocol stack lwIP [2]. This service allows the specifi-
cation of minimum throughput reservations for data flows
between network adapters and client cells. It guarantees
that the data flows are processed with at least the specified
levels of throughput, provided it is feasible to do so with
the networking and computational resources available to
the service (e.g., the aggregate reservation should be less
than or equal to the total system throughput). Moreover,
the network service distributes any excess throughput pro-
portionally among the client cells via an adaptation of the
mClock algorithm [18].

GUI Service: This service provides a windowing sys-
tem with response-time guarantees for visual applications
[21]. It is a rearchitected version of the Nano-X Window
System [3]. The GUI service exploits a user-level earliest-
deadline-first (EDF) scheduler [23] to take advantage of
multiple cores and ensure that rendering jobs with earlier
deadlines are scheduled sooner. It supplements the EDF
scheduler with a resource reservation scheme, called mul-
tiprocessor constant bandwidth server (M-CBS) [9,10], to
provide different CPU reservations to different rendering
tasks—a big distinction from traditional GUI systems.

Additionally, Tessellation offers a console service that
prints character strings from other cells to a serial console
(via a serial port). This service has exclusive access to the

1 In keeping with ARCC, we view the services offered by such
service cells as additional resources to be managed by the adaptive
resource allocation architecture.

console device, and for a client cell, printing a string is
just sending a one-way message on a dedicated channel to
the console service. Thus, cells do not need to contend and
wait for accessing the console device, and the influence of
printing console messages on each application’s behavior
can be controlled independently and minimized. The con-
sole service was instrumental in collecting the experimental
data presented in Section 5.

2.3 Adaptive Resource Allocation
Tessellation can use adaptive resource allocation to pro-

vide QoS guarantees to applications while maximizing effi-
ciency in the system. The Resource Allocation Policy (RAP)
Service encapsulates the decision-making logic that dis-
tributes resources to cells. It is an implementation of the
upper block in Fig. 1, which involves performance moni-
toring (i.e., observation) and modeling as well as resource
partitioning and distribution.

The RAP Service runs in its own cell and communicates
with applications and other services through channels. It de-
cides how resources should be divided among cells in the
system by monitoring other cells, adapting their resources
in response to changing conditions, and controlling the ad-
mission of new cells into the system.2 The RAP Service
communicates the allocation decisions to the kernel via a
system call and to services through their QoS Specification
interfaces over channels.

Note that the user can specify the set of resources to be
given to a cell and indicate to the RAP Service that such
resource allocation cannot change. This feature is very valu-
able to musical performers. It gives them complete control
over the resources allocated to their musical applications.
Further, it assures performers that their applications will
behave as expected because they can recreate the execution
conditions in which the applications were tested, profiled,
and optimized.

More details on adaptive resource-allocation in Tessella-
tion appear in [15].

3 A LAN MUSICAL APPLICATION

The SLABS control interface, third-prize winner at the
2009 Guthman Instrument Design Competition [1], and
the Migrator Synthesizer program constitute a real-world
example of a low-latency computationally-demanding net-
work audio application. The Migrator Synthesizer, origi-
nally created in Max/MSP [37], was redesigned and im-
plemented for Tessellation to determine how well our OS
meets the requirements of network audio applications (see
Section 4). In this section we describe the components of
the Migrator Synthesizer program and its implementation
on Tessellation OS. Fig. 5 depicts the signal flow between
components of the application.

2 The RAP Service refuses to admit new cells whose resource
requirements are incompatible with existing obligations to other
cells.
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Fig. 4. The SLABS multitouch interface.

3.1 The SLABS Multitouch Interface
The SLABS interface [35] has 32 pressure-sensitive

touchpads (see Fig. 4(a)). The horizontal and vertical po-
sition, as well as pressure of each pad are measured,
calibrated, and packetized using low-latency field pro-
grammable gate arrays (FPGAs) and broadcasted as 96
audio channels at 44.1 kHz in 32-bit resolution via UDP
over Ethernet. The bandwidth requirement of the resulting
output data stream is 137.3 Mbps, or the bit-rate of about
100 compact discs played simultaneously.

To enable highly expressive tactile control over the Mi-
grator Synthesizer, the position and pressure of the fingers
on a SLABS pad must be accurately sampled with a high
rate. For this reason the device uses digital audio streaming
to transmit the gesture data because it supports a high sam-
ple rate and low temporal jitter, whereas using the MIDI
protocol generally limits the sampling rate and introduces
sample timing uncertainty due to the lack of timestamps.

The SLABS interface can also receive data. Eight audio
channels can be sent from the host to the interface (10.8
Mbps), which are accessible via an ADAT lightpipe outlet
for external DA conversion, e.g., for headphone monitoring.

Additionally, the Open Sound Control (OSC) protocol
can be used to program a small display and two LEDs
associated with each pad. Processes on the host computer
can also be controlled via eight toggles at the top of the
pads.

Network Protocol: The SLABS interface uses a custom-
made network protocol [8]. It produces one UDP packet
every 45.35 μs. A packet contains 2 temporal frames, each
with 3 single-precision values for each of the 32 pads, cor-

SLABS interface
32 pressure sensitive pads

Computer

Tessellation OS

Network Adapter

Network Service  (Cell B)

Music Application                              (Cell A)

Migrator SynthesizerMigrator Synthesizer
Migrator Synthesizer

Mixer

Migrator Synthesizer

32
 V

oic
es

Voice Activation Detection

137.3 Mbps

8 channel audio 
(ADAT)

10.8 Mbps

DA-Converter

t 
Output FlowInput Flow

..

Fig. 5. LAN music application: structure and signal flow.

responding to the x-position, y-position, and pressure of the
finger. Each UDP packet sent back to the SLABS contains
data for 32 temporal frames, each consisting of amplitude
values for the 8 output audio channels.

3.2 The Migrator Synthesizer Program
The SLABS interface controls the Migrator Synthesizer

program that runs under Tessellation OS (see Fig. 5). The
program instantiates 32 Migrator Synthesizer objects, each
one using 100 sinusoidal oscillators. The oscillators change
frequency in a staggered fashion, with each one migrating
every several seconds. New frequency values are sampled
from a distribution that is computed by convolving a chosen
microtonal pitch probability table with a gaussian function
of specified standard deviation.

Each touchpad on the SLABS is used to control one of the
Migrator Synthesizer objects, thus allowing independent
control of up to 32 polyphonic voices. The y-position of
the finger on the touchpad is used to select among four
different probability tables assigned to each pad, the x-
position is used to set the width of the gaussian function
that adds randomness, and the pressure is used to modulate
amplitude (it is silent when no force is applied).

Implementation: The Migrator Synthesizer was imple-
mented in the FAUST environment [27] and exported as
C++ code, which was then integrated into our Tessella-
tion application program. As shown in Fig. 5, the output
signals produced by the Migrator Synthesizer objects are
mixed by the Mixer object and then sent to the SLABS via
the network service. Also, a simple voice activation, which
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}

Fig. 6. Response time deadline for the SLABS and measured
response time (�t) of the music-application/network-service pair.

detects if a SLABS pad is pressed, ensures that only the
Migrator Synthesizer objects associated with active pads
are processed.

Within every interval of 0.7256 ms the SLABS interface
sends a series of 16 UDP packets that form a complete in-
put data package, as shown in Fig. 6. Once the 16th UDP
packet has arrived, the data gathering phase is complete
and the block-wise audio processing phase can start. Since
the audio processing phase of the current input data pack-
age overlaps with the data gathering phase of the next input
package, the audio processing of the current package needs
to finish before the data gathering phase of the next package
completes. Therefore, the overall time for delivering an out-
put data package is 1.4521 ms—twice the operation period
(0.7256 ms) of the SLABS. However, our deadline must be
slightly smaller. The reason is that t0 is the time at which the
SLABS sends to the network a UDP packet containing two
temporal frames after they have been digitized. Therefore,
our deadline is 1.4059 ms ((64 − 2) samples/44.1k H z).

Given this demanding low-latency requirement and con-
sidering the amount of audio data to be processed, both
the Migrator Synthesizer program and the network service
were deployed in non-multiplexed cells (Cells A and B in
Fig. 5). Those cells were statically allocated and given ded-
icated access to several hardware threads3 in the system.

To further account for the low-latency requirement, we
implemented a custom-made user-level runtime for the Mi-
grator Synthesizer program. From hardware threads allo-
cated to the cell, the runtime dedicates one hardware thread
to continuously handle communication with the network
service and dynamically assigns the rest of the hardware
threads for the Migrator Synthesizer objects to run.

The runtime disables preemption such that each Migrator
Synthesizer object processes each input data block with-
out jitter-inducing, periodic timer interrupts. Timer inter-
rupts can introduce variability by executing kernel code
at unpredictable points in the audio processing. Another

3 A hardware thread is a single physical processing engine, i.e.,
an entire single-threaded core or one hardware-thread context in
a multi-threaded core (e.g., Intel’s Core i7 with hyper-threading
enabled).

effect of timer interrupts is that hardware units that speed
up computation by caching memory from previous execu-
tions or predicting results of future ones (e.g., CPU’s cache,
translation lookaside buffer (TLB), and branch predictors)
can become “polluted” by the infrequently executed kernel
code.

4 EXPERIMENTAL EVALUATION

In this section we examine the level of performance iso-
lation that Tessellation OS can offer to the real-time net-
worked music application presented in the previous section.
We also evaluate the ability of Tessellation’s network ser-
vice to provide bandwidth guarantees to the application.

We measured the aggregate response time of the mu-
sic application and the network service under different
execution conditions. The response time of the music-
application/network-service pair, denoted as �t, was mea-
sured in the network driver, as close as possible to the
network adapter (see Fig. 5). The network driver is part of
the network service and runs at user level. As shown in
Fig. 6, �t is the elapsed time between t1 and t2, where:

� t 1 is the instant at which the driver receives the inter-
rupt from the network adapter indicating that the first
UDP packet of a series of sixteen has arrived from the
SLABS, and

� t 2 is the instant at which the driver writes the output
packet, corresponding to the input data, to the network
adapter making it send the packet to the SLABS.

The difference t2 − t1 is a close approximation to the
response time observed by the SLABS at its network port
(i.e., tf − t0) because the computer running Tessellation
and the SLABS are the only nodes connected to the gigabit
Ethernet LAN.

All measurements were taken using a controlled input;
i.e., the SLABS interface was always driven with the same
pressure input on a fixed set of pads. We chose an input
that, when running the music application and the network
service alone, could produce response-time values close to,
but below the deadline of 1.4059 ms.

We used an Intel system with two 2.66-GHz Xeon X5550
quad-core processors, hyper-threading enabled (i.e., 16
hardware threads), and a 1-Gbps Intel Pro/1000 Ethernet
network adapter.

4.1 Performance Isolation
In this experiment we measured the aggregate response

time of the music application and the network service when
the pair ran alone and together with other applications in
separate cells.

Table 1 lists the applications, services, and their hosting
cells used in this experiment. The cells were divided into
two groups. The Group 1 comprised the music application
in Cell A and the OS services required for its operation;
namely, the network service in Cell B and the console ser-
vice in Cell C. The cells in Group 1 were statically allocated

6 J. Audio Eng. Soc., Vol. 61, No. 4, 2013 April



PAPERS MULTICORE OS WITH QOS GUARANTEES FOR NETWORK AUDIO APPLICATIONS

Table 1. Applications and services used to evaluate performance isolation.

Cell Application Cell Type Hardware Threads

Group 1 A Music Application Non-multiplexed 4,5,6,7
B Network Service Non-multiplexed 1,2,3
C Console Service Non-multiplexed 10

Group 2 D Video Player 1 Time-triggered 8
E Video Player 2 Event-triggered 9
F GUI Service Non-multiplexed 11,12
G EP Benchmark Best-effort 8
H EP Benchmark Best-effort 9,13
I EP Benchmark Best-effort 9,13,14,15

Note: The hardware thread 0 was dedicated to kernel monitoring and was not assigned to any cell.

and given dedicated access to specific hardware threads in
the system. Cell A was assigned two entire CPU cores, each
with two hardware threads.

The Group 2 included Cells D to I. These cells were
added to try to interfere with the music application and in-
fluence the response times of the application codes running
in Cells A and B. The cells in Group 2 used different multi-
plexing policies and hosted non-musical applications. Cell
D, a time-triggered cell, and Cell E, an event-triggered, each
contained a video player program that sent 30 frames per
second to the GUI service in Cell F. Cells G, H, and I were
best-effort cells with different hardware-thread counts, and
they continuously ran the embarrassingly parallel (EP) ker-
nel from the NAS Parallel Benchmarks [4].

In this experiment only the music application had access
to the network service. Paging4 was not available to any
application.

We ran the cells in Group 1 with and without the cells
in Group 2 for three minutes, resulting in about 250,000
response-time measurements for each run. For the purpose
of this paper we believe this amount of time is sufficient to
characterize the level of performance isolation that Tessel-
lation offers to the music application. (Incidentally, we have
previously tested the system in an hour-long live demon-
stration for its long-term stability.) Before we started the
measurements, a warm-up phase of one second was granted
to the system to ensure that our measurements were unaf-
fected by non-deterministic initialization effects related to
hardware (e.g., cold caches and branch predictors) and soft-
ware (e.g., creation of synthesizer objects).

Fig. 7 shows the histograms and first-order statistics ob-
tained from the measured response times. Most important,
the measurements indicate that there are no significant dif-
ferences in the response times across both scenarios. The
observed maximum response times are slightly below the
deadline (1.4059 ms). Further, all observed response times
are larger than the lower bound of 0.7256 ms (see Fig. 6)
and the mean response times are around 1 ms.

A small difference between Fig. 7(a) and Fig. 7(b) is
noticeable: Compared to the scenario where the cells in
Group 1 were running alone, the scenario with both cell

4 Paging is a memory-management scheme by which a com-
puter can store and retrieve data, in blocks called pages, from
secondary storage (e.g., hard disk drive) for use in main memory.

(a) Cells in Group 1 running alone (0 missed deadlines, max =
1336µs, mean = 997.54μs, stdev = 35.11μs).

(b) Cells in Groups 1 and 2 running together (0 missed dead-
lines, max = 1405µs, mean = 1024.61μs, stdev = 36.88μs).

Fig. 7. Histograms and first-order statistics for the aggregate re-
sponse times of the music application and the network service.

groups exhibits a slightly larger maximum response time
(by 69μs) and a slightly longer latency tail. We attribute this
difference to interference in the shared caches and mem-
ory interconnect particularly due to the video player cells’
large, streaming video file. Despite this, the mean response
time stayed within 27μs of the single-cell group experiment
and deadlines were made in both experiments. Therefore,
with the established hardware partitioning, Tessellation was
able to provide sufficient performance isolation to both our
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music application and the network service, within the lim-
itations of our test hardware platform.

4.2 Network Service’s Bandwidth Guarantees
In this experiment we measured the aggregate response

time of the music application and the network service when
they both ran along with an abusive data streaming ap-
plication on a separate cell. The abusive application was
designed to consume as much available bandwidth as the
network service allows, thereby trying to prevent the mu-
sic application from using network service’s resources. The
abusive application was hosted in a new cell (Cell X), added
to the Group 1 of our previous experiment (Section 4.1), and
no cell in Group 2 was used in this experiment. Cell X was
a non-multiplexed cell assigned hardware thread 14. No
bandwidth reservation was given to Cell X in the network
service.

We compare two scenarios. In the first scenario, the net-
work service provides no guarantees to any application.
Under the influence of the abusive application, we expected
that the aggregate response time would increase. In the sec-
ond scenario, the network service guarantees a bandwidth
of 240 Mbps to the music application, which would make
the audio processing unaffected by the abusive application.

Fig. 8 shows the histograms and first-order statistics ob-
tained from the aggregate response times in both scenarios.
It is clearly visible that the aggregate response significantly
differ. When the network service provided no bandwidth
guarantee to the music application, the response time was
severely deteriorated. The fact that 99.91% of all dead-
lines are missed, makes the music application unusable
(see Fig. 8(a)).

On the contrary, when the network service guaranteed the
specified bandwidth to the music application, the influence
of the abusive streaming application was barely noticeable
(see Fig. 8(b)). The music-application/network-service pair
exhibited a behavior that was close to the behavior when
running the music application in isolation (Fig. 7). The
response-time values were now below the deadline, indi-
cating that Tessellation’s network service was able to guar-
antee the bandwidth demands of the music application.

We also ran the experiment with the network service pro-
viding the music application a bandwidth guarantee of 150
Mbps—a value closer to the actual application’s bandwidth
requirement. In this case we observed eight missed dead-
lines. These deadline misses happened because the network
service currently guarantees bandwidth but not latency. Re-
serving more bandwidth than required was needed to com-
pensate for this.

5 CONCLUDING REMARKS

This paper discussed the advantages of Tessellation OS,
an experimental multicore operating system, for guarantee-
ing quality of service (QoS) at the edges of the network
audio chain. Different experiments were conducted using a
real-world, resource-demanding network music application
within a LAN environment. We measured the aggregate re-

(a) Network service without bandwidth guarantees
(243903 missed deadlines, max = 562898μs, mean =
461133.61μs, stdev = 113320.00μs).

(b) Network service with bandwidth guarantee to the mu-
sic application (0 missed deadlines, max = 1389μs, mean =
983.20μs, stdev = 48.37μs).

Fig. 8. Histograms and first-order statistics for the aggregate re-
sponse times of the music application and the network service in
presence of an abusive data streaming application.

sponse times of the audio DSP process and the network
service within Tessellation under different load conditions.
Our results show that Tessellation enables network audio
applications to meet their time requirements. Tessellation’s
features, such as performance isolation, customizable user-
level schedulers, and a network service able to guaran-
tee minimum throughput reservations to data flows, have
proved essential for network audio applications to achieve
low-latency audio streaming and processing within com-
puter nodes.

For audio applications in wide area networks (WANs),
Tessellation OS can play an important role in providing
end-to-end latency guarantees when complemented with
suitable network protocols. For that reason, we are inter-
ested in evaluating how effective Tessellation would be for
audio applications in a WAN environment. WANs (e.g.,
the Internet) often suffer from large and jittery transmis-
sion delays. In this case, it might even more important
to have an operating system that minimizes additional
delays.
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As part of our future work we plan to compare the perfor-
mance of the Migrator Synthesizer program on Tessellation
and other operating systems (e.g., Linux). In addition, we
are currently rearchitecting the network service in order to
provide latency guarantees to data flows between network
adapters and client cells.
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