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BERNHARD SCHÖLKOPF bs@conclu.de
Max-Planck-Institut fuer biologische Kybernetik, Spemannstr. 38, 72076 Tübingen, Germany
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Abstract. Practical experience has shown that in order to obtain the best possible performance, prior knowledge
about invariances of a classification problem at hand ought to be incorporated into the training procedure. We
describe and review all known methods for doing so in support vector machines, provide experimental results, and
discuss their respective merits. One of the significant new results reported in this work is our recent achievement
of the lowest reported test error on the well-known MNIST digit recognition benchmark task, with SVM training
times that are also significantly faster than previous SVM methods.
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1. Introduction

In 1995, LeCun et al. published a pattern recognition performance comparison noting the
following:

“The optimal margin classifier has excellent accuracy, which is most remarkable,
because unlike the other high performance classifiers, it does not include a priori know-
ledge about the problem. In fact, this classifier would do just as well if the image pixels
were permuted by a fixed mapping. [...] However, improvements are expected as the
technique is relatively new.”

Two things have changed in the years since this statement was made. First, optimal margin
classifiers, or support vector machines (SVMs) (Boser, Guyon, & Vapnik, 1992; Cortes &
Vapnik, 1995; Vapnik, 1995), have turned into a mainstream method which is part of the
standard machine learning toolkit. Second, methods for incorporating prior knowledge into
optimal margin classifiers have become part of the standard SV methodology.

These two things are actually closely related. Initially, SVMs had been considered a
theoretically elegant spin-off of the general but, allegedly, largely useless VC-theory of
statistical learning. In 1996, using the first methods for incorporating prior knowledge
(Schölkopf, Burges, & Vapnik, 1996), SVMs became competitive with the state of the art in
the handwritten digit classification benchmarks (LeCun et al., 1995) that were popularized
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in the machine learning community by AT&T and Bell Labs. At that point, practitioners
who are not interested in theory, but in results, could no longer ignore SVMs. In this sense,
the methods to be described below actually helped pave the way to make SVM a widely
used machine learning tool.

The present paper tries to provide a snapshot of the state of the art in methods to incorpo-
rate prior knowledge about invariances of classification problems. It gathers material from
various sources. Partly, it reviews older material that has appeared elsewhere (Schölkopf,
Burges, & Vapnik, 1996, 1998a), but never in a journal paper, and partly, it presents new
techniques, applications, and experimental results. It is organized as follows. The next sec-
tion introduces the concept of prior knowledge, and discusses what types of prior knowledge
are used in pattern recognition. The present paper focuses on prior knowledge about invari-
ances, and Section 3 describes methods for incorporating invariances into SVMs. Section 4
introduces a specific way which combines a method for invariant SVMs with the widely used
SMO training algorithm. Section 5 reports experimental results on all presented methods,
and Section 6 discusses our findings.

2. Prior knowledge in pattern recognition

By prior knowledge we refer to all information about the learning task which is available in
addition to the training examples. In this most general form, only prior knowledge makes
it possible to generalize from the training examples to novel test examples.

For instance, any classifiers incorporate general smoothness assumptions about the prob-
lem. A test patterns which is similar to one of the training examples will thus tend to be
assigned to the same class. For SVMs, it can be shown that using a kernel function K amounts
to enforcing smoothness with a regularizer ‖Pf ‖2, where f is the estimated function, and K
is a Green’s function of P∗P , where P∗ is the adjoint operator of P ((Smola, Schölkopf, &
Müller, 1998; Girosi, 1998), cf. also Poggio and Girosi (1989)). In a Bayesian maximum-
a-posteriori setting, this corresponds to a smoothness prior of exp(−‖Pf ‖2) (Kimeldorf &
Wahba, 1970).

A second method for incorporating prior knowledge, already somewhat more specific,
consists of selecting features which are thought to be particularly informative or reliable for
the task at hand. For instance, in handwritten character recognition, correlations between
image pixels that are nearby tend to be more reliable than the ones of distant pixels. The
intuitive reason for this is that variations in writing style tends to leave the local structure of
a handwritten digit fairly unchanged, while the global structure is usually quite variable. In
the case of SVMs, this type of prior knowledge is readily incorporated by designing poly-
nomial kernels which compute mainly products of nearby pixels (Schölkopf et al., 1998a)
(cf. Table 2). While the example given here applies to handwritten character recognition, it
is clear that a great deal of problems have a similar local structure, for instance, problems
of computational biology involving nucleotide sequences. Zien et al. (2000) have used this
analogy to engineer kernels that outperform other approaches in the problem of recognizing
translation initiation sites on DNA or mRNA sequences, i.e., positions which mark regions
coding proteins. Haussler (1999) has gone further than that and constructed convolutional
kernels which compute features targeted at problems such as those of bioinformatics.
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One way to look at feature selection is that it changes the representation of the data,
and in this, it is not so different from another method for incorporating prior knowledge
in SVMs that has recently attracted attention. In this method, it is assumed that we have
knowledge about probabilistic models generating the data. Specifically, let p(x | �) be a
generative model that characterizes the probability of a pattern x given the underlying
parameter �. It is possible to construct a class of kernels which are invariant with respect
to reparametrizations of � and which, loosely speaking, have the property that K (x, x ′) is
the similarity of x and x ′ subject to the assumption that they both stem from the generative
model. These kernels are called Fisher kernels (Jaakkola & Haussler, 1999). It can be shown
that they induce regularizers which, in turn, take account of the underlying model p(x | �)

(Oliver, Schölkopf, & Smola, 2000). A different approach to designing kernels based on
probabilistic models is the one of Watkins (2000).

Finally, we get to the type prior knowledge that the present paper will deal with: prior
knowledge about invariances. For instance, in image classification tasks, there exist trans-
formations which leave class membership invariant (e.g. translations).

3. Incorporating invariances into SVMs

In the present section, we describe methods for incorporating invariances into SVMs. We
distinguish three types of methods, to be addressed in the following three subsections:

– engineer kernel functions which lead to invariant SVMs
– generate artificially transformed examples from the training set, or subsets thereof (e.g.

the set of SVs)
– combine the two approaches by making the transformation of the examples part of the

kernel definition

This paper will mainly focus on the latter two methods. However, for completeness, we
also include some material on the first method, which we will presently describe.

3.1. Invariant kernel functions

This section briefly reviews a method for engineering kernel functions leading to invariant
SVMs. Following Schölkopf et al. (1998a), we consider linear decision functions f (x) =
sgn (g(x)), where

g(x) :=
�∑

i=1

vi (Bx · Bxi ) + b. (1)

To get local invariance under transformations forming a Lie group {Lt },1 one can minimize
the regularizer

1

�

�∑
j=1

(
∂

∂t
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g(Lt x j )
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. (2)
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One can show that this is equivalent to performing the usual SVM training after prepro-
cessing the data with

B = C− 1
2 , (3)

where

C = 1

�

�∑
j=1

(
∂

∂t

∣∣∣∣
t=0

Lt x j

)(
∂

∂t

∣∣∣∣
t=0

Lt x j

)

. (4)

In other words: the modification of the kernel function is equivalent to whitening the data
with respect to the covariance matrix of the vectors ± ∂

∂t | t=0Lt xi . To get a clearer un-
derstanding of what this means, let us diagonalize B using the matrix D containing the
eigenvalues of C , as

B = C− 1
2 = SD− 1

2 S
. (5)

The preprocessing of the data thus consists of projecting x onto the Eigenvectors of C ,
and then dividing by the square roots of the Eigenvalues. In other words, the directions of
main variance ± ∂

∂t |t=0Lt x—the directions that are most affected by the transformation—
are scaled back. Note that the leading S in (5) can actually be omitted, since it is unitary
(since C is symmetric), and it thus does not affect the value of the dot product.

Moreover, in practice, it is advisable to use Cλ := (1−λ)C +λI rather than C . This way,
we can balance the two goals of maximizing the margin and of getting an invariant decision
function by the parameter λ ∈ [0, 1].

Schölkopf et al. (1998a) have obtained performance improvements by applying the above
technique in the linear case. However, these improvements are not nearly as large as the
ones that we will get with the methods to be described in the next section,2 and thus we put
the main emphasis in this study on the latter.

In the nonlinear case, the above method still applies, using D− 1
2 S
�(x). Here, � is a

feature map corresponding to the kernel chosen, i.e., a (usually nonlinear) map satisfy-
ing K (x, x′) = (�(x) · �(x′)). To compute projections of the mapped data �(x) onto the
eigenvectors of S, one needs to essentially carry out kernel PCA on S (cf. (Schölkopf, 1997;
Chapelle & Schölkopf, 2000)). For further material on methods to construct invariant kernel
functions, cf. Vapnik (1998) and Burges (1999).

3.2. Virtual examples and support vectors

One way to make classifiers invariant is to generate artificial training examples, or virtual
examples, by transforming the training examples accordingly (Baird, 1990; Poggio & Vetter,
1992). It is then hoped that the learning machine will extract the invariances from the
artificially enlarged training data.

Simard et al. (1992) report that, not surprisingly, training a neural network on the artifi-
cially enlarged data set is significantly slower, due to both correlations in the artificial data
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and the increase in training set size. If the size of a training set is multiplied by a number
of desired invariances (by generating a corresponding number of artificial examples for
each training pattern), the resulting training sets can get rather large (as the ones used by
Drucker, Schapire, & Simard, 1993). However, the method of generating virtual examples
has the advantage of being readily implemented for all kinds of learning machines and
symmetrics, even discrete ones such as reflections (which do not form Lie groups). It would
thus be desirable to construct a method which has the advantages of the virtual examples
approach without its computational cost. The Virtual SV method (Schölkopf, Burges, &
Vapnik, 1996), to be described in the present section, retains the flexibility and simplicity of
virtual examples approaches, while cutting down on their computational cost significantly.

In Schölkopf, Burges, and Vapnik (1995) and Vapnik (1995), it was observed that the
SV set contains all information necessary to solve a given classification task. It particular,
it was possible to train any one of three different types of SV machines solely on the SV set
extracted by another machine, with a test performance not worse than after training on the
full database—SV sets seemed to be fairly robust characteristics of the task at hand. This led
to the conjecture that it might be sufficient to generate virtual examples from the Support
Vectors only. After all, one might hope that it does not add much information to generate
virtual examples of patterns which are not close to the boundary. In high-dimensional
cases, however, care has to be exercised regarding the validity of this intuitive picture.
Experimental tests on high-dimensional real-world problems hence were imperative, and
they have confirmed that the method works very well (Schölkopf, Burges, & Vapnik, 1996).
It proceeds as follows (cf. figure 1):

1. train a Support Vector machine to extract the Support Vector set
2. generate artificial examples, termed virtual support vectors, by applying the desired

invariance transformations to the support vectors
3. train another Support Vector machine on the generated examples.3

If the desired invariances are incorporated, the curves obtained by applying Lie symmetry
transformations to points on the decision surface should have tangents parallel to the latter
(Simard et al., 1992). If we use small Lie group transformations to generate the virtual
examples, this implies that the Virtual Support Vectors should be approximately as close to
the decision surface as the original Support Vectors. Hence, they are fairly likely to become
Support Vectors after the second training run; in this sense, they add a considerable amount
of information to the training set.

However, as noted above, the method is also applicable if the invariance transformations
do not form Lie groups. For instance, performance improvements in object recognition of
bilaterally symmetric objects have been obtained using reflections (Schölkopf, 1997).

3.3. Kernel jittering

An alternative to the VSV approach of pre-expanding a training set by applying vari-
ous transformations is to perform those transformations inside the kernel function itself
(DeCoste & Burl, 2000; Simard, LeCun, & Denker, 1993).
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Figure 1. Suppose we have prior knowledge indicating that the decision function should be invariant with respect
to horizontal translations. The true decision boundary is drawn as a dotted line (top left); however, as we are just
given a limited training sample, different separating hyperplanes are conceivable (top right). The SV algorithm
finds the unique separating hyperplane with maximal margin (bottom left), which in this case is quite different
from the true boundary. For instance, it would lead to wrong classification of the ambiguous point indicated by
the question mark. Making use of the prior knowledge by generating Virtual Support Vectors from the Support
Vectors found in a first training run, and retraining on these, yields a more accurate decision boundary (bottom
right). Note, moreover, that for the considered example, it is sufficient to train the SV machine only on virtual
examples generated from the Support Vectors from Schölkopf, 1997.

In particular,we have recently explored the notion of jittering kernels, in which any two
given examples are explicitly jittered around in the space of discrete invariance distortions
until the closest match between them is found.

For any kernel K (xi , x j ) ≡ Ki j suitable for traditional use in a SVM, consider a jittering
kernel form K J(xi , x j ) ≡ K J

i j , defined procedurally as follows:
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1. consider all jittered forms4 of example xi (including itself ) in turn, and select the one
(xq ) “closest” to xj ; specifically, select xq to minimize the metric distance between xq

and x j in the space induced by the kernel. This distance is given by:5

√
Kqq − 2Kq j + K j j .

2. let K J
i j = Kq j .

Multiple invariances (e.g., both translations and rotations) could be considered as well, by
considering cross-products (i.e. all valid combinations) during the generation of all “jittered
forms of xi ” in step 1 above. However, we have not yet investigated the practicality of such
multiple invariance via kernel jittering in any empirical work to date.

For some kernels, such as radial-basis functions (RBFs), simply selecting the maximum
Kq j value to be the value for K J

i j suffices, since the Kqq and K j j terms are constant (e.g. 1)
in that case. This similarly holds for translation jitters, as long as sufficient padding exists
so that no image pixels fall off the image after translations. In general, a jittering kernel
may have to consider jittering either or both examples. However, for symmetric invariances
such as translation, it suffices to jitter just one.

We refer to the use of jittering kernels as the JSV approach. A major motivation for
considering JSV approachs is that VSV approaches scale at least quadratically in the number
(J ) of jitters considered, whereas under favorable conditions jittering kernel approaches can
scale only linearly in J , as discussed below.

Jittering kernels are J times more expensive to compute than non-jittering kernels, since
each K J

i j computation involves finding a minimum over J Ki j computations. However, the
potential benefit is that the training set can be J times smaller than the corresponding VSV
method, since the VSV approach can expand the training set by a factor of J . Known SVM
training methods scale at least quadratically in the number of training examples. Thus, the
potential net gain is that JSV training may only scale linearly in J instead of quadratically
as in VSV.

Furthermore, through comprehensive use of kernel caching, as is common in modern
practical SVM implementations, even the factor of J slow-down in kernel computations
using jittering kernels may be largely amortized away, either over multiple trainings (e.g.
for different regularization C values) or within one training (simply because the same kernel
value is often requested many times during training).

As long as the distance metric conditions are satisfied under such jittering (i.e. non-
negative, symmetry, triangularity inequality), the kernel matrix defined by K J

i j will be
positive definite and suitable for traditional use in SVM training (i.e. it will satisfy Mercer’s
conditions, at least for the given set of training examples).

In practice, those conditions seem to almost always be satisfied and we rarely detect
the symptoms of a non-positive definite kernel matrix during SVM training with jittering
kernels. The SMO method seems to tolerate such minor degrees of non-positivity, although,
as discussed in Platt (1999) this still somewhat reduces convergence speed. This rarity
seems particularly true for simple translation invariances which we have focused on to
date in empirical work. The one exception is that the triangular inequality is sometimes
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violated. For example, imagine three simple images A, B, and C consisting of a single row
of three binary pixels, with A = (1, 0, 0), B = (0, 1, 0), and C = (0, 0, 1). The minimal
jittered distances (under 1-pixel translation) between A and B and between B and C will
be 0. However, the distance between A and C will be positive (e.g. d(A, C) = √

2 for a
linear kernel). Thus, the triangular inequality d(A, B) + d(B, C) ≥ d(A, C) is violated in
that example.

Note that with a sufficiently large jittering set (i.e. such as one including both 1-pixel
and 2-pixel translations for the above example), the triangularity inequality is not violated.
We suspect that for reasonably complete jittering sets, the odds of triangularity inequality
violations will become small. Based on our limited preliminary experiments with kernel
jittering to date, it is still unclear how much impact any such violations will typically have
on generalization performance in practice.

Jittering kernels have one other potential disadvantage compared to VSV approaches:
the kernels must continue to jitter at test time. In contrast, the VSV approach effectively
compiles the relevant jittering into the final set of SVs it produces. In cases where the
final JSV SV set size is much smaller than the final VSV SV set size, the JSV approach
can actually be as fast or even faster at test time. We have indeed observed this result to
be frequent, at least for the relatively small tests tried to date. We do not yet know how
common this case is for large-scale applications.

4. Efficient invariance training

Recent developments in decomposition methods for SVM training have demonstrated sig-
nificant improvements in both space and time costs for training SVMs on many tasks. In
particular, the SMO (Platt, 1999) and SVMlight (Joachims, 1999) implementations have be-
come popular practical methods for large-scale SVM training. In this section, we discuss
some improvements to the style of SVM training represented by approaches such as SMO
and SVMlight. We have found these improvements to lead to significantly faster training
times, in some cases by more than an order of magnitude. Our specific implementation and
tests are based on enhancements to the variant of SMO described in Keerthi et al. (1999).
However, these ideas should be applicable to the original SMO specification, as well as
SVMlight. For simplicity, we will cast our discussion below in terms of the well-known
SMO specification (Platt, 1999).

For the sake of the rest of this section, we assume the SVM training task consists of the
following Quadratic Programming (QP) dual formulation:

maximize:
�∑

i=1

αi − 1

2

�∑
i, j=1

αiα j yi y j K (xi , x j )

subject to:

0 ≤ αi ≤ C,

�∑
i=1

αi yi = 0,
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where � is the number of training examples, yi is the label (+1 for positive example, −1
for negative) for the i th training example (xi ), and K (xi , x j ) denotes the value of the SVM
kernel function for i th and j-th examples. The output prediction of the SVM, for any
example x is

f (x) = sign

(
�∑

i=1

αi yi K (x, xi ) + b

)
,

where scalar b (bias) and vector of alphas α (of length �) are the variables determined by
the above QP optimization problem.

4.1. Key efficiency issue: Maximizing cache reuse

Employing general QP solvers to the SVM optimization problem typically involves O(�2)

space and O(�3) time complexities. SMO can avoid the O(�2) space cost by avoiding the
need for an explicit full kernel matrix—it computes (and recomputes) elements as needed.
Evaluating the current SVM outputs during training for each of the � examples involves
� summations, each over all current support vectors. Thus, SMO (and any other approach
which similarly checks KKT conditions during training) necessarily suffers time complexity
of at least O(L · �), where L is the final number of support vectors, since it would require
at least one final full pass over all � examples simply to check that all KKT conditions are
satisfied.

In practice, computing elements of the kernel matrix often dominates training time. The
same element will typically be required many times, since many (e.g. tens or hundreds) of
passes over the training set may be required before convergence to the final solution. Thus,
modern SMO implementations try to cache as many kernel computations as possible.

However, caching all computed kernels is generally not possible, for two key reasons:

1. L is often a significant fraction of � (e.g. 5% or more) and thus the space required to
avoid any kernel recomputations would often prohibitively be O(�2).

2. The intermediate (working) set of (candidate) support vectors is typically much larger
than the final size L .6

Since full passes over all examples are required in SMO whenever the working set of
candidate support vectors becomes locally optimal, the kernel cache is often implemented
simply as the most frequently or recently accessed rows of the implicit full kernel matrix.
For instance, for the 60,000 training examples of the MNIST data set (to be discussed in
Section 5), 512 megabytes of computer memory reserved for the kernel cache, and IEEE
single precision (4 byte) representations of the kernel values, only about 2230 rows can be
cached at one time (e.g. only about half of all the support vectors for some of the MNIST
binary recognition tasks).

Of particular concern is that during SMO training, when the final set of support vectors
is not yet known, it turns out to be common for examples which will eventually not be
support vectors to end up grabbing and hoarding cache rows first, requiring other kernel
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rows (including those of final support vectors) to be continually recomputed until those
examples cease to be support vectors and release their cache memory. We will refer to this
problem as intermediate support vector bulge. This problem is particularly critical for VSV
methods, since they greatly enlarge the number of effective training examples. Addressing
this key issue will be the subject of Section 4.2.

4.2. Digestion: Reducing intermediate SV bulge

SMO alternates between “full” and “inbounds” iterations, in which either all examples or
just the examples with alphas between 0 and C are considered, respectively. In each inbounds
stage, optimization continues until not further alpha changes occur. In each full stage, each
example is optimized only once (with some other heuristically-selected example), to see if
it becomes part of the working inbounds set and triggers new work for the next inbounds
stage. During the course of SMO full iterations, it is not uncommon for the number of
working candidate support vectors to become orders of magnitude larger than the number
that will result at the end of the following inbounds iteration.

When the kernel cache is sufficiently large (i.e. R near �) then such SV bulge behavior is
not critically problematic. However, even in that case, the computation of the SVM outputs
for each example can be quite excessive, since the time cost of computing an output is linear
in the number of current support vectors. So, it would be generally useful to keep the the
size of the support vector set closer to minimal.

A key problem arises when the size of the working candidate support vector set has
already exceeded R. In that case, any additional support vectors will not be able to cache
their kernel computations.

To address this key problem, we have extended the SMO algorithm to include a concept
we call digestion. The basic idea is to jump out of full SMO iterations early, once the
working candidate support vector set grows by a large amount. This switches SMO into an
“inbounds” iteration in which it fully “digests” the working candidate SV set, reducing it
to a locally minimal size, before switching back to a full iteration (and returning first to the
example at which it had previously jumped out).

Digestion allows us to better control the size of the intermediate SV bulge, so as to best
tradeoff the cost of overflowing the kernel cache against the cost of doing more inbounds
iterations that standard SMO would.

Digestion is similar to other (non-SMO) chunking methods, in that it performs full
optimizations over various large subsets of the data. However, it differs significantly in that
these full optimizations are triggered by heuristics based on maximizing the likely reuse
of the kernel cache, instead of using some predetermined and fixed chunk size. We suspect
that digestion would be even more useful and distinct when using sparse kernel caches (e.g.
hash tables), although our current implementation caches entire rows of the kernel matrix
(much like other published implementations, such as SVMlight).

Our current approach involves user-defined settings to reflect tradeoff heuristics. We
expect that future work could provide meta-learning methods for identifying the best values
for these settings, tuned for the particular nature of specific domains (e.g. costs of each kernel
computation), over the course of multiple training sessions. Our settings were choosen to
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be particularly reasonable for training set sizes on the order of � = 10,000 to 100,000 and
a kernel cache of about 800 megabytes, which is the case for our MNIST experiments (see
Section 5.1.1). Our heuristics were (highest-priority first):

1. Once digestion has been performed, wait until at least some number (default = 1000) of
new (currently uncached) kernel values are computed before digesting again.

2. After the current full iteration has already required some (default = 100,000) new kernel
computations, force a digestion.

3. Otherwise, wait at least as long between digestions as some factor (default = 2) times the
time spent in the previous inbounds iteration. The idea is that if the inbounds iterations
are expensive themselves, one must tolerate longer full iterations as well.

4. When the kernel cache is full (i.e. working candidate SV set size > R), digest as soon as
the net number of new working candidate SVs grows past some threshold (default = 200).
The idea here is that the kernel values computed for each such new SV cannot be cached,
so it is becomes critical to free rows in the kernel cache, if at all possible.

5. Digest whenever the net number of new SVs grows past some threshold (default = 1000).
The intuition behind this is simply that output computations involve summations over
all candidate SVs in the working set. Thus, it is often worthwhile to periodically make
sure that this set is not many times larger than it should be.

One can easily imagine promising alternative heuristics as well, such as ones based on
when the working candidate SV set grows by more than some percentage of the working
candidate SV size at the start of a full iteration. The key point is that heuristics to induce
digestion have proven to be useful in significantly reducing the complexity of SMO training
on particularly difficult large-scale problems. For example, we observed speedups of over
5 times for training some of the SVMs in the MNIST examples of Section 5.1.1 when using
the above heuristics and default settings.

5. Experiments

5.1. Handwritten digit recognition

We start by reporting results on two widely known handwritten digit recognition bench-
marks, the USPS set and the MNIST set. Let us first described the databases. Both of them
are available from http://www. kernel-machines.org/data.html.

The US Postal Service (USPS) database (see figure 2) contains 9298 handwritten digits
(7291 for training, 2007 for testing), collected from mail envelopes in Buffalo (LeCun
et al., 1989). Each digit is a 16 × 16 image, represented as a 256-dimensional vector with
entries between −1 and 1. Preprocessing consisted of smoothing with a Gaussian kernel of
width σ = 0.75.

It is known that the USPS test set is rather difficult—the human error rate is 2.5%
(Bromley & Säckinger, 1991). For a discussion, see (Simard, LeCun, & Denker, 1993).
Note, moreover, that some of the results reported in the literature for the USPS set have
been obtained with an enhanced training set. For instance, Drucker, Schapire, and Simard
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Figure 2. The first 100 USPS training images, with class labels.

(1993) used an enlarged training set of size 9709, containing some additional machine-
printed digits, and note that this improves the accuracy on the test set. Similarly, Bot-
tou and Vapnik (1992) used a training set of size 9840. Since there are no machine-
printed digits in the test set that is commonly used (size 2007), this addition distorts
the original learning problem to a situation where results become somewhat hard to in-
terpret. For our experiments, we only had the original 7291 training examples at our
disposal.

The MNIST database (figure 3) contains 120000 handwritten digits, equally divided into
training and test set. The database is modified version of NIST Special Database 3 and
NIST Test Data 1. Training and test set consist of patterns generated by different writers.
The images were first size normalized to fit into a 20 × 20 pixel box, and then centered in
a 28 × 28 image (LeCun et al., 1998).
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Figure 3. The first 100 MNIST training images, with class labels.

Test results on the MNIST database which are given in the literature (e.g. (LeCun
et al., 1995; LeCun et al., 1998)) commonly do not use the full MNIST test set of 60000
characters. Instead, a subset of 10000 characters is used, consisting of the test set patterns
from 24476 to 34475. To obtain results which can be compared to the literature, we also
use this test set, although the larger one would be preferable from the point of view of
obtaining more reliable test error estimates. The MNIST benchmark data is available from
http:/www.research.att.com/∼yann/exdb/mnist/index.html.

5.1.0.1. Virtual SV method—USPS database. The first set of experiments was conducted
on the USPS database. This database has been used extensively in the literature, with a
LeNet1 Convolutional Network achieving a test error rate of 5.0% (LeCun et al., 1989). We
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Table 1. Comparison of Support Vector sets and performance for training on the original database and training
on the generated Virtual Support Vectors. In both training runs, we used polynomial classifier of degree 3.

Classifir trained on Size Av. no. of SVs Test error

Full training set 7291 274 4.0%

Overall SV set 1677 268 4.1%

Virtual SV set 8385 686 3.2%

Virtual patterns from full DB 36455 719 3.4%

Virtual Support Vectors were generated by simply shifting the images by one pixel in the four principal directions.
Adding the unchanged Support Vectors, this leads to a training set of the second classifier which has five times
the size of the first classifier’s overall Support Vector set (i.e. the union of the 10 Support Vector sets of the binary
classifiers, of size 1677—note that due to some overlap, this is smaller than the sum of the ten support set sizes).
Note that training on virtual patterns generated from all training examples does not lead to better results han in
the Virtual SV case; moreover, although the training set in this case is much larger, it hardly leads to more SVs.

Figure 4. Different invariance transformations in the case of handwritten digit recognition. In all three cases,
the central pattern, taken from the MNIST database, is the original which is transformed into “virtual examples”
(marked by grey frames) with the same class membership by applying small transformations (from Schölkopf,
1997).

used the regularization constant C = 10. This value was taken from earlier work (Schölkopf,
Burges, & Vapnik, 1995), no additional model selection was performed.

Virtual Support Vectors were generated for the set of all different Support Vectors of
the ten classifiers. Alternatively, one can carry out the procedure separately for the ten
binary classifiers, thus dealing with smaller training sets during the training of the second
machine. Table 1 shows that incorporating only translational invariance already improves
performance significantly, from 4.0% to 3.2% error rate. For other types of invariances
(figure 4), we also found improvements, albeit smaller ones: generating Virtual Support
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Table 2. Summary of results on the USPS set.

Classifier Train set Test err Reference

Nearest-neighbor USPS+ 5.9% (Simard et al., 1993)

LeNet1 USPS+ 5.0% (LeCun et al., 1989)

Optimal margin classifier USPS 4.6% (Boser et al., 1992)

SVM USPS 4.0% (Schölkopf et al., 1995)

Linear Hyperplane on KPCA features USPS 4.0% (Schölkopf et al., 1998b)

Local learning USPS+ 3.3% (Bottou and Vapnik, 1992)

Virtual SVM USPS 3.2% (Schölkopf et al., 1996)

Virtual SVM, local kernel USPS 3.0% (Schölkopf, 1997)

Boosted neural nets USPS+ 2.6% (Drucker et al., 1993)

Tangent distance USPS+ 2.6% (Simard et al., 1993)

Human error rate — 2.5% (Bromley and Säckinger, 1991)

Note that two variants of this database have been used in the literature; one of them (denoted by USPS+) has
been enhanced by a set of machine-printed characters which have been found to improve the test error. Note that
the virtual SV systems perform best out of all systems trained on the original USPS set.

Vectors by rotation or by the line thickness transformation of Drucker, Schapire, and Simard
(1993), we constructed polynomial classifiers with 3.7% error rate (in both cases). For
purposes of comparison, we have summarized the main results on the USPS database in
Table 2.

Note, moreover, that generating Virtual examples from the full database rather than just
from the SV sets did not improve the accuracy, nor did it enlarge the SV set of the final
classifier substantially. This finding was confirmed using Gaussian RBF kernels (Schölkopf,
1997): in that case, similar to Table 1, generating virtual examples from the full database led
to identical performance, and only slightly increased SV set size. From this, we conclude
that for the considered recognition task, it is sufficient to generate Virtual examples only
from the SVs—Virtual examples generated from the other patterns do not add much useful
information.

5.1.0.2. Virtual SV method—MNIST database. The larger a database, the more information
about invariances of the decision function is already contained in the differences between
patterns of the same class. To show that it is nevertheless possible to improve classification
accuracies with our technique, we applied the method to the MNIST database of 60000
handwritten digits. This database has become the standard for performance comparisons at
AT&T and Bell Labs.

Using Virtual Support Vectors generated by 1-pixel translations, we improved a degree
5 polynomial SV classifier from 1.4% to 1.0% error rate on the 10000 element test set.
In this case, we applied our technique separately for all ten Support Vector sets of the
binary classifiers (rather than for their union) in order to avoid having to deal with large
training sets in the retraining stage. Note, moreover, that for the MNIST database, we did



176 D. DECOSTE AND B. SCHÖLKOPF

Table 3. Summary of results on the MNIST set. At 0.6% (0.56% before rounding), the system described in
Section 5.1.1 performs best.

Test err. Test err.
Classifier (60k) (10k) Reference

3-Nearest-neighbor — 2.4% (LeCun et al., 1998)

2-Layer MLP — 1.6% (LeCun et al., 1998)

SVM 1.6% 1.4% (Schölkopf, 1997)

Tangent distance — 1.1% (Simard et al., 1993)
(LeCun et al., 1998)

LeNet4 — 1.1% (LeCun et al., 1998)

LeNet4, local learning — 1.1% (LeCun et al., 1998)

Virtual SVM 1.0% 0.8% (Schölkopf, 1997)

LeNet5 — 0.8% (LeCun et al., 1998)

Dual-channel vision model — 0.7% (Teow and Loe, 2000)

Boosted LeNet4 — 0.7% (LeCun et al., 1998)

Virtual SVM, 2-pixel translation — 0.6% this paper; see Section 5.1.1

not compare results of the VSV technique to those for generating Virtual examples from the
whole database: the latter is computationally exceedingly expensive, as it entails training
on a very large training set.7

After retraining, the number of SVs more than doubled. Thus, although the training
sets for the second set of binary classifiers were substantially smaller than the original
database (for four Virtual SVs per SV, four times the size of the original SV sets, in our case
amounting to around 104), we concluded that the amount of data in the region of interest,
close to the decision boundary, had more than doubled. Therefore, we reasoned that it should
be possible to use a more complex decision function in the second stage (note that typical
VC risk bounds depends on the ratio VC-dimension and training set size (Vapnik, 1995)).
Indeed, using a degree 9 polynomial led to an error rate of 0.8%, very close to the record
performance of 0.7%. The main results on the MNIST set are summarized in Table 3. Prior
to the present work, the best system on the MNIST set was a boosted ensemble of LeNet4
neural networks, trained on a huge database of artificially generated virtual examples. Note
that a difference in error rates on the IST set which is at least 0.1% may be considered
significant (LeCun et al., 1998).

It should be noted that while it is much slower in training, the LeNet4 ensemble also
has the advantage of a faster runtime speed. Especially when the number of SVs is large,
SVMs tend to be slower at runtime than neural networks of comparable capacity. This is
particularly so for virtual SV systems, which work by increasing the number of SV. Hence,
if runtime speed is an issue, the systems have to be sped up. Burges and Schölkopf (1997)
have shown that one can reduce the number of SVs to about 10% of the original number
with very minor losses in accuracy. In a study on the MNIST set, they started with a VSV
system performing at 1.0% test error rate, and sped it up by a factor of 10 with the accuracy
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degrading only slightly to 1.1%.8 Note that there are neural nets which are still faster than
that (cf., LeCun et al. (1998)).

5.1.1. SMO VSV experiments. In this section we summarize our newest results on the
MNIST data set.

Following the last section, we used a polynomial kernel of degree 9. We normalized so
that dot-products giving values within [0, 1] yield kernel values within [0, 1]; specifically:

K (u, v) ≡ 1

512
(u · v + 1)9.

This ensures that kernel values of 1 and 0 have the same sort of canonical meaning that
holds for others, such as radial-basis function (RBF) kernels. Namely, a kernel value of 1
corresponds to the minimum distance between (identical) examples in the kernel-induced
metric distance and 0 corresponds to the maximum distance.

We ensured any dot-product was within [0, 1] by normalizing each example by their
2-norm scalar value (i.e. such that each example dot-producted against itself gives a value
of 1). We used this normalization (a form of brightness or “amount of ink” equalization)
by default because it is the sort of normalization that we routinely use in our NASA space
image detection applications. This also appears to be a good normalization for the MNIST
domain.

Since our polynomial kernel value normalization gives a kernel value of 1 special signif-
icance, we suspected that a SVM regularization parameter setting of C = 1 would probably
be too low. We also determined, by trying a large value (C = 10) for training a binary
recognizer for digit “8”, that no training example reached an alpha value above 7.0. By
looking at the histogram of the 60,000 alpha values for that case, we realized that only a
handful of examples in each of the 10 digit classes had alpha values above 2.0. Under the
assumption that only a few training examples in each class are particularly noisy and that
digit “8” is one of the harder digits to recognize, for simplicity we used C = 2 for training
each SVM. We have not yet attempted to find better C values, and it is most likely that our
simplistic choice was relatively suboptimal. In future work, we will determine the effect
of more careful selection of C, such as via cross-validation and approximations based on
generalization error upper-bound estimates.

Experiment 1: 1-Pixel translations

Tables 4, 5, and 6 summarize our VSV results on the MNIST data sets using 1-pixel
translations in all 8 directions.

These experiments employed our new SMO-based methods, as described in Section 4
(including our digestion technique). To see whether our faster training times could be put
to good use, we tried the VSV method with more invariance than was practical in previous
experiments. Specifically, we used “3 × 3 box jitter” of the image centers, which corresponds
to translation of each image for a distance of one pixel in any of the 8 directions (horizontal,
vertical, or both). Total training time, for obtaining 10 binary recognizers for each of the
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Table 4. Errors on MNIST (10,000 test examples), using VSV with 1-pixel translation.

Misclassifications

Digit misclassifications

Digit 0 1 2 3 4 5 6 7 8 9
10-class

Test error rate

SV 6 8 15 17 13 10 8 15 9 21 1.22%

VSV 2 3 7 7 7 8 7 8 7 12 0.68%

Table 5. Binary-recognition errors on MNIST (10,000 test examples), using VSV with 1-pixel translation.

Errors for each binary recognizer

SVM for digit 0 1 2 3 4 5 6 7 8 9

SV

False negatives 9 12 22 21 18 22 20 33 27 40

False positives 6 3 11 6 8 4 5 11 9 14

VSV

False negatives 5 6 11 11 6 12 12 16 14 21

False positives 4 4 9 5 5 3 7 10 7 8

Table 6. Number of support vectors for MNIST (60,000 training examples), using VSV with 1-pixel translation.

Number of support vectors for each binary recognizer

Digit 0 1 2 3 4 5 6 7 8 9

SV 1955 1354 3784 4157 3231 3977 2352 3090 4396 4130

0 < αi < C 1848 1210 3630 3915 3051 3791 2237 2886 4060 3730

αi = C 107 144 154 242 180 186 115 204 336 400

VSV 8294 5439 15186 16697 12575 15858 9587 13165 18749 18215

0 < αi < C 7907 4724 14648 15794 11784 15124 9081 12133 17315 16322

αi = C 387 715 538 903 791 734 506 1032 1434 1893

base SV and the VSV stages, was about 2 days (50 hours) on an Sun Ultra60 workstation
with a 450 Mhz processor and 2 Gigabytes of RAM (allowing an 800 Mb kernel cache). This
training time compares very favorably to other recently published results, such as learning
just a single binary recognizer even without VSV (e.g. training digit “8” took about 8 hours
in Platt, 1999). The VSV stage is also significantly more expensive that the base SV stage
(averaging about 4 hours versus 1 hour)—a majority of examples given to VSV training
typically end up being support vectors.
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Experiment 2: Deslanted images and additional translations

Some previous work on the MNIST data have achieved their best results by deslanting
each image before training and testing. Deslanting is performed by computing each image’s
principal axis and horizontally translating each row of pixels to best approximate the process
of rotating each image to make its principal axis become vertical. For example, under such
deslanting, tilted “1” digits all become very similar and all close to vertical.

Tables 7, 8, and 9 summarize our newest results, using deslanted versions of the MNIST
training and test sets. Other than using deslanted data, the same training conditions were
used as the previous experiments (i.e. same kernel, same C = 2, same 3 × 3 box jitter for
VSV).

Interestingly, using deslanted images did not improve the test error rates for our exper-
iments. In fact, the same test error rate was reached using either version of the data set
for either SV (122 errors) or VSV (68 errors), although the specific test examples with
errors varied somewhat. This result seems to provide evidence that the polynomial kernel
is already doing a good job in capturing some of the rotational invariance from the training

Table 7. Errors on deslanted MNIST (10,000 test examples), using VSV with 2-pixel translation.

Misclassifications

Digit misclassifications

Digit 0 1 2 3 4 5 6 7 8 9
10-class

Test error rate

SV 5 5 14 12 13 10 13 13 12 25 1.22%

VSV 3 4 6 4 8 7 8 7 8 13 0.68%

VSV2 3 3 5 3 6 7 7 6 5 11 0.56%

Table 8. Binary-recognition errors on deslanted MNIST (10,000 test examples), using VSV with 2-pixel
translation.

Errors for each binary recognizer

SVM for digit 0 1 2 3 4 5 6 7 8 9

SV

False negatives 9 11 21 22 15 21 22 24 21 47

False positives 7 6 7 5 8 6 9 9 10 8

VSV

False negatives 5 5 13 11 5 9 12 13 13 21

False positives 3 6 11 4 9 3 11 6 3 7

VSV2

False negatives 5 5 12 11 4 9 13 12 11 18

False positives 4 5 9 4 9 4 11 9 3 7
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Table 9. Number of support vectors for deslanted MNIST (60,000 training examples), using VSV with 2-pixel
translation.

Number of support vectors for each binary recognizer

Digit 0 1 2 3 4 5 6 7 8 9

SV 1859 1057 3186 3315 2989 3311 2039 2674 3614 3565

0 < αi < C 1758 927 3023 3090 2830 3124 1934 2475 3301 3202

αi = C 101 130 163 225 159 187 105 199 313 363

VSV 8041 4534 13462 13628 12115 13395 8558 11731 15727 16341

0 < αi < C 7619 3762 12837 12609 11146 12584 8031 10538 14181 14332

αi = C 422 772 625 1019 969 811 527 1193 1546 2009

VSV2 11305 6298 18549 18680 16800 18550 11910 16489 21826 23003

0 < αi < C 10650 5117 17539 17141 15329 17294 11084 14645 19382 19898

αi = C 655 1181 1010 1539 1471 1256 826 1844 2444 3105

set alone. Nevertheless, comparing Table 6 with 9 shows that deslanted data does lead to
significantly fewer SVs and VSVs, with a particularly high percentage of reduction for digit
“1” (as one might expect, since deslanted “1” digits are especially similar to each other).

To investigate whether further jitters would lead to even better results (or perhaps worse
ones), we tried the VSV method using 3 × 3 box jitter combined with four additional
translations by 2-pixels (i.e. horizontally or vertically, but not both), using the same training
conditions as the other experiments. Although this only enlarged the number of training
examples by about 50% (from 9 to 13 per original SV), it require approximately 4 times
more training time, due to the large number of VSVs that resulted.

The results of this experiment are labelled as “VSV2” in Tables 7, 8, and 9. Figure 5
shows the 56 misclassified test examples that resulted. It is interesting to note that the largest
number of VSVs (23,003) is still only about a third of the size of the full (60,000) training
set, despite the large number of translation jitters explored in this case.

Other distortions, such as scale, rotation, and line thickness, have all been reported to also
help significantly in this domain. It seems clear from figure 5 that many of the remaining
misclassifications are due to failure to fully account for such other invariances.

5.1.2. SMO jittering kernels experiments. Table 10 summarizes some initial experiments
in comparing VSV and JSV methods on a small subset of the MNIST training set. Specif-
ically, 200 “3” digit examples and 200 “8” digit examples from the training set and all
1984 “3” and “8” digits from the 10,000 example test set. We have not yet run more
conclusion comparisons using the entire data set. We again used a polynomial kernel
of degree 9.

These experiments illustrate typical relative behaviors, such as the JSV test times being
much faster than the worst case (of J times slower than VSV test times), even though JSV
must jitter at test time, due to JSV having many fewer final SVs than for VSV. Furthermore,
both JSV and VSV typically beat standard SVMs (i.e. no invariance). They also both
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Figure 5. The 56 errors for deslanted 10,000 MNIST test data (VSV2). The number in the lower-left corner of
each image box indicates the test example number (1 thru 10,000). The first number in the upper-right corner
indicates the predicted digit label and the second indicates the true label.

typically beat query jitter as well, in which the test examples are jittered inside the kernels
during SVM output computations. Query jitter effectively uses jittering kernels at test time,
even though the SVM was not specifically trained for a jittering kernel. We tested that case
simply as a control in such experiments, to verify that training the SVM with the actual
jittering kernel used at test time is indeed important.

Relative test errors between VSV and JSV vary—sometimes VSV is substantially better
(as in the 5 × 5 box jitter example) and sometime it is somewhat worse. Although our results
to date are preliminary, it does seem that VSV methods are substantially more robust than
JSV ones, in terms of variance in generalization errors.

5.2. NASA volcanoe recognition

We are currently applying these invariance approaches to several difficult NASA object
detection tasks. In particular, we are focusing on improving known results in volcanoe
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Table 10. “3 vs 8” results for MNIST (all 1984 test examples, first 200 3’s and 200 8’s from training set).

Method Test errors SV/N Task Time (secs)

Using 3 × 3 box jitter

Base 207/400 train 2.3

61/1984 test 11.0

50/1984 query jitter test 119.4

VSV 1050/1863 train 51.7

34/1984 test 60.5

JSV 171/400 train 18.8

30/1984 test 98.6

Using 5×5 box jitter and deslant preprocessing (principal axis vertical)

Base 179/400 train 1.8

33/1984 test 9.9

50/1984 query jitter test 480.5

VSV 2411/4475 train 385.0

8/1984 test >400

JSV 151/400 train 31.7

28/1984 test 396.0

detection (Burl et al., 1998) and in enabling useful initial results for a crater detection
application (Burl, 2001). These NASA applications have in fact motivated much of our
recent work on efficient training of invariant SVMs.

In this section we present some preliminary results on a subset of the NASA volcanoe data,
specifically that which is currently publicly available (the UCI KDD Archive “volcanoes”
data (Burl, 2000)). Figure 6 shows some examples from this data set. As described in Burl
et al. (1998), all examples were determined from a focus of attention (FOA) matched filter
that was designed to quickly scan large images and select 15-pixel-by-15-pixel subimages
with relatively high false alarm rates but low miss rates (about 20:1).

The previous best overall results on this data were achieved using a quadratic classifier,
modeling the two classes with one Gaussian for each class (Burl et al., 1998). To overcome
the high dimensionality of the 225-pixel example vectors, PCA was performed to find the
six principal axes of only the positive examples and then all examples were projected to
those axes. Mean and covariance matrices were computed over those six dimensions for
each class.

Figures 7 and 8 compare ROC10 curves for our initial SVMs (without any explicit in-
variance) versus the best previous Gaussian models.11 There are five experiments, varying
from homogeneous collections of volcanoes from the same regions of Venus to heteroge-
neous collections of examples from across the planet, with various k-fold partitionings into
training and test sets for each experiment. The ROC curves represent the leave-out-fold
cross-validation performances for each experiment.
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Figure 6. First 25 positive (left) and first 25 negative (right) test examples of volcanoe data setHOM4 (partition A1)
(Burl, 2000).

The number of example images vary from thousands to tens of thousands across the
five experiments. Due to the much greater number of negative examples than positive
examples in each experiment (by factors ranging from 10 to 20), we trained SVMs used
SV Mlight, employing its implemented ability to use two regularization parameters, C− and
C+, instead of a single C . That was done to reflect the importance of a high detection rate
despite the relatively scarcity of positive training examples. Specifically, we used C− = 1
and C+ = 3C− and the polynomial kernel K (u, v) ≡ 1

512 (u · v + 1)9, based solely on some
manual tuning on data set HOM4 (experiment A). Burl et al. (1998) similarly used HOM4 to
determine settings for the remaining four experiments. It is interesting to note that HOM4
is the only one of the experiments for which our (SVM) results seem to be very similar
to theirs. We also adopted the same normalization (of the 8-bit pixel values) used in their
original experiments, namely so that the mean pixel value of each example image is 0 and
the standard deviation is 1.

To extract ROC curves from each trained SVM, we added a sliding offset value to the
SVM output, with an offset of 0 giving the trained response. Interesting, our SVMs beat
the previous best (Gaussian) model for each of the five experiments when offset = 0, i.e.
at the operating point for which the SVM was specifically trained. This suggests that the
SVM-derived ROC curves might be even higher overall if a SVM was explicitly trained for
multiple operating points, instead of just one. It is also interesting that the SVM approach
does well without the sort of feature extraction effort (i.e. PCA) that the previous work
had required. One disadvantage of our SVM approach was that training time for all five
experiments was somewhat slower—about 15 minutes, versus 3 minutes for the Gaussian
model, on the same machine (a 450 Mhz Sun Ultra60).

This NASA volcanoe detection problem is somewhat challenging for VSV techniques to
make further progress, since many potential invariances have already been normalized away.
For example, the Sun light source is from the same angle and intensity for each example
considered, so rotation transformations would not be useful. Furthermore, the focus of
attention mechanism already centers each volcanoe example quite well. Nevertheless, the
volcanoe examples (e.g. figure 6) do indicate some slight variance in the location of the
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Figure 7. ROC curves for the first four experiments described by Burl et al. (1998). The solid curve is the ROC
for our SVM and the dashed curve is the ROC for the best two-Gaussian model from Burl et al. (1998). The mark
“∗” on the SVM curve indicates the operating point of the trained SVM (i.e. offset = 0). The dashed line near the
top of each plot box indicates the best performance possible, which is less than a detection rate of 1.0 due to the
focus of attention mechanism having a non-zero miss rate.

characteristic bright middle of each volcanoe, so we have been investigating whether VSV
translations can still help.

Due to the relatively large number of negative examples, we first explored whether
performing VSV transformations only on the positive examples might suffice. This was
inspired by the previous work succeeding with PCA limited to capturing the variance
only in the positive examples. Furthermore, it seemed possible that the large set of neg-
ative examples might already contain considerable translation variation. However, we
found that this lead to significantly worse performance than using no VSV. The stan-
dard VSV approach of transforming both negative and positive SVs indeed seems critical,
perhaps because otherwise the new positive instances have free reign to claim large ar-
eas of kernel feature space for which it (incorrectly) appears negative instances would not
occur.
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Figure 8. ROC curves for the fifth experiment (as in figure 7).

Figure 9 shows a comparison of ROC curves for a baseline SVM and its VSV SVM, using
four 1-pixel translations (horizontal or vertical) for all SVs of the baseline SVM and the
same training conditions as above. However, unlike for the MNIST domain, in this domain
replacing a pixel which moves away from an edge is not as simple as shifting in a constant
background (e.g. zero) pixel. For simplicity, we first tried replicating the shifted row (or
column), but found this did not work well, presumably because this conflicted with the
higher-order correlations modeled by the nonlinear kernel. So, instead for each image we
did the following: (1) apply the translation to each raw 8-bit-pixel image (without concern
for shift-in values), (2) shrink from 15-by-15 to 13-by-13 images (i.e. ignore the borders),
(3) normalize each 13 × 13 example. This shrinking was done for the baseline SVM as well,
which apparently did not influence the ROC curve significantly (as comparison of HOM4 in
figures 7 and 9 indicates).

Histograms of the SVM outputs suggest that a key reason for the overall improvements
in the ROC curve for the VSV SVM is that it is significantly more confident in its outputs
(e.g. they are much larger in magnitude), especially for negative examples.

For comparison, we have also tried translating all examples (not just SVs). As in earlier
work, we found the results to be essentially identical, although much slower to train.

Our work with VSV on the volcanoe data is still preliminary, so we are still focussing
on the HOM4 data and remaining blind to VSV performance on the others. To date we
have observed that VSV does not seem to hurt overall ROC performance, as long as the
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Figure 9. Dashed ROC curve is from baseline SVM (mark “x”shows threshold = 0 operating point). Solid ROC
curve is from SVM including VSV with four 1-pixel translations (mark “∗” shows threshold = 0 operating point).

above warnings are heeded, and sometimes helps. We suspect that with significant further
work (e.g. employing scale transforms, starting with larger 17-by-17 images to shrink after
translations, using more comprehensive model selection, etc.) significantly better results
can still be achieved in this domain.

6. Conclusion

This paper has described a variety of methods for incorporating prior knowledge about
invariances into SVMs. In experimental work, we have demonstrated that these techniques
allow state-of-the-art performance, both in terms of generalization error and in terms of
SVM training time.

As mentioned throughout this paper, there are several promising lines of future work.
These include experiments with a wider assortment of distortions (e.g. rotations, scale, line
thickness) and across multiple domains (e.g. further NASA space applications, in addition
to the traditional digit recognition tasks).

An interesting issue is under what conditions applying additional distortions to training
data leads to significantly worse test errors, even when using careful cross-validation during
training. One would expect that obviously-excessive distortions, such as rotating “6” digits
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so far as to confuse them with “9” digits, would be easily detected as counter-productive
during such cross-validations. Thus, an open issue is to what extent distortions reflecting
known invariances can be safely applied during training whenever computationally feasible
and to what extent their use makes controlling generalization error more difficult.

Given our demonstrated success in training invariant SVMs that generalize very well, a
key issue for future work is in lowering their test time costs. For example, the best neural
networks (e.g. (LeCun et al., 1998)) still appear to be much faster at test time than our best
SVMs, due to the large number of (virtual) support examples that are each compared to
each test example during kernel computations. Further work in reducing the number of such
comparisons per test example (with minimal increase in test errors), perhaps along the lines
of reduced sets (Burges & Schölkopf, 1997), would seem particularly useful at this point.
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Notes

1. The reader who is not familiar with this concept may think of it as a group of transformations where each
element is labelled by a set of continuously variable parameters, cf. also (Simard et al., 1992; Simard, LeCun,
& Denker, 1993). Such a group may be considered also to be a manifold, where the parameters are the
coordinates. For Lie groups, it is required that all group operations are smooth maps. It follows that one can,
for instance, compute derivatives with respect to the parameters. Examples of Lie groups are the translation
group, the rotation group, or the Lorentz group; for details, see e.g. (Crampin & Pirani, 1986).

2. We think that this is because that study focused on the linear case. The nonlinear case has recently been studied
by Chapelle and Schölkopf (2000).

3. Clearly, the scheme can be iterated; however, care has to exercised, since the iteration of local invariances
would lead to global ones which are not always desirable—cf. the example of a ‘6’ rotating into a ‘9’ (Simard,
LeCun, & Denker, 1993).

4. For example, figure 4 shows some jittered forms of a particular example of digit “5”.
5. This corresponds to Euclidian distance in the feature space corresponding to the kernel, using the definition

of the two-norm:

‖Zi − Z j ‖2 = (Zi · Zi ) − 2 (Zi · Z j ) + (Z j · Z j ).

6. Incidentally, this is why we expect, for large-scale problems, that JSV approaches may be able to effectively
amortize away much of their extra jittering kernel costs (J times slower than VSV’s standard kernels). That
is, the JSV working set will be J times smaller than for the corresponding VSV, and thus might reuse a limited
cache more effectively.

7. We did, however, make a comparison for a subset of the MNIST database, utilizing only the first 5000 training
example. There, a degree 5 polynomial classifier was improved from 3.8% to 2.5% error by the Virtual SV
method, with an increase of the average SV set sizes from 324 to 823. By generating Virtual examples from
the full training set, and retraining on these, we obtained a system which had slightly more SVs (939), but an
unchanged error rate.

8. Note this study was done before VSV systems with higher accuracy were obtained.
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9. The difference in CPU’s (i.e. our Sparc Ultra-II 450 Mhz versus Platt’s Intel Pentium II 266 Mhz) seems not as
significant as one might imagine. Experiments on both CPU’s indicate that the Sparc is effectively only 50%
faster than the Pentium in dot-product computations, which dominate the training time in our experiments.

10. As in Burl et al. (1998), these are actually FROC (Free-response ROC) curves, showing probability of detection
versus the number of false alarms per unit area.

11. The volcanoe data from the UCI KDD Archive (Burl. 2000) are slightly different from the data used in Burl
et al. (1998), due to recent changes in their FOA mechanism. The author of those experiments (Burl) reran
them for us, so that all our ROC plots here involve the same data. This accounts for our slight differences
from the ROC curves shown in Burl et al. (1998).
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