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Abstract. In this paper, we present a formal description of data slicing,
which is a type-directed program transformation technique that sepa-
rates a program’s heap into several independent regions. Pointers within
each region mirror the structure of pointers in the original heap; however,
each field whose type is a base type (e.g., the integer type) appears in
only one of these regions. In addition, we discuss several applications of
data slicing. First, data slicing can be used to add extra fields to exist-
ing data structures without compromising backward compatibility; the
CCured project uses data slicing to preserve library compatibility in in-
strumented programs at a reasonable performance cost. Data slicing can
also be used to improve locality by separating “hot” and “cold” fields in
an array of data structures, and it can be used to protect sensitive data
by separating “public” and “private” fields. Finally, data slicing can serve
as a refactoring tool, allowing the programmer to split data structures
while automatically updating the code that manipulates them.

1 Introduction

When maintaining a large software project, a seemingly trivial change to a data
structure can be largely intractable due to the amount of code that depends
upon that data structure’s layout. When programmers wish to modify a data
structure, they must weigh the benefits of these modifications against the time
required to modify the program and the risk of introducing new bugs. Compil-
ers face a similar challenge; for example, a compiler may wish to alter one of
the data structures in the program it is compiling without violating data lay-
out assumptions made by precompiled code. Such changes require a principled
approach that can achieve the desired goal automatically and without changing
the program’s semantics.

This paper introduces data slicing, a program transformation technique that
addresses this problem. Given an existing program, data slicing produces a new
program that computes the same result while splitting its data structures among
several memory regions. This transformation allows the programmer or the com-
piler to factor out portions of a data structure that must reside in a different
place in memory.

Data slicing can be used to preserve backward compatibility after a program
transformation. For example, a transformation that adds new fields to existing



data structures may make the program incompatible with precompiled libraries;
data slicing can be used to separate these new fields from the old ones, allowing
the original program’s data structures to retain their original layout. As the
prototypical example of this application, we show how to instantiate data slicing
in the context of the CCured project [4] to enable extensive run-time checking
of C programs while maintaining compatibility with precompiled libraries.

Data slicing can also be applied to performance optimizations. For example,
data slicing can be used to produce an improved implementation of the instance
interleaving optimization [13], which interleaves the fields of several objects in
order to place frequently-accessed fields in the same cache line.

Finally, data slicing can be applied to security problems. For example, data
slicing can move function pointers to a separate memory region to make it more
difficult for an attacker to overwrite them. In general, data slicing acts as a refac-
toring tool that simplifies the task of making global changes to data structures.

This paper offers two main contributions. First, it presents a formal descrip-
tion of the type-directed data slicing transformation on a simple imperative
language. Second, it discusses several applications of this technique, including
CCured, instance interleaving, and security-related transformations.

2 Data Slicing

Data slicing is a program transformation that separates a program’s heap into
independent regions. The input to this transformation is a program whose base
types (e.g., integer types) have been annotated with region names. The goal
of data slicing is to produce a new program that computes the same result as
the original program while splitting the data structures in the program’s heap
into independent regions. Each region must contain only the data that has been
annotated for that region, as well as any pointers that are necessary for keeping
track of that data. We focus on the case when the regions must be independent,
in the sense that there are no pointers that cross region boundaries; however, we
will show how to relax this requirement in Sections 2.5 and 3.1.

To achieve these goals, data slicing ensures that each region in the program
mirrors the structure of the original program’s heap. For example, if the original
program’s heap contains a linked list with data whose fields are annotated with
multiple regions, then each region of the transformed program’s heap will contain
a linked list of the same length containing the list data for that region. More
precisely, there is an injective mapping mi from objects in region Ri to objects
in the original program’s heap at a given point in execution. An object A in
region Ri contains the fields of object mi(A) whose type is labelled with region
Ri. Furthermore, if object A points to object B in region Ri, then object mi(A)
points to object mi(B) in the original program’s heap. Note that base fields (i.e.,
fields whose type is a base type) will be stored in exactly one region according to
the relevant type annotation, whereas each pointer field may be split into several
pointer fields, one in each region where it is necessary. Essentially, data slicing
separates base fields and replicates some pointer fields.
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Fig. 1. Illustration of data slicing’s effects. The dashed lines delimit the regions within
the transformed program’s heap

types τ ::= int Ri | t | τ ptr | struct{ . . . fj : τj ; . . . }
l-expressions l ::= x | l.f | ∗e
expressions e ::= n | null | new τ | e1 op e2 | &l | l

| cast〈int Rj →֒ int Ri〉 e | cast〈τ ptr →֒ int Ri〉 e

commands c ::= l := e | f(x) | let x : τ in c | c1; c2

| if e then c1 else c2 | while e do c

definitions d ::= f(x : τ ) {c} | type t = τ

programs p ::= d p | d

Fig. 2. A C-like language used as the basis for discussing data slicing

Figure 1 illustrates the effects of data slicing. This figure shows a program’s
heap at a specific point in time before and after data slicing. The base fields
in the original heap are annotated with region names R1, R2, and R3. In the
transformed heap, each region contains a data structure with the same shape as
the original, except that it contains only the base fields for that region as well as
any pointers needed to access those fields. Note that we have eliminated entire
objects from region R2; thus, the mapping m2 is injective but not surjective.

The remainder of this section presents the data slicing transformation for-
mally. First, we introduce a C-like language (Section 2.1), and then we define
data slicing on types and programs (Sections 2.2 and 2.3). Then, we discuss
first-class functions and partial data slicing (Sections 2.4 and 2.5).

2.1 Language

Figure 2 shows an imperative language that will be the basis for our discussion
of data slicing. The types in this language include integer types, pointer types,
structure types, and named types (t). We use void as a shorthand for struct{}.
Base types (here, the integer type) have a region qualifier that indicates the
region where this data should be placed. Region names are R1 through Rn;
throughout this paper, n will refer to the number of available regions.

174



The syntax for l-expressions (l) and expressions (e) is based loosely on that of
C. Binary operations (“op” in the grammar) include arithmetic and comparison,
and they may only be applied to integers in the same region. We permit casts
between integers in different regions as well as casts from pointers to integers.

Commands (c) include standard imperative constructs. We will use l1, ..., lk :=
e1, ..., ek as syntactic sugar for simultaneous assignment where all right-hand
sides are evaluated before any assignments occur. Function calls have no explicit
return value; instead, the programmer must pass a pointer to the result variable
as an argument. At the top level, a program (p) is a list of definitions (d) of func-
tions and types. Type definitions allow recursive types to be defined. To simplify
the presentation, we defer the discussion of function pointers to Section 2.4. The
complete static semantics for this language can be found in Appendix A.

Using this language, we can write down the types of the objects in Figure 1.
In the original program’s heap, there are two types of objects, t and t′, as follows:

type t = struct{ p1 : t ptr; p2 : t′ ptr; f1 : int R1; f2 : int R2; }
type t′ = struct{ f1 : int R1; f3 : int R3; }

To translate a C program to this language, the programmer must add region
annotations to each field or variable whose type is a base type. The programmer
must either eliminate unsafe pointer casts or limit the use of data slicing to the
safe portions of the program using a technique discussed in Section 2.5.

2.2 Transformation of Types

We now define the data slicing transformation on types, which will guide the rest
of the transformation. In the previous section, we defined two types, t and t′,
for the objects on the left-hand side of Figure 1. Data slicing splits each object
of type t or t′ into three objects, one in each region. The resulting types are:

type t1 = struct{ p1 : t1 ptr; p2 : t′1 ptr; f1 : int R1; }
type t2 = struct{ p1 : t2 ptr; f2 : int R2; }
type t3 = struct{ p1 : t3 ptr; p2 : t′3 ptr; }

type t′1 = struct{ f1 : int R1; }
type t′2 = void

type t′3 = struct{ f3 : int R3; }

Note that the pointers of type t ptr in the original heap have been split into
pointers of type t1 ptr, t2 ptr, and t3 ptr in their respective regions. Similarly,
the pointers of type t′ ptr have been split into pointers of type t′1 ptr and t′3 ptr

in regions R1 and R3. It is unnecessary to have a pointer of type t′2 ptr in region
R2 because t′ contains no data labelled with region R2 (i.e., t′2 is void). Note
that integer fields only appear in the region to which they have been assigned.

Formally, we define a mapping TSlicei from types in the original program to
the corresponding types in region Ri of the transformed program (see Figure 3).
The first rule in this definition says that the sliced type for region Ri contains
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TSlicei(int Rj) =

{

int Rj if i = j

void otherwise

TSlicei(τ ptr) =

{

TSlicei(τ ) ptr if TSlicei(τ ) 6= void

void otherwise

TSlicei(struct{ . . . fj : τj ; . . . }) = struct{ . . . fj : TSlicei(τj); . . . }

TSlicei(t) = ti

VSlice(τ ) = struct{ . . . ri : TSlicei(τ ); . . . }

Fig. 3. Data slicing transformation for types. Note that we omit void fields from the
resulting structure types

only those base types that are annotated with region Ri. The rules for structures
and pointers recursively apply TSlicei, and the rule for named types transforms a
named type t into its corresponding named type ti in region Ri. (In Section 2.3,
we will define ti to be TSlicei(τ), where τ is the original definition of t.)

Two optimizations occur during this transformation. First, when the result
is a structure type, we omit fields of type void. Second, we omit pointers that
cannot be used to reach any data in region Ri, as shown in the “otherwise”
case for pointer types. For example, TSlice1(int R2 ptr ptr) = void rather
than void ptr ptr, since this type contains no information from region R1. Of
course, TSlice2 yields int R2 ptr ptr, as desired.

TSlicei gives the transformation for a specific region; however, at certain
points in the program (variables and formal parameters), we must gather the
sliced data into one structure containing the data from all regions. In Figure 3,
VSlice gives the type of this merged structure. For example, a variable or formal
parameter whose type is a pointer type would be transformed into a structure
containing one pointer for each region where the pointer’s sliced type is not void.

2.3 Transformation of Programs

In Figure 4, we show the transformation for the remaining syntactic constructs.
PSlice and DSlice transform programs and definitions. Formal parameters

are transformed with VSlice, so they include data from all regions. For type
definitions, we create one named type for each region.

CSlice defines data slicing for commands. Function calls are unchanged, since
the argument variable’s type will have been transformed with VSlice. For condi-
tionals and loops, we transform the guard expression with ESlice1, which slices
an expression with type int R1. (The guard expression must have this type.)

The assignment command is the key part of this transformation: essentially,
the transformed program performs the corresponding assignment in each region
where the type being assigned is not void. Since each region’s assignment op-
eration is performed separately, the rules for expressions and l-expressions are
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PSlice(d p) = DSlice(d) PSlice(p)
PSlice(d) = DSlice(d)

DSlice(f(x : τ ) {c}) = f(x : VSlice(τ )) {CSlice(c)}
DSlice(type t = τ ) = type t1 = TSlice1(τ ) ... type tn = TSlicen(τ )

CSlice(f(x)) = f(x)
CSlice(if e then c1 else c2) = if ESlice1(e) then CSlice(c1) else CSlice(c2)

CSlice(while e do c) = while ESlice1(e) do CSlice(c)
CSlice(let x : τ in c) = let x : VSlice(τ ) in CSlice(c)

CSlice(c1; c2) = CSlice(c1);CSlice(c2)
CSlice(l := e) = LSlicei1(l), .., LSliceik

(l) :=ESlicei1(e), .., ESliceik
(e)

where {i1,..,ik}={i∈{1,..,n}|TSlicei(TypeOf(e)) 6= void}

ESlicei(n) = n

ESlicei(null) = null

ESlicei(e1 op e2) = ESlicei(e1) op ESlicei(e2)
ESlicei(cast〈int Rj →֒ int Ri〉e) = cast〈int Rj →֒ int Ri〉 ESlicej(e)
ESlicei(cast〈τ ptr →֒ int Ri〉e) = cast〈TSlicei(τ ptr) →֒ int Ri〉 ESlicei(e)

ESlicei(new τ ) = new TSlicei(τ )
ESlicei(&l) = &LSlicei(l)

ESlicei(l) = LSlicei(l)

LSlicei(x) = x.ri

LSlicei(l.f) = LSlicei(l).f
LSlicei(∗e) = ∗ESlicei(e)

Fig. 4. Data slicing transformation for programs, definitions, commands, expressions,
and l-expressions, using n regions

defined with respect to a single region, and they assume that the sliced type of
the expression in the given region is not void.

For example, suppose we want to transform the command (∗x).p2 := y,
where x has type t ptr and y has type t′ ptr. (We use the types t and t′

defined in Section 2.1.) The rule for assignment yields CSlice((∗x).p2 := y) =
LSlice1((∗x).p2), LSlice3((∗x).p2) := ESlice1(y), ESlice3(y). Thus, we will perform
the corresponding assignment in regions R1 and R3, since TSlice1(t

′ ptr) 6= void

and TSlice3(t
′ ptr) 6= void, but not in region R2, since TSlice2(t

′ ptr) = void.

Now consider ESlicei and LSlicei, the slicing operations for expressions and
l-expressions, respectively. Here, we slice with respect to a specific region; for
example, when transforming a variable reference, we select the component of
that variable corresponding to the region in question. Continuing the example
above, we have LSlice1((∗x).p2) = (∗x.r1).p2 and LSlice3((∗x).p2) = (∗x.r3).p2.
Note that this slicing operation could not have been performed in region R2, since
TSlice2(t) does not have a field called p2. However, the assignment rule prevents
us from calling ESlice2 in this case, since TSlice2(t

′ ptr) = void. The final result
for the example is CSlice((∗x).p2 := y) = (∗x.r1).p2, (∗x.r3).p2 := y.r1, y.r3.
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The integer cast expression computes a single integer value in region Rj using
ESlicej , casts this integer to region Ri, and completes the computation in region
Ri. Since we only move a single integer value between regions, this operation
preserves the invariant that there are no inter-region pointers.

Finally, note that the pointer cast expression targets a specific region, and
this choice affects the result of the transformation. For example, the expression
cast〈t ptr →֒ int R1〉 x would be transformed to cast〈t ptr →֒ int R1〉 x.r1,
whereas cast〈t ptr →֒ int R3〉 x would become cast〈t ptr →֒ int R3〉 x.r3.
After data slicing, these expressions will yield different integers; thus, when com-
paring two pointers, the programmer must ensure that they were obtained by
casting to the same region. In this example, we cannot cast to region R2 because
our typing rules require that we cast to a region where TSlicei(τ ptr) 6= void.

2.4 Handling First-Class Functions

Since data slicing splits data but not code, we cannot split a function among n

different regions in the same way that we can split a pointer. Rather, function
types are handled in the same manner as integer types: by adding a region
qualifier. To implement this scheme, we add a function type, a function name
expression, a function cast expression, and a new function invocation command.

τ ::= . . . | τ fn Ri

e ::= . . . | f | cast〈τ fn Rj →֒ τ fn Ri〉 e

c ::= . . . | e(x)

In the function type τ fn Ri, the type τ refers to the type of the argument to
the function. Next, we add new rules to our type and program transformations:

TSlicei(τ fn Rj) =

{

VSlice(τ) fn Ri if i = j

void otherwise

ESlicei(f) = f

CSlice(e(x)) = ESlice1(e)(x)

Function argument types are transformed with VSlice. Function names are
unchanged, and function invocation retrieves the function from region R1 as
required by our type system. Function casts (not shown) resemble integer casts.

Unfortunately, this approach does not suffice for applications where data
slicing is used to preserve backward compatibility. In these applications, we start
with a program whose fields are all labelled with region R1. When we add new
fields, we label them with region R2 so that data slicing will separate these fields
from the original data structures, thus preserving the original layout of region
R1. However, the original layout of region R1 may contain function types. We
cannot label these types with region R2, because data slicing would remove them
from region R1, breaking backward compatibility. However, we cannot keep them
in region R1, because the sliced type in R1 may differ from the original type.

To solve this problem, we allow the programmer to introduce wrapper func-
tions. These functions have the appropriate type for the original data layout,
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and they are responsible for calling the transformed function with arguments
from all regions. In the above example, we can annotate the function type with
region R2, and then data slicing will place a wrapper function of the appropriate
type in region R1. The wrapper’s implementation is application-specific.

For example, function types and expressions may be transformed as follows:

TSlicei(τ fn Rj) =

{

VSlice(τ) fn Ri if i = j

TSlicei(τ) fn Ri otherwise

ESlicei(f) =

{

f if TypeOf(f) = τ fn Ri

fi otherwise

The function fi is a wrapper for function f in region Ri. This wrapper func-
tion takes an argument of type TSlicei(τ), which it uses to call f . Since this
data corresponds to only one of the fields that make up VSlice(τ), the wrapper
function must fill in the rest of the fields in an application-specific manner. We
will see an example of this approach in the CCured case study (Section 3.1).

2.5 Partial Data Slicing

The variant of data slicing presented so far splits the base fields of a data struc-
ture as well as all objects that directly or indirectly point to these base fields.
In many cases, this additional slicing is wasteful; for example, when using data
slicing to preserve library compatibility, we need not split objects that will not
be shared with a library.

To solve this problem, we introduce an extension that allows pointer and
structure types to be given region annotations. A pointer of type τ ptr R1

would be split into as many as n pointers using the original rules, but all of
these pointers would be stored in region R1, despite the fact that they point
to other regions. Because all components of this pointer appear in one region,
types that contain this pointer do not necessarily need to be split. In a sense,
we introduce a limited form of inter-region pointer in exchange for the ability
to restrict data slicing to a small portion of the program. In fact, this extension
can be used to derive CCured’s technique for restricting its compatible metadata
representation [4]. Due to space constraints, we omit the remaining details.

3 Case Studies

3.1 CCured

CCured [4, 10] is a program transformation system designed to guarantee mem-
ory safety in C programs through a combination of static analysis and run-time
checks. To perform its run-time checks, CCured adds metadata to pointers, alter-
ing the layout of the program’s data structures. Unfortunately, this new layout
is incompatible with precompiled libraries, which proved to be a major obstacle
when applying CCured to large software systems such as bind and OpenSSH.
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To solve this problem, CCured can separate its metadata from the original pro-
gram’s data, placing this metadata in a parallel structure [4]. Data slicing gen-
eralizes this technique, as discussed in Section 4. In this section, we show how
data slicing can be instantiated for CCured, demonstrating how one can solve
data structure backward compatibility problems with data slicing.

CCured classifies pointers into one of several pointer kinds, which determine
the metadata required by a given pointer. We will consider three CCured pointer
kinds: SAFE pointers, which carry no metadata, SEQ (“sequence”) pointers, which
carry array bound information, and RTTI (“run-time type information”) pointers,
which carry an integer identifying the dynamic type of the pointer.

CCured infers these pointer kinds based on pointer usage, and then it imple-
ments them by transforming them into C structures, as follows:

Rep(int) = int RD

Rep(τ ptr SAFE) = struct{ p : Rep(τ) ptr; }
Rep(τ ptr SEQ) = struct{ p : Rep(τ) ptr; b : int RM ; e : int RM ; }
Rep(τ ptr RTTI) = struct{ p : Rep(τ) ptr; t : int RM ; }
Rep(τ fn) = Rep(τ) fn RM

Given a type annotated with CCured pointer kinds, the Rep function gives
the representation of that type as a C type. For example, SAFE pointers are rep-
resented by a single pointer, whereas SEQ pointers also carry bounds information.
Rep adds region qualifiers as appropriate: RD for data, RM for metadata.

To make these data structures compatible with existing libraries, we can ap-
ply the data slicing transformation after the CCured transformation. In previous
work [4], we introduced functions called C and Meta to describe the types of the
separated data and metadata structures; the interested reader can verify that
C = TSliceD ◦ Rep and that Meta = TSliceM ◦ Rep. (Note that in this paper, we
use integer types instead of pointer types for the b and e fields.)

For function types, we use the wrapper function scheme from Section 2.4.
Since Rep uses region RM for all function types, the transformed functions (which
take both data and metadata as arguments) are always stored in and retrieved
from RM . In region RD, we place a wrapper whose type matches the original
type of the function. This wrapper is responsible for looking up (or generating)
appropriate metadata for its arguments before calling the transformed function.

Example of Data Slicing in CCured The C library functions sendmsg and
recvmsg take as a parameter a pointer to a msghdr, which in turn contains an
array of iovecs. A simplified declaration for these structures is as follows:

type iovec = struct{ iov base : data ptr RTTI; iov len : int; }
type msghdr = struct{ msg iov : iovec ptr SEQ;

msg iovlen : int; msg flags : int; }

The type data is some unspecified type; for simplicity, we assume it contains
no metadata. Figure 5 shows how data slicing separates the CCured metadata
from this data structures. Once separated, the data portion can be passed di-
rectly to C library functions.
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Fig. 5. Illustration of data slicing in CCured. CCured’s metadata, shown in gray, is
separated into the metadata region, RM . The base and end fields are integers, not
pointers, which is why they are allowed to “point” across region boundaries. These
“pointers,” which are drawn with dashed lines, are compared but never dereferenced

Performance CCured has been applied to several large systems programs (e.g.,
OpenSSH, bind, ftpd, sendmail, Apache modules) for which the ability to main-
tain compatibility with precompiled libraries was essential. In order to determine
the impact of data slicing, we also applied CCured to simple benchmarks (olden
[2] and ptrdist [1]) that can be cured without using data slicing.

These experiments were conducted on a 2.4 GHz Pentium 4 with 1 GB of
memory running Linux 2.6.6. The results are reported in Table 1. The second
and third columns show the average execution time (in seconds) of five runs
of the cured program, with and without data slicing. Standard deviations were
negligible in all cases. The third column shows the ratio of the sliced version to
the unsliced version. The fourth column shows the percentage of pointers in the
program text that required CCured metadata (i.e., were not SAFE). The final
column indicates the percentage of pointers in the program text that were split
into two pointers (i.e., one in each region). These percentages include all pointer
types and all variables, since each variable’s address is potentially a pointer.

The impact of data slicing on execution time was minimal for most of these
benchmarks. The only three cases that had more than a 1% slowdown were
anagram, em3d, and mst. The worst performance by far was shown by em3d,
which had a 63% slowdown. For such cases, it is possible to restrict data slicing
to only those portions of the program where it is necessary (see Section 2.5),
thus minimizing the overall performance impact.

There is a rough correspondence between the number of pointers needing
metadata and the number of pointers that need to be split into two pointers.
Recall that a pointer will be split into two pointers if there is CCured metadata
reachable from that pointer; thus, these two numbers will be correlated. While
these static counts give a rough estimate of the performance impact of data
slicing, they are not always reliable (compare anagram and bh); naturally, data
slicing’s performance depends significantly on how pointers are used at run time.
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Table 1. Results for ptrdist and olden. We show execution time (in seconds) and
the static percentage of pointers needing metadata and of pointers that were split.
We omit ptrdist’s bh benchmark, since it uses CCured’s WILD pointer, whose current
implementation is not amenable to data slicing

Test Cured Sliced Ratio Meta Split

anagram 3.001 3.329 1.10 12% 11%

ft 2.164 2.140 0.99 2% 1%

ks 2.617 2.597 0.99 12% 6%

yacr2 0.197 0.199 1.01 11% 12%

bh 3.592 3.572 0.99 20% 13%

bisort 1.906 1.915 1.00 3% 2%

em3d 0.275 0.449 1.63 6% 18%

health 1.305 1.303 1.00 3% 2%

mst 0.651 0.677 1.04 3% 14%

perim 2.106 2.106 1.00 0% 0%

power 3.584 3.583 1.00 2% 4%

treeadd 0.417 0.420 1.01 3% 3%

tsp 2.162 2.160 1.00 0% 0%

3.2 Instance Interleaving

Data slicing can also be used to implement compiler optimizations. To illustrate
this application, we consider the instance interleaving optimization described by
Truong et al. [13]. Instance interleaving is a data layout technique that clusters
frequently-accessed (“hot”) fields from a number of instances of a data struc-
ture, improving cache performance. Unfortunately, the original implementation
required programmer intervention and had significant restrictions on the use
of these structures. Data slicing provides an alternative implementation that
addresses these problems.

Truong et al. presented instance interleaving using the following structure:

type t = struct{ a : int; b : int; c : int; d : int; }

Assume that fields a and c are accessed far more frequently than fields b and
d. To apply instance interleaving using the original approach, we would separate
the “hot” fields and add padding (represented by an ellipsis):

type t = struct{ a : int; c : int; . . . b : int; d : int; }

Now, we allocate these objects from an array that is sized according to the
amount of padding. “Hot” fields are stored in the first half of the array, and
“cold” fields are stored in the second half. The padding represents the portions
of the array that do not belong to this particular instance. The top half of
Figure 6 shows how a pointer of type t ptr points to an instance of the structure
t that is part of an interleaved array. The padding in the structure corresponds
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Fig. 6. Two implementations of instance interleaving. “Hot” fields are white, and
“cold” fields are gray

to the fields of the other interleaved instances. The programmer allocates from
this array by calling ialloc, a library function that manages the array.

This implementation requires that the programmer modify only the struc-
ture declaration and the allocation sites. However, pointer arithmetic, structure
assignment, and static allocation are either prohibited or extremely wasteful.

Data slicing offers an alternative implementation that solves these problems.
To use data slicing, we would assign “hot” and “cold” fields to different regions:

type t = struct{ a : int RH ; b : int RC ; c : int RH ; d : int RC ; }

After data slicing, the “hot” and “cold” fields will appear in different regions.
If we allocate objects from an array, the “hot” fields of several instances will be
allocated adjacent to one another, as shown in the bottom half of Figure 6.

The data slicing approach has many advantages. First, there is minimal pro-
grammer intervention required, which eliminates an opportunity for introduc-
ing bugs. Second, it is possible to use pointer arithmetic, structure assignment,
static allocation, and dynamically-sized arrays. Finally, we can have more than
two classes of fields; for example, we could group fields that tend to be accessed
at the same time and then assign one region to each group.

The primary disadvantage of the data slicing implementation is that in some
cases, data slicing introduces an additional pointer. In Figure 6, the pointer
into the array has been split into two pointers, one for the “hot” region and
one for the “cold” region. This splitting arises because data slicing makes no
assumptions about the size of the array. However, if we restrict data slicing
using the technique from Section 2.5, then the pointers to the “hot” and “cold”
parts of a data structure can be stored in the same region, without splitting the
data structure that contains them. Truong et al. report speedups of 1.08 to 2.52
when using instance interleaving and reordering some fields; the overhead of the
extra pointer required by data slicing should be comparatively small.
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3.3 Security Applications

In this section, we present three examples that demonstrate how data slicing can
be applied to security problems.

First, data slicing can be used to isolate function pointers in a program’s
heap. Function pointers can be a security vulnerability because an errant write
that changes a function pointer could allow an attacker can gain control of the
processor [15]. To solve this problem, it is not sufficient to add an extra level of
indirection to function pointers: we could replace pointers of type τ fn ptr with
pointers of type τ fn ptr ptr, but overwriting this new pointer is still a security
vulnerability. Instead, we can label all function pointers with a special region
name and apply data slicing. As a result, all function pointers and all pointers
that indirectly point to them will be placed in this region, reducing the chances
that an attacker can overwrite them.

Second, data slicing can protect sensitive data (such as a password) that
is stored in virtual memory. Normally, the programmer must ensure that this
data is not paged to disk; otherwise, an attacker who has access to the page
file could recover the secret data [8]. If the user annotates sensitive data with a
specific region name, then data slicing will separate this data into a region that
can be marked as non-pageable. Here, data slicing automates a task that would
otherwise be a tedious refactoring exercise.

Finally, suppose the programmer wishes to share portions of an application’s
data structures with an untrusted party. If the programmer labels public and
private fields appropriately, data slicing will separate these fields into indepen-
dent data structures. Since data slicing disallows inter-region pointers, the user
is guaranteed that private data is not accessible from shared public data. Indeed,
because the private data is stored in a completely separate memory region, it
could be protected by the virtual memory system as well.

In general, data slicing provides the programmer with a refactoring tool. The
programmer can label fields that need to be removed from a data structure, and
data slicing will automatically make the desired change throughout the program.

4 Related Work

This work originated in the design of CCured’s compatible metadata representa-
tion [4]. Unfortunately, the design of this compatible representation was largely
ad-hoc and would be difficult to adapt for other purposes; in addition, the origi-
nal presentation only showed how to transform types. Data slicing, as presented
in this paper, provides a framework for applying this transformation in a much
more general setting. In addition, we improve over previously published work by
showing how to handle first-class functions, by allowing the transformation to
split the heap into more than two regions, and by providing a detailed discussion
of the program transformation itself. Finally, we show how this technique can
be applied to other problems.

Structure splitting [3] separates infrequently-accessed fields by adding an ex-
tra level of indirection to a data structure. Data slicing provides an alternative
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approach, as shown in the instance interleaving example. Unfortunately, struc-
ture splitting is inappropriate for solving backward compatibility problems, since
it adds an extra pointer to the original structure after removing fields.

Intensional polymorphism [5–7] is an approach to compiling polymorphism
that allows type information to be used at run time. This technique allows
a compiler to use efficient data representations while preserving type safety.
Data slicing solves a similar problem, since it allows the compiler to refactor
data structures automatically. Also, many of these approaches to intensional
polymorphism represent types as terms in parallel with expressions; data slicing
provides such parallel structures for arbitrary data.

One alternative approach to preserving backward compatibility is to use a
global splay tree to store metadata [9]. However, this strategy was prohibitively
expensive in CCured, since it altered the asymptotic complexity of some sim-
ple test cases. Data slicing allows constant-time metadata lookup in most cases;
global lookups are only needed by wrapper functions at library boundaries. An-
other alternative is to factor runtime checks into a “shadow process” that ex-
ecutes on another processor [11]. Data slicing has several advantages over this
approach: it is type-directed, handles first-class functions, requires less overhead,
and requires only one processor.

Program slicing, which was introduced by Weiser [14] and later surveyed by
Tip [12], extracts only those portions of a program that are relevant to computing
the value of a particular variable at a particular program point. Data slicing does
not discard any code; rather, it separates data in the heap into independent
regions. However, there is some similarity: program slicing preserves statements
that indirectly affect the value of the specified variable, and data slicing preserves
pointers from which data in a given region is reachable.

5 Conclusions

In this paper, we have introduced data slicing, a program transformation that
separates the heap into several independent regions. Using this technique, we can
add new fields to a data structure without interfering with backward compatibil-
ity, and we can also implement compiler optimizations in a principled manner.
In addition, we can implement security-related program transformations. Future
work includes investigating ways to make data slicing work in the presence of
unsafe pointer casts and automating the task of constructing wrapper functions
for function pointers.

We believe that the data slicing technique is a promising approach to a
number of common software engineering problems. It is particularly useful in
combination with other automated program transformations, since it simplifies
the task of improving these programs while preserving backward compatibility.
As automated program transformations become more popular in practice, we
believe that this technique will find a wide range of additional applications.
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dynamically allocated data structures. In IEEE PACT, pages 322+, 1998.
14. Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,

10:352–357, 1984.
15. Suan Hsi Yong and Susan Horwitz. Protecting C programs from attacks via invalid

pointer dereferences. In SIGSOFT International Symposium on Foundations of

Software Engineering, pages 307–316, 2003.

186



A Static Semantics

This section gives the static semantics for the language presented in this paper,
including first-class functions. The environment Γ maps variables to types. A
program is well-typed if the body of every function f type-checks with initial
environment Γf , which maps f ’s argument to its type. FieldType(τ, f) gives the
type of field f in the structure type τ . ArgType(f) gives the type of f ’s argument.
The predicate HasComponent(τ, i) indicates whether there is a base type in
region Ri that is reachable from τ , and it holds if and only if TSlicei(τ) 6= void.
This latter fact is required by the translation of the pointer-to-integer cast.

Expressions

Γ ⊢ n : int Ri Γ ⊢ null : τ ptr Γ ⊢ new τ : τ ptr

Γ ⊢ l : τ

Γ ⊢ &l : τ ptr

τ = ArgType(f)

Γ ⊢ f : τ fn Ri

Γ ⊢ e1 : int Ri Γ ⊢ e2 : int Ri

Γ ⊢ e1 op e2 : int Ri

Γ ⊢ e : int Rj

Γ ⊢ cast〈int Rj →֒ int Ri〉 e : int Ri

Γ ⊢ e : τ ptr HasComponent(τ, i)

Γ ⊢ cast〈τ ptr →֒ int Ri〉 e : int Ri

L-Expressions

x ∈ Dom(Γ )

Γ ⊢ x : Γ (x)

Γ ⊢ l : τ1 τ2 = FieldType(τ1, f)

Γ ⊢ l.f : τ2

Γ ⊢ e : τ ptr

Γ ⊢ ∗e : τ

Commands

Γ ⊢ l : τ Γ ⊢ e : τ

Γ ⊢ l := e

Γ ⊢ e : τ fn R1 τ = Γ (x)

Γ ⊢ e(x)

Γ ⊢ e : int R1 Γ ⊢ c1 Γ ⊢ c2

Γ ⊢ if e then c1 else c2

Γ ⊢ e : int R1 Γ ⊢ c

Γ ⊢ while e do c

Γ [x 7→ τ ] ⊢ c

Γ ⊢ let x : τ in c

Γ ⊢ c1 Γ ⊢ c2

Γ ⊢ c1; c2
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