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ABSTRACT
Dynamic symbolic execution (DSE) has been proposed to
effectively generate test inputs for real-world programs. Un-
fortunately, DSE techniques do not scale well for large realis-
tic programs, because often the number of feasible execution
paths of a program increases exponentially with the increase
in the length of an execution path.

In this paper, we propose MultiSE, a new technique for
merging states incrementally during symbolic execution,
without using auxiliary variables. The key idea of MultiSE
is based on an alternative representation of the state, where
we map each variable, including the program counter, to a
set of guarded symbolic expressions called a value summary.
MultiSE has several advantages over conventional DSE and
conventional state merging techniques: value summaries en-
able sharing of symbolic expressions and path constraints
along multiple paths and thus avoid redundant execution.
MultiSE does not introduce auxiliary symbolic variables,
which enables it to 1) make progress even when merging
values not supported by the constraint solver, 2) avoid ex-
pensive constraint solver calls when resolving function calls
and jumps, and 3) carry out most operations concretely.
Moreover, MultiSE updates value summaries incrementally
at every assignment instruction, which makes it unnecessary
to identify the join points and to keep track of variables to
merge at join points.

We have implemented MultiSE for JavaScript programs
in a publicly available open-source tool. Our evaluation of
MultiSE on several programs shows that 1) value summaries
are an effective technique to take advantage of the sharing
of value along multiple execution path, that 2) MultiSE can
run significantly faster than traditional dynamic symbolic
execution and, 3) MultiSE saves a substantial number of
state merges compared to conventional state-merging tech-
niques.
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1. INTRODUCTION
Symbolic execution is a technique for automatically gen-

erating a symbolic model from a program. It has been used
successfully as a key component in a variety of applications,
including generating high-coverage tests for C [20, 44, 11,
10, 16], C++ [33], C# [48], Java [3, 36, 2, 29, 42], PHP [4],
JavaScript [41, 43], x86-binaries [22, 47, 5].

The key idea behind symbolic execution was introduced
almost 40 years ago [30, 17]. In this paper we consider the
dynamic variant of symbolic execution (DSE), in which a
program is executed using symbolic values in place of con-
crete values for inputs.

Symbolic execution techniques do not scale for large realis-
tic programs because often the number of feasible execution
paths of a program increases exponentially with the length
of an execution path. Since symbolic execution needs to ex-
plore multiple paths of a program it is crucial to attempt
to mitigate this path-explosion problem. The state-of-the-
art in this regard is a technique called state merging [19,
1, 23, 32, 5, 49], whereby the symbolic states obtained from
multiple paths converging at a join point are merged. For ex-
ample, consider the conditional statement “if p then x =

v1 else x = v2”. State merging would execute symbolically
the two branches and at the join point would introduce a new
symbolic value for the merged value of x, say x0. (Such val-
ues are called auxiliary variables [5, 32], to differentiate them
from the input symbolic values.) The symbolic state would
essentially be (x = x0) ∧ ((p ∧ x0 = v1) ∨ (¬p ∧ x0 = v2)).

Part of the motivation for our work is that auxiliary vari-
ables introduce several problems. The most significant one
is that this technique cannot be used if the merged values
(e.g. v1 and v2) are outside the domain of the constraint
solver, such as floating point values, functions as first-class
values, or objects, because the logical formula mentioned
above would not be legal in those cases. For example,
the statement“if p then x = 1.2 else x = function(y)

{ return y+1}” in JavaScript would generate the state (x =
x0) ∧ ((p ∧ x0 = 1.2) ∨ (¬p ∧ x0 =function(y) { re-

turn y+1})) which is not a legal formula if our constraint
solver does not support floating-point number or function
datatypes. Existing symbolic execution techniques often



1 var x = readInput;
2 var z = readInput;
3 var r = readInput;
4 x = 2*x;
5 if (x > 100)
6 if (z == 1)
7 r = 1.3;
8 if (r > 1)
9 z = r - 1;

10 halt

 1. var x = readInput 
 2. var z = readInput 
 3. var r = readInput 
 4. x = 2*x 
 5. if(x > 100) 

6. if(z == 1) 

7. r = 1.3 

8. if(r > 1) 

9. z = r - 1 

halt 

8. if(r > 1) 

9. z = r - 1 

halt halt 

8. if(r > 1) 

9. z = r - 1 

halt halt 

 1. var x = readInput 
 2. var z = readInput 
 3. var r = readInput 
 4. x = 2*x 
 5. if(x > 100) 

6. if(z == 1) 

7. r = 1.3 

8. if(r > 1) 

9. z = r - 1 

halt 

Figure 1: (a) A simple program to illustrate MultiSE; (b) Conventional symbolic execution tree; (c) MultiSE
execution DAG.

deal with such situations by avoiding merging and discard-
ing one of the paths. Furthermore, in the case when the
values being merged are functions (treated as first-class val-
ues), or computed jump labels, and the merged value is in-
voked, the symbolic execution needs to determine where to
continue the execution. These kinds of operations are quite
common in dynamically typed programming languages such
as JavaScript, Python, and Ruby. Existing techniques use
an SMT solver to try to determine what is the set of possible
functions to be invoked.

In this paper we propose MultiSE, a new symbolic exe-
cution framework that achieves state merging without using
auxiliary variables. MultiSE is based on a new representa-
tion of the state where we map each variable, including the
program counter, to a set of guarded symbolic expressions
called a value summary. For our example, the value sum-
mary representation of the example state above would be:
x 7→ {(p, v1), (¬p, v2)}.

Essentially, this representation encodes the fact that the
value of x is equal to v1 if the predicate p holds, and to v2
otherwise. The key idea is to separate the path constraints
from the values of the variables. The path constraint part
(e.g. p and ¬p) of a value summary is restricted to formu-
las within the domain of a constraint solver; however, the
value part (e.g. v1 and v2) in a value summary can be any
symbolic expression or concrete program object including
floating point numbers, functions. While this may seem like
a small change, it has important effects:

1. MultiSE can often carry out the symbolic execution
after a merge even when some of the values being
merged are not supported by the constraint solver,
while conventional state merging would have to drop
some paths. This is true as long as the path constraint
part of the value summary does not involve unsup-
ported value types. The constraint solver is only used
on the path constraint component of the state, e.g.,
to determine unfeasible paths, or to produce satisfy-
ing values for the inputs that enable one particular
path. We show in Section 5 that about half of our
benchmarks would require auxiliary variables of type
other than integer or string if executed with conven-
tional state merging, sometimes in the thousands, for
up to 60% of the state merges; conventional state merg-
ing would have to discard feasible paths at all these
merges, while MultiSE can proceed without dropping
paths.

2. MultiSE can take more often advantage of a common
optimization in symbolic execution: carry out con-
crete computation whenever possible. Since MultiSE
does not introduce auxiliary variables, the values in a
value summary are concrete as long as they are not
data dependent on inputs. In our example, if v1 is
0.1 and v2 is 0.2, and the conditional statement is fol-
lowed by “x = x + 1”, MultiSE would perform the in-
crement operation concretely, and yield the value sum-
mary {(p, 1.1), (¬p, 1.2)} instead of the symbolic state
(x = x0 + 1) ∧ ((p ∧ x0 = 0.1) ∨ (¬p ∧ x0 = 0.2))
where the value of x is computed symbolically. This
optimization could potentially be applied to any data
types such as functions, arrays, floating-point num-
bers, and objects etc; in such cases, we do not need to
worry about unsupported symbolic expressions which
would have arisen had there been auxiliary variables
of these data types.

3. Conventional state merging must scan the entire two
states to be merged at a join point in order to con-
struct the merged state. In contrast, MultiSE uses a
novel algorithm for updating the value summaries as
it processes each instruction and achieves the effect of
merging implicitly and incrementally, even in presence
of unstructured or computed control flow.

We have implemented MultiSE for JavaScript programs
in a publicly available open-source tool1. We use binary
decision diagrams (BDDs) [9] to concisely represent and to
efficiently manipulate path constraints and guards of value
summaries. Our evaluation of MultiSE on several programs
shows that MultiSE can run significantly faster than con-
ventional DSE and achieve more precise state merging than
conventional state-merging techniques.

2. OVERVIEW
We introduce the concepts of conventional symbolic exe-

cution and its state representation informally and then we
describe the main elements of the MultiSE symbolic execu-
tion. We will use the program in Figure 1(a) as a running
example. A statement of the form var v = e; declares and
initializes a variable v with the value of the expression e. The
execution of the statement var x = readInput; receives an
integer input from the environment and assigns it to the
variable x.
1https://github.com/SRA-SiliconValley/jalangi under
the branch symfront.

https://github.com/SRA-SiliconValley/jalangi


2.1 Conventional DSE & State Merging
Dynamic Symbolic Execution (DSE) uses symbolic ex-
pressions for the program variables and memory locations.
These expressions are in terms of fresh symbolic values that
are introduced upon execution of readInput expressions.
DSE executes one path at a time, and it maintains the cur-
rent symbolic state that includes: the program counter, a
mapping of program variables to symbolic expressions, and a
symbolic path constraint φ, which is a quantifier-free propo-
sitional formula over symbolic expressions.

path φ pc x z r

1-5 true 5 2x0 z0 r0

For example, after ex-
ecuting statements 1–4
from our example the

symbolic execution state is as shown on the left, where pc
denotes the program counter, x0, z0, and r0 are the sym-
bolic values introduced for the result of the readInput ex-
pressions in lines 1–3, respectively. Each row in these tables
corresponds to the symbolic execution state of a path.2 In-
formally, for any concrete input values (concrete values for
the symbolic values) that satisfy the path constraint, the
concrete execution on those input values will follow the path
given in the table.

Upon encountering a branch and if both sides of the
branch are feasible, DSE replaces the current symbolic state
with two copies of the state with updated values of pc and
of the path constraints.

At every step, DSE will pick one state from the consoli-
dated state, and will update the values of variables and the
value of the program counter according to the statement at
the program counter for that state.
path φ pc x z r

1-5,8-10 φ1 = 2x0 ≤ 100 ∧ r0 > 1 10 2x0 r0 − 1 r0
1-5,8,10 φ2 = 2x0 ≤ 100 ∧ r0 ≤ 1 10 2x0 z0 r0
1-5,6,8-10 φ3 = 2x0 > 100 ∧ z0 6= 1 ∧ r0 > 1 10 2x0 r0 − 1 r0
1-5,6,8,10 φ4 = 2x0 > 100 ∧ z0 6= 1 ∧ r0 ≤ 1 10 2x0 z0 r0
1-10 φ5 = 2x0 > 100 ∧ z0 = 1 10 2x0 0.3 1.3

Eventually, DSE will finish exploring all states, and will
terminate with the consolidated state shown here, with each
of the five states corresponding to one of the five feasible
paths shown in Figure 1(b).
State Merging techniques identify join points in the
control-flow graph and merge two states by introducing aux-
iliary variables to represent different values for the same vari-
able in the merged states. For example, consider the merge
after the conditionals in line 6 in Figure 1(a). State merg-
ing would execute symbolically the two sides of the condi-
tional and at the join point would introduce a new symbolic
value for the merged value of r, say r1. (Such values are
called auxiliary variables, to differentiate them from the in-
put symbolic values.) The symbolic state would essentially
be (r = r1) ∧ ((2x0 > 100 ∧ z0 = 1 ∧ r1 = 1.3) ∨ (2x0 >
100∧z0 6= 1 ∧ r1 = r0)). This form of traditional state merg-
ing does have the effect of reducing the number of operations
executed symbolically (e.g., the operations that follow the
conditional are executed only once even though they appear
in multiple paths). However, it has the unfortunate effect
that it cannot be used when the values being merged are of
types, e.g., floating point, not supported by the underlying
constraint solver.

2.2 MultiSE Value-Summary Representation
2The path component of the state is shown here for clarity,
but is not explicitly maintained during symbolic execution.

The MultiSE representation of the symbolic execution
state is based on the key observation that by considering
a consolidated view of the execution state, we expose a sig-
nificant opportunity for sharing of path constraints and sym-
bolic expressions.

Consider the final consolidated state of DSE, as shown
above. We can obtain a more compact representation if
we represent it by variables, i.e., by columns. For each
variable, and for each distinct symbolic expression of the
variable, we construct the disjunction of the corresponding
path constraints. For example, for pc the only symbolic
expression is 10 with the disjunction of path constraints
φ1 ∨ φ2 ∨ φ3 ∨ φ4 ∨ φ5 which is equivalent to true. Con-
sequently, we represent the consolidated value of pc as the
pair (true, 10). We call such a pair, a guarded symbolic ex-
pression. For variables that take different symbolic expres-
sions on different paths we represent their value as a set of
pairs, with one pair for every distinct symbolic expression.
We call such a set of guarded symbolic expressions a value
summary. The MultiSE state is a mapping that maps each
variable to a value summary. The path constraints of differ-
ent guarded expressions for a given variable are disjoint and
their disjunction is true. The MultiSE representation of the
final state for our example program is:

{ pc 7→ {(true, 10)}, x 7→ {(true, 2x0)},
z 7→ {(φ1 ∨ φ3, r0 − 1), (φ2 ∨ φ4, z0), (φ5, 0.3)},
r 7→ {(¬φ5, r0), (φ5, 1.3)}, }

(Final State)
A MultiSE final state describes compactly the final values

of all variables in all feasible concrete executions. Given any
assignment of integer input values to the symbolic values
corresponding to the program inputs, exactly one of the path
constraints will hold for each variable. The corresponding
symbolic expression, evaluated at the given program inputs,
gives the value of the variable at the end of the execution of
the program on the given program inputs.

There are several advantages to the MultiSE value-
summary representation. The obvious one is that often
times a state can be represented in a concise form due to
the following three observations:

• if s is a value summary and (φ, v) and (φ′, v′) are any
two distinct elements of s such that v = v′, then we can
replace the two elements with {(φ∨φ′, v)} to obtain the
equivalent value summary s \ {(φ, v), (φ′, v′)} ∪ {(φ ∨
φ′, v)}.

• if (false, v) is an element of a value summary, then
it can be removed from the value summary to get an
equivalent value summary.

• each guard in a value summary can be represented and
manipulated efficiently using a binary decision diagram
(or a BDD).

As we will show in our experiments there is a significant
amount of sharing for the symbolic expressions of variables
among the many execution paths.

The less obvious but more important advantage of value
summary is that this representation achieves a natural form
of state merging, which in turn can reduce dramatically the
number of statements executed symbolically, as we discuss
in the next section and we show experimentally in Section 4.



2.3 MultiSE: Symbolic Execution with Value
Summaries

To illustrate the operation of MultiSE, consider the state
when the symbolic execution has explored all three paths
up to the conditional in line 8. For a conventional DSE the
state would be as shown below.

path φ pc x z r

1-5,8 2x0 ≤ 100 8 2x0 z0 r0
1-5,6,8 2x0 > 100 ∧ z0 6= 1 8 2x0 z0 r0
1-5,6-8 φ5 = 2x0 > 100 ∧ z0 = 1 8 2x0 z0 1.3

This state representation with three separate rows corre-
sponds to the three separate instances of execution paths
ending at the statement at line 8 shown in DSE execution
tree from Figure 1(b).

The corresponding MultiSE value-summary representa-
tion of this state is:

{ pc 7→ {(true, 8)}, x 7→ {(true, 2x0)},
z 7→ {(true, z0)}, r 7→ {(¬φ5, r0), (φ5, 1.3)} }

(Intermediate State 8)
This value summary represents a merge of the three sep-

arate conventional DSE states, corresponding to three sep-
arate executions paths. Continuing with this state allows
MultiSE to evaluate the conditional in line 8 twice (i.e. once
for each value of r in the value summary), instead of three
times for conventional DSE, as shown in the MultiSE exe-
cution DAG (directed acyclic graph) shown in Figure 1(c).

MultiSE symbolic execution first considers the value sum-
mary for the program counter. It picks one of the values,
in this case 8, guarded by the path constraint true, and ex-
ecutes the statement “if (r > 1) ...”. This requires the
computation of the value of the expression r > 1.

The symbolic execution of the expression r > 1 goes over
each guarded expression in the value summary for vari-
able r, applies the operation > on the expression part of
each guarded expression, and computes the value summary
{(¬φ5, r0 > 1), (φ5, true)}. Note that the second guarded
expression for r > 1 contains the symbolic expression“true”,
which is obtained from 1.3 > 1. MultiSE eagerly simplifies
the parts of symbolic expressions that do not depend on
symbolic values. This optimization would often not be pos-
sible in traditional state merging in presence of auxiliary
variables.

Next MultiSE processes the actual conditional statement.
We compute the condition for the computed value of r > 1

to be true, as a disjunction over the guarded expressions in
the value summary for r > 1. We prepend also a conjunc-
tion for the current path constraint (true) as follows:

φ6 = true ∧ ((¬φ5 ∧ r0 > 1) ∨ (φ5 ∧ true))

Therefore, after the execution of the conditional statement
at line 8, in the new state pc maps to the value sum-
mary {(φ6, 9), (¬φ6, 10)}, where ¬φ6 is logically equivalent
to ¬φ5 ∧ r0 ≤ 1, the condition for the computed value of r

> 1 to be false. The value summary representing compactly
both the “then” and the “else” branches can be written as:

{ pc 7→ {(φ6, 9), (¬φ6, 10)}, x 7→ {(true, 2x0)},
z 7→ {(true, z0)}, r 7→ {(¬φ5, r0), (φ5, 1.3)} }

(Intermediate State 9+10)

This value summary represents five paths, three of which
end at line 9 with combined path constraint φ6 after taking
the “then” branch at line 8, and the remaining two paths
end at line 10 with the combined path constraint ¬φ6.

One of the novel aspects of MultiSE is that it performs
incremental state merging at every assignment statement
to obtain a new consolidated representation of states using
value summaries. To illustrate this aspect, we continue with
the above MultiSE state. Say that for the program counter,
MultiSE picks the guarded value (φ6, 9) and executes line 9
next, with the path constraint φ6. First, we symbolically
evaluate the right-hand side of the assignment (r - 1), and
we obtain the guarded value: {(¬φ5, r0 − 1), (φ5, 0.3)}

Since line 9 is guarded by the path constraint φ6, symbolic
execution of the assignment z = r - 1 should only update
the value of z for those paths for which φ6 is true. The value
of z must remain unchanged in the symbolic state for the
other paths. This is achieved by computing the new value of
z using a guarded value-summary union, where we preserve
the previous value of z with the additional guard ¬φ6 (the
negation of the current path constraint) to which we add the
value summary for the right-hand side with the additional
guard φ6. By applying a conjunction of ¬φ6 to the guards of
the current value summary stored in z, we keep unchanged
the portion of the value summary for the other two paths
(whose combined path constraint is ¬φ6).

The value summary for z is: {(¬φ6, z0), (φ6 ∧ ¬φ5, r0 −
1), (φ6 ∧ φ5, 0.3)} which is logically equivalent with the
value summary we have used in (Final State) for the fi-
nal value of z. Finally, the value summary stored in pc
is also updated to {(¬φ6, 10), (φ6, 10)}, which simplifies to
{(true, 10)}. Therefore, after the execution of the statement
z = r - 1 at line 9, the state becomes the same as the (Fi-
nal State).

The above description shows how MultiSE performs incre-
mental state merging at every assignment statement. Note
that in conventional state-merging techniques, at join points,
state merging needs to iterate over the part of the symbolic
state that has been modified by the paths converging at the
join point and merge that part of the state. Identifying the
join points, keeping track of the modified part of the state,
and merging the modified state could pose various imple-
mentation challenges. In contrast, MultiSE does not require
to perform state merging at join points because the MultiSE
state is at all times consolidated over all the paths being ex-
plored.

Every time a new guarded symbolic expression is added to
the value summary for pc , MultiSE invokes a quick BDD
satisfiability check followed by an SMT solver satisfiability
check for the path constraint. This is important in order to
avoid exploring unfeasible paths. For the value summaries
of other variables, only a BDD satisfiability check is used, to
reduce the overall cost of SMT solving, which is a significant
fraction of the overall cost.

2.4 Advantages of MultiSE
Value Summary representation is a powerful way of shar-
ing symbolic expressions and path constraints among differ-
ent paths. This avoids redundant computation and allevi-
ates the path-explosion problem compared to DSE.
Incremental State Merging avoids scanning the two
states to be merged. Conventional state merging techniques
iterate over the part of the symbolic state that has been
modified by the paths converging at the join point and merge
that part of the state. Identifying the join points, keeping
track of the modified part of the state, and merging the
modified state could pose various implementation challenges
which are not present in MultiSE.



Furthermore, all paths share consolidated state in
MultiSE, even for programs where the join points are not
known statically, such as programs with exceptions, or com-
puted control-flow, or for binary programs with unstruc-
tured control-flow where the join points are non-trivial to
compute.
Auxiliary Variables are avoided in MultiSE. This has
three advantages:

1. Execution can proceed even if certain theories are not
supported by the constraint solver.

2. There is no need for expensive constraint solver calls
where conventional state merging introduces auxiliary
symbolic values for functions and subsequently func-
tions denoted by those auxiliary symbolic values are
called.

3. Execution can carry out most operations concretely.

path φ pc x z r

1-5,8 2x0 ≤ 100 8 2x0 z0 r0
1-5,6,8 2x0 > 100 ∧ z0 6= 1 8 2x0 z0 r0
1-5,6-8 φ5 = 2x0 > 100 ∧ z0 = 1 8 2x0 z0 1.3

Existing techniques introduce auxiliary symbolic values to
represent the value of a variable computed along two or more
paths merging at a point. For example, consider the inter-
mediate DSE state (above) of the example program at line 8
where three paths merge.
1. Proceed with Unsupported Theory: The symbolic
expressions for the variable r along the three paths are not
all the same. Conventional DSE stores only one symbolic
expression for each variable. Therefore, conventional state
merging would introduce an auxiliary variable r1 to denote
the value of r, and would add to the path constraint the re-
lationship between r1 and the different symbolic expressions
for r along the merged paths, as:

path φ pc x z r

. . . ,8
(( 2x0 ≤ 100 ∧ r1 = r0)
∨(2x0 > 100 ∧ z0 6= 1 ∧ r1 = r0)
∨(2x0 > 100 ∧ z0 = 1 ∧ r1 = 1.3))

8 2x0 z0 r1

The problem is that the new path constraint containing
the auxiliary variable has a predicate r1 = 1.3. However,
if the constraint solver does not support floating point con-
straints, then symbolic execution cannot merge the paths to
generate a path constraint that is beyond the scope of the
constraint solver.3

In MultiSE, we never introduce auxiliary symbolic val-
ues (See Intermediate State 8 in previous pages). There-
fore, path constraints in MultiSE are always formulas over
the input symbolic values, which we restrict to integer and
string types. Concrete values of data types that are not sup-
ported by the constraint solver remain in the state as con-
crete values guarded by symbolic predicates. This also im-
plies MultiSE can perform more operations concretely than
existing techniques, as demonstrated below.
2. Avoid Constraint Solver Calls: The fact that
MultiSE does not introduce auxiliary symbolic values while
merging paths also helps MultiSE to efficiently handle func-
tion values, which are often first-class objects in dynamic
languages such as JavaScript, Python, and Ruby. We illus-
trate this using the following program:

3The same problems arise if we write the path constraint
using ITE (if-then-else): r1 = ITE(2x0 ≤ 100, r0, ITE(z0 6=
1, r0, 1.3)).

1 var x = readInput;
2 var f, r = 0;
3 if (x > 0)
4 f = function f1() { return 1;}
5 else
6 f = function f2() { return -1;}
7 r = f();

In the program,
x gets an input
from the environ-
ment. Depend-
ing on whether
x>0, f is assigned
the function f1 or f2. Then the function stored in f is called
and the value returned by the call is stored in r.

path φ pc x f r

1-3,4,7 x0 > 0 7 x0 f1 0
1-3,6,7 x0 ≤ 0 7 x0 f2 0

Consider a con-
ventional DSE state
(shown on the left)

with two paths both of which end at line 7.
If we merge the two paths using existing path merging

techniques, then the state becomes:
path φ pc x f r

. . . ,7
((x0 > 0 ∧ f0 = f1)
∨(x0 ≤ 0 ∧ f0 = f2))

7 x0 f0 0

Merging introduces an auxiliary variable f0 and the path
constraint now refers to the function objects f1 and f2. If
we treat f1 and f2 as symbolic references to the two func-
tions, then when symbolic execution executes the statement
r = f() at line 7, it needs to resolve what are the possi-
ble function values that may be invoked. This is typically
done by invoking a constraint solver to find all satisfying
assignments to f0 given the path constraint [5]. Invoking a
constraint solver to obtain all satisfying assignments is ex-
pensive.

MultiSE requires no such constraint solving as it explicitly
stores both f1 and f2 as separate guarded expressions in
the value summary denoted by f. Specifically, the state of
MultiSE will be:

{ pc 7→ 7, r 7→ 0, x 7→ x0, f 7→ {(x0 > 0, f1), (x0 ≤ 0, f2)}}

In this state, and others that follow, we simplify the no-
tation and drop the constraint true from a guarded expres-
sion. Symbolic execution of the statement r = f(); will
then create two paths corresponding to the invocation of
the two functions stored in the value summary denoted by
f. MultiSE’s mechanism of explicitly storing all uninter-
preted objects as values in value summaries allows us to
avoid repeated constraint solver calls.

1 var r = [2]; // array
2 var s = [3]; // array
3 var x = readInput;
4 if (x > 0)
5 t = r;
6 else
7 t = s;
8 t[0] = 4;

3. Concrete Execution:
Keeping the values along dif-
ferent paths separate is very
helpful when dealing with
memory addresses and point-
ers, since it allows MultiSE to
maintain in a natural way the
set of memory addresses that a variable may point to, which
in turn will make it possible to lookup and update memory
addresses directly in many cases. Consider the example pro-
gram to the right of this paragraph.

At each array allocation, MultiSE returns a new concrete
memory address, such as a0 and a1 in this example4, and
keeps value summaries for the value stored at each address
symbol, just as for variables. The MultiSE state before the
store statement in line 8 will be:

{ pc 7→ 8, x 7→ x0, r 7→ a0, s 7→ a1, a0 7→ 2, a1 7→ 3,
t 7→ {(x0 > 0, a0), (x0 ≤ 0, a1)}}

4a0 and a1 are not auxiliary symbolic values. a0 and a1
denote the concrete addresses of the arrays allocated at line 1
and 2, respectively.



Pgm ::= (` : stmt ; )∗

stmt ::= x = c
x = readInput
z = x ./ y
if x goto y
y = ∗x
∗x = y
error
halt

where
V is a set of variables
C is the set of constants and statement labels
A is a set of memory addresses

x, y, z are elements of V
pc an element of V denoting the program counter
c is an element of C ∪A ∪ L
` is an element of L

./ is a binary operator

Figure 2: Syntax of a simple imperative language

When processing the store statement on line 8, MultiSE
will resolve the address being written (t[0]) to either ∗a0 or
∗a1. Thus the value summaries for a0 and a1 are modified
to contain a combination of their previous values and their
values as updated by the store statement. After processing
the store statement on line 8, the state becomes:

{ pc 7→ 9, x 7→ x0, r 7→ a0, s 7→ a1, t 7→ {(x0 > 0, a0), (x0 ≤ 0, a1)},
a0 7→ {(x0 > 0, 4), (x0 ≤ 0, 2)}, a1 7→ {(x0 ≤ 0, 4), (x0 > 0, 3)}}

When x0 > 0, the variable t contains address a0, which is
updated to 4 under this path constraint. In the alternative,
t contains address a1 (updated to 4).

This allows MultiSE value summaries to maintain pre-
cise aliasing information and to perform strong updates and
strong reads, updating and accessing directly the memory lo-
cations that may be involved in the memory operation, with-
out having to resort to encoding constraints for the theory
of arrays. This is in contrast with state merging techniques
that use auxiliary variables. For example, if the value of t

is represented using the auxiliary variable t1, along with the
constraint (x0 > 0 ∧ t1 = a0) ∨ (x0 ≤ 0 ∧ t1 = a1), then
symbolic execution would have to either invoke a solver to
enumerate the possible addresses that t1 refers to, or must
defer the reasoning about the memory operations to a solver
using the theory of arrays. We show in Section 5 that about
half of our benchmarks would require auxiliary variables of
type other than integer or string if executed with conven-
tional state merging, sometimes in the thousands, for up
to 60% of the joins; MultiSE avoids all these problematic
auxiliary variables.

3. ALGORITHM
In this section, we formally describe MultiSE using a sim-

ple programming language.

3.1 Syntax
The syntax of the language is shown in Figure 2. A pro-

gram in the language is a sequence of labelled statements.
We use x = readInput to denote that x gets an input from
the environment. ∗x denotes the memory cell whose address
is stored in x. The language is similar to a simple untyped
assembly language. Objects, references, and functions can

be modeled using memory and memory address arithmetic:
the heap grows from lower address to higher addresses and
the call stack grows from higher address to lower addresses.
Structured and unstructured control-flow, as well as excep-
tions, jump tables, can be modeled using if x goto y with
computed jumps. Variables can be thought as the registers
of the machine. The special variable pc contains the pro-
gram counter and `0 is the label of the first statement of the
program.

3.2 MultiSE Symbolic Execution Semantics
We use the following notations to describe the semantics

of MultiSE execution:

• S is the set of symbolic input values,

• E is the set of all symbolic expressions built using the
binary operators ./ over elements of S, constants C,
addresses A, and labels L,

• F is the set of all propositional logical predicates over
elements of E; we use φ, φ′, φi to denote a predicate
in F ,

• If ` is a statement label, then Pgm (`) returns the
statement in the program whose label is `.

The state of MultiSE is denoted by a mapping for variables
and addresss to value summaries. A value summary is a
set of guarded symbolic expressions, each consisting of a
symbolic predicate along with a symbolic expression:

Σ ∈ (A ∪ V )→ 2F×E

The predicate in a pair of a value summary is called a path
constraint. Note that the program counter is represented as
any other variable, which allows MultiSE to deal naturally
with computed control flow constructs.

A key advantage of using a value summary is that often
times a state can be represented in a concise form due to
the following three observations:

• if s is a value summary and (φ, v) and (φ′, v′) are any
two distinct elements of s such that v = v′, then we can
replace the two elements with {(φ∨φ′, v)} to obtain the
equivalent value summary s \ {(φ, v), (φ′, v′)} ∪ {(φ ∨
φ′, v)}.
• if (false, v) is an element of a value summary, then

it can be removed from the value summary to get an
equivalent value summary.

• each guard in a value summary can be represented and
manipulated efficiently using a binary decision diagram
(or a BDD), which we discuss in detail later in the
paper.

We take advantage of the above simplification rules by
way of a special value-summary union operation. We write
s1 ] s2 for the value summary obtained from the union of
s1 and s2 followed by removing guarded expressions with
guards that are unsatisfiable, i.e. guards that are equivalent
to false, and replacing guarded expressions with the same
symbolic expression with a single guarded expression using
the union of the guards. Note that with an alternative im-
plementation of ] that does not do coalescing of repeated
symbolic expressions we obtain an algorithm that operates
essentially like conventional DSE.



Guarded Update

{(φai , vai )}i ]φ {(φbj , vbj )}j = {(¬φ ∧ φai , vai )}i ] {(φ ∧ φbj , vbj )}j

NextPC

NextPC (Σ, φ, `) = (Σ( pc ) \ {(φ, `)}) ] {(φ, `+ 1)}
Constant

(φ, `) ∈ Σ( pc ) Pgm(`) = (x = c)

Σ −→ Σ[x 7→ Σ(x) ]φ {(true, c)}][ pc 7→ NextPC (Σ, φ, `)]

Symbolic Input
(φ, `) ∈ Σ( pc ) Pgm(`) = (x = readInput ) s is a fresh symbolic value from S

Σ −→ Σ[x 7→ Σ(x) ]φ {(true, s)}][ pc 7→ NextPC (Σ, φ, `)]

Binary Operation
(φ, `) ∈ Σ( pc ) Pgm(`) = (z = x ./ y) Σ(x) = {(φxi , vxi )}i Σ(y) = {(φyj , v

y
j )}j φx./yij = φxi ∧ φ

y
j vx./yij = vxi ./ v

y
j

Σ −→ Σ[x 7→ Σ(x) ]φ {(φx./yij , vx./yij )}ij ][ pc 7→ NextPC (Σ, φ, `)]

Conditional
(φ, `) ∈ Σ( pc ) Pgm(`) = ( if x goto y) Σ(x) = {(φxi , vxi )}i Σ(y) = {(φyj , `

y
j )}j s = {(φxi ∧ vxi ∧ φ

y
j , `

y
j )}ij ] {((φxi ∧ ¬vxi ), `+ 1)}i

Σ −→ Σ[ pc 7→ (Σ( pc ) \ {(φ, `)}) ]φ s
Load
(φ, `) ∈ Σ( pc ) Pgm(`) = (y = ∗x) Σ(x) = {(φxi , vxi )}i Σ(vxi ) = {(φij , vij)}j

Σ −→ Σ[y 7→ Σ(y) ]φ {(φxi ∧ φij , vij)}ij ][ pc 7→ NextPC (Σ, φ, `)]

Store
(φ, `) ∈ Σ( pc ) Pgm(`) = (∗x = y) Σ(x) = {(φxi , vxi )}i Σ(y) = {(φyj , v

y
j )}j

Σ −→ Σ[vxi 7→ Σ(vxi ) ]φ∧φx
i
{φyj , v

y
j )}j)]i[ pc 7→ NextPC (Σ, φ, `)]

Figure 3: Alternative symbolic execution semantics using value summaries

Figure 3 gives the operational semantics of MultiSE sym-
bolic execution as a transition relation between MultiSE
states: Σ −→ Σ′

The execution starts from an initial state that maps each
variable, except pc , to the value summary {(true,⊥)},
where (⊥ denotes the undefined value), and maps pc to
{(true, `0)}, where `0 denotes the first statement label.

The crucial operation used in the definition of the MultiSE
algorithm is s1 ]φ s2, which given two value summaries s1
and s2 computes a value summary that should behave as s1
on paths where ¬φ holds, and as s2 on paths where φ holds.
This function is defined in the rule Guarded Update.

The NextPC defines the function NextPC that is used
to update the value summary for the program counter when
advancing to the next statement. The Constant and Sym-
bolic Input are simple rules that update the value of the
assigned variable and the program counter. As for all assign-
ments, we use the function ]φ to ensure that we represent
the fact that the assignment takes effect only on paths that
satisfy the current path constraint φ.

The rule Binary Operation triggers for a statement of
the form z = x ./ y. The value summary for the right-hand
side is computed by combining each symbolic expression for
the variable x with each symbolic expression for the variable
y.

The Conditional rule is a bit more involved. For a com-
puted jump of the form if x goto y we compute a value sum-
mary s for the possible destination labels, including the cases
when the jump is taken and those when it is not. For the
cases when the jump is taken we consider every combina-
tion of the value summaries for x and y, adding to the path
constraint the condition that the symbolic expression for x
holds. For the cases when the jump is not taken, we con-
sider every guarded expression in the value summary for x,
along with the condition that x is false. Finally, as shown
in the conclusion of the rule, we do a guarded union of this
set with the existing value summary for pc .

The Load rule shows the lookup operation. For the state-

ment y = ∗x, we first consider the value summary for x to
obtain the possible addresses that x refers to. Then, we get
the value summaries for these addresses as the value of ∗x.

The Store rule for statement ∗x = y also considers first
the value summary for x to obtain the possible addresses
being written. Each of these addresses is updated with the
value summary for y. Note the guard φ∧ φxi in the guarded
update for the address vxi , to model accurately the condition
under which vxi should be updated.

3.3 Approximation in MultiSE
There are several situations when MultiSE may need to

approximate a concrete execution, in the sense that not all
concrete execution paths will be represented in the symbolic
state.

First, if the program contains a loop or a recursive func-
tion, and the loop termination condition or the recursion
base case are input dependent, then MultiSE symbolic ex-
ecution could run forever. In such cases we may want to
stop the symbolic execution after a certain number of iter-
ations. This is a typical problem with any kind of symbolic
execution. This can be handled in MultiSE by simply drop-
ping guarded symbolic expressions from the value summary
of the program counter, e.g., when a label has been visited
more than a certain number of times.

Second, it is possible for MultiSE to generate a symbolic
expression that is outside the scope of the theories supported
by the associated SMT solver, e.g., a product of symbolic ex-
pressions (if we assume that the associated SMT solver can-
not handle non-linear arithmetic). Consider, for example,
the following MultiSE state:

{ pc 7→ {. . . , (φ, `), . . .},
x 7→ {(φx, 2), (¬φx, x0)}, y 7→ {(φy, 3), (¬φy, y0)}}

This state suggests that the variables x and y have been
initialized with constants on some paths and with readIn-

put on other paths. The label `, pointing to statement z

= x * y, is reached under path constraint φ. When evalu-
ating the binary expression x * y under path constraint φ,



MultiSE combines the symbolic expressions from the value
summaries of x and y, and one of the resulting guarded ex-
pressions will be (¬φx ∧ ¬φy, x0 ∗ y0). If we assume that
non-linear arithmetic is not supported by our SMT solver,
MultiSE approximates it as follows. First, we find a satis-
fying assignment for φ ∧ ¬φx ∧ ¬φy, from which we extract
a possible concrete value for x, e.g., x0 = 5. At this point
we approximate by dropping from further consideration the
concrete paths where φ∧¬φx∧¬φy ∧x0 6= 5. We do this by
refining the path constraint for pc to φ∧(φx∨φy∨x0 = 5),
to obtain the following MultiSE symbolic state:

{ pc 7→ {. . . , (φ ∧ (φx ∨ φy ∨ x0 = 5), `+ 1), . . .},
z 7→ { (φx ∧ φy, 3), (φx ∧ ¬φy, 2y0),

(¬φx ∧ φy, 3x0), (¬φx ∧ ¬φy ∧ x0 = 5, 5y0)} . . .}

This sort of simplification allows MultiSE to make
progress and get around the limitations of the underlying
SMT solver. When such an approximation happens, we set
a flag incomplete to true indicating that MultiSE cannot
guarantee full coverage of the code. This approach has the
same end result as the simplification approach proposed in
DART [20]. In DART, there was no need to use an SMT
solver to find a concretization because DART could read the
concrete value of v from the concrete execution.

3.4 Soundness of MultiSE
There are two correctness results that hold for MultiSE,

which we summarize informally:

• Soundness and completeness w.r.t. DSE: The final
symbolic state of MultiSE encodes exactly the same
set of behaviors as the final symbolic state of DSE.

• Soundess w.r.t. concrete executions: Any program be-
havior encoded in the final symbolic state of MultiSE
corresponds to a concrete program behavior, and

The first correctness result follows from the fact that the
effect of DSE can be obtained by changing the implementa-
tion of ] in MultiSE: in DSE we do not merge guarded ex-
pressions in ], whereas in MultiSE we do. Value summaries
obtained from the two implementations of ] are logically
equivalent. The second correctness result follows from the
first correctness result and the fact that DSE is sound with
respect to concrete executions. We note also that the only
reason completeness does not hold w.r.t. concrete execu-
tions is due to the approximations discussed in Section 3.3.
Those approximations drop concrete paths from the sym-
bolic representation. However, the paths that are kept are
still faithfully represented in the symbolic state.

4. IMPLEMENTATION
We have implemented a prototype framework for MultiSE

execution for JavaScript using the Jalangi framework [43]
and we made it publicly available at https://github.com/

SRA-SiliconValley/jalangi in the branch symfront under
Apache 2.0 open-source licence. We chose JavaScript for
prototyping because we are actively developing a symbolic
execution engine for JavaScript in our Jalangi dynamic anal-
ysis framework [43]. The simple interface of the Jalangi’s
symbolic execution engine enabled us to quickly prototype
MultiSE for JavaScript. Furthermore, being a dynamically-
typed language, JavaScript made it convenient for the in-
strumentated program to carry symbolic expressions in place
of the concrete values, without having to worry about static

typing errors. We use CVC3 [6] for constraint solving, to
handle the theory of integer linear arithmetic and strings
(with append, length, equality check, parseInt, and regular
expression matching).

4.1 Using BDDs To Represent Guards
We use binary decision diagrams (BDDs) to compactly

represent Boolean formulas over Boolean variables. If we
need to check if a guard or a path constraint φ is satisfiable,
we first check if its BDD representation is not false and then
we replace each Boolean variable in the formula by its cor-
responding symbolic predicate and check the satisfiability of
the resulting formula using an SMT solver. The ordering on
the Boolean variables in a BDD is the same as the order in
which they are created. We noticed that the use of BDDs
helped us to efficiently maintain and manipulate the guards.
For example, in our experiments (see Section 5), on an aver-
age we spend less than 10% of total execution time in BDD
manipulation, whereas over 85% of total execution time is
spent in SMT solving.

Every time a new guarded symbolic expression is added
to the value summary for pc , we invoke a quick BDD satis-
fiability check followed by an SMT solver satisfiability check
for the path constraint. This is important in order to avoid
exploring unfeasible paths. For the value summaries of other
variables, only a BDD satisfiability check is used, to reduce
the overall cost of SMT solving. During both MultiSE and
DSE execution we generate an input for each satisfiable SMT
solver call made by the respective techniques at a condi-
tional statement. We generate inputs only at conditional
statements because one of the key goals of symbolic execu-
tion is to generate a set of inputs that give maximal branch
coverage. Generating inputs that forces program execution
along both branches of a conditional statement ensures that
we maximize branch coverage for the particular conditional
statement.

5. EVALUATION
We ran experiments with the prototype implementation of

MultiSE to: (1) measure the effectiveness of sharing in the
value summary representation in MultiSE, and the total cost
of symbolic evaluation and how much of it is due to BDD
or to SMT solver calls; (2) estimate the performance gains
in MultiSE compared to conventional DSE; (3) estimate the
increase in the number of precise state merges compared to
conventional state merging, due to the MultiSE’s ability to
merge even states involving non-integer variables.

For the evaluation we ran MultiSE on test harnesses cre-
ated for publicly available JavaScript libraries. We create
a symbolic test harness for a library by calling sequentially
the methods of the library (possibly with repetitions) with
inputs marked as readInput. Even if the tested library is
small, the execution trees can be quite large if the test har-
nesses contain multiple invocations. The need to construct
a test harness is the limiting factor for performing more ex-
periments.

The experiments were performed on a laptop with 2.3 GHz
Intel Core i7 and 16 GB RAM, and we averaged the timing
measurements over several runs.

The first set of columns in Table 3.4 (with header “Mul-
tiSE”) show the relative cost of the various aspects of
MultiSE. The “Total time” column reports the total run-
ning time of MultiSE in seconds, and the columns “BDD
time” and “Solver time” report the percentage of time spent

https://github.com/SRA-SiliconValley/jalangi
https://github.com/SRA-SiliconValley/jalangi


Table 1: Results: DSE vs MultiSE vs Conventional State Merging (CSM)

Test LOC
MultiSE DSE/ MultiSE ratio Improvement over CSM

Total
time
(s)

BDD
time
(%)

Solver
time
(%)

Avg.
value
summ.
size

Avg.
value
summ.
sharing
factor

Time
ratio
(×

speedup)

# of
oper-
ations
ratio

Solver
time
ratio

Avg.
solver
call
time
ratio

CSM
precise
merges
(%)

MultiSE
precise
merges
(%)

MultiSE
merges

Find Max 32 5.0 1.2 97.9 1.9 23.0 10.0 28.7 9.9 0.8 100 100 102
Kadane Subarray 38 6.5 1.0 98.4 2.4 3.2 2.7 6.9 2.6 0.9 100 100 78
Array Index 56 11.7 5.3 93.4 9.1 9.1 3.7 3.3 3.9 0.9 100 100 478
Calc Parser 66 35.5 8.9 90.2 20.4 9.8 1.6 2.8 1.6 1.0 100 100 898
Stack 81 0.6 6.2 89.0 2.4 7.7 26.2 9.1 29.2 1.2 58 100 106
Queue 85 0.3 0 93.1 1.0 5.4 6.7 4.2 7.2 1.1 100 100 106
Heap Sort 87 4.0 1.5 96.7 1.7 5.6 2.5 8.5 2.5 1.0 100 100 274
Quick Sort 93 15.1 4.6 94.6 3.6 7.1 2.6 3.7 2.7 3.0 100 100 332
PL/0 Parser 135 246.4 18.7 80.4 29.3 45.8 1.3 2.7 1.2 0.9 100 100 5936
Linked List 148 2.5 3.6 95.1 2.8 5.3 11.1 5.1 11.6 0.9 43 100 218
Priority Queue 190 0.9 3.2 92.3 1.2 31.5 87.7 47.5 94.5 1.3 90 100 100
Binary Search Tree 386 6.5 2.4 96.6 2.4 9.4 7.3 5.6 7.4 0.9 22 100 240
Symbolic Arithmetic 475 1.5 9.1 82.3 1.8 39.3 49.3 34.0 51.4 40.4 72 100 592
BDD 623 6.2 68.2 19.6 2.5 6.4 7.5 5.4 29.6 24.3 41 100 26724
Red Black 1061 37.1 11.3 88.0 3.5 43.6 6.5 8.8 7.1 0.7 42 100 1878

in BDD manipulation and in SMT solving running time, re-
spectively. We observe that even though MultiSE involves
numerous boolean predicate constructors, the overall time
spent in the BDD library is negligible. The SMT solver
time takes most of the time. Compared to the SMT time,
the time actually spent in interpreting statements and con-
structing symbolic expressions is also very small.

The column “Avg. value summ. size” reports the cardi-
nality of the value-summary set, averaged over all variables
during the execution of MultiSE. We observe that in many
cases the value summaries are small (between 1 and 30).
The smaller the size of a value summary, the more efficient
it is to perform an operation on the value summary. This
is especially true for statements that involve multiple vari-
ables, such as binary operations and conditionals, where we
need to process all combinations of the value summaries in-
volved. The effectiveness of the value summary technique
is shown in the “Avg. value summ. sharing factor”. This
column contains the ratio between the number of paths to
a point in the program and the size of the value summary,
averaged over all variables and all program points. Recall
that the size of a value summary is given by the number
of distinct symbolic values for a variable at a point in the
program. Our experiments show that the distinct values are
shared on average between 3 to 45 paths. This validates our
premise that there is a significant opportunity for a repre-
sentation based on sharing as a value summary, instead of
performing the computations for each path independently,
as in conventional DSE.

The second set of columns in Table 3.4 (with header
“DSE/MultiSE ratio”) show how much value-summary
based symbolic execution improves over conventional DSE.
We point out that in our implementation of MultiSE we
can obtain the conventional DSE behavior by turning off
compacting of value summaries. Recall that if s is a value
summary and (φ, v) and (φ′, v′) are any two distinct ele-
ments of s such that v = v′, then we can merge the two
elements as {(φ∨φ′, v)} to obtain the equivalent value sum-
mary s \ {(φ, v), (φ′, v′)} ∪ {(φ ∨ φ′, v)}. If we do not merge
guards, we get conventional symbolic execution (DSE). At
the end of conventional symbolic execution pc maps to a
value summary where for each feasible path we have a state-
ment label guarded by the path constraint for the path. We

use this methodology to compare MultiSE and DSE.
In the “Time ratio” column we show how much more time

it takes to run DSE compared to MultiSE. We observe a
significant speedup, between 1.3× and up to 87×. This
speedup is due to two related factors. First, DSE performs
a lot more operations than MultiSE because it processes
statements following a join multiple times, as shown in the
“# Operations ratio”. This column shows how many more
operations DSE has to perform compared to MultiSE. Note
that for each statement processed by MultiSE we count as
many operations as the size of the value summary at that
statement. Second, DSE spends significantly more time in
SMT solver calls, as shown in “Solver time ratio” (DSE/-
MultiSE). Finally, the column “Avg. solver call time ratio”
shows the ratio between the average duration of a call to the
SMT solver in DSE vs. MultiSE. We present this number to
show that even in the face of more complicated constraints
in MultiSE the cost of an individual SMT call is not higher.
The real problem is the higher number of SMT calls that
DSE must make.

The right-hand side of Table 3.4 (with header“Improve-
ment over CSM”) estimates the increased effectiveness of
MultiSE compared to conventional state merging (CSM). As
discussed before, CSM techniques based on auxiliary vari-
ables cannot merge two states where variables of types other
than integer or string have to be merged, because this would
require introducing an auxiliary variable with constraints
that cannot be handled by most SMT solvers. Therefore,
conventional state-merging techniques would avoid those
merges by dropping paths. To estimate the increased pre-
cision in MultiSE we modified MultiSE to count the total
number of merges, and also the merges with value summaries
that include entries for variables of non-integer types. In
our JavaScript experiments these include variables contain-
ing floating-point values, objects, or function closures. The
column “# of merges” shows the total number of merges
performed, and the column “CSM precise merge” shows the
percentage of those merges that conventional state merging
can perform precisely. We note that MultiSE never intro-
duces auxiliary variables and can proceed along all paths
even when dealing with variables of types not supported by
the constraint solver, which is why we show the value 100%
in the column “MultiSE precise merge”.



6. RELATED WORK
Recently several techniques for state merging [19, 1, 46,

23, 32, 5, 49] have been proposed to tackle the path-
explosion problem. Dynamic state merging [32] merges state
opportunistically so that the resulting path constraints do
not stress the underlying constraint solver. MergePoint [5]
alternates between path-based exploration of DSE and state-
merging based exploration of static symbolic execution.
State merging is only performed for code that does not con-
tain system calls, indirect jumps, or other statements that
are difficult to reason about precisely. Both of these tech-
niques introduce auxiliary symbolic values and cannot merge
states when there are unstructured control-flow and opera-
tions that introduce outside-theory constraints over auxil-
iary symbolic values. Rossette [49] also does state merg-
ing and manages to avoid some of the auxiliary variables.
Rosette’s state merging happens at join points and is type-
based where two data-structure values, such as two lists
having same length, are merged recursively to further com-
pact the merged state. Recursive merging of data-structure
values only works for immutable data-structures and can-
not be applied to get state compaction in mutable data-
structures used in imperative languages. Sinha [46] uses ITE
(if-then-else) expressions for merging symbolic expressions
at join points. Generated expressions usually have nested
ITE expressions and are simplified using rewriting rules.
Value summaries are similar to ITE expressions; however,
in MultiSE there is no need for simplification as we perform
explicit symbolic execution with the values in an ITE expres-
sion. This makes sure that we never encounter any nested
ITE expressions. SMART [19] performs compositional test
generation by computing summaries of all program func-
tions. The summary of a function is computed by exploring
all paths of the function using DSE and then by merging
the symbolic states of those paths via symbolic auxiliary
variables. For real programs, SMART can generate func-
tion summaries that are outside the theories that can be
handled by an SMT solver. In such situations, it simplifies
the summaries at the cost of completeness. Demand-driven
compositional symbolic execution [1] was subsequently pro-
posed to incrementally construct partial summaries to avoid
analyzing unnecessary paths in functions. SMASH [23] in-
corporates both symbolic execution summaries (must sum-
maries) and static analysis summaries (may summaries).
SMASH performs reachability analysis to reason about pos-
sible buggy program states and to prune out group of un-
interesting execution paths. All the above three techniques
inherit the same limitation: they introduce auxiliary sym-
bolic values at function interfaces. Therefore, they can rea-
son about a function precisely only if the function’s behavior
can be captured by the given decidable theories.

Another line of work [50, 27, 35, 28, 7, 34, 13] tries to
mitigate the path-explosion problem by pruning out redun-
dant or unnecessary executions. Most of these techniques
are orthogonal to compositional reasoning and state merg-
ing. A subset of these techniques avoid redundant execu-
tions by checking whether the current symbolic program
state has been visited before. JPF [50] first uses state
matching to avoid redundant state exploration. Kuznetsov
et al. [32] implemented the similar idea to analyze C pro-
grams. Boonstoppel et al. [7] uses read and write sets to
relax state matching condition. McMillan [35] proposed
the idea to store interpolants as a generalization of visited

states and to check inclusion instead of exact state match-
ing. Tracer [28, 27], a symbolic execution engine targeting
C programs, proposes to use interpolants to mitigate the
path explosion problem by subsuming paths that can be
proved to be safe. Another subset of these techniques try
to decompose the program execution space into a number
of independent sub spaces. For example, Majumdar and
Xu [34] and Chakrabarti and Godefroid [13] applied pro-
gram slicing ideas to cluster the program execution space.
Recently, Santelices et al. [40], Qi et al. [37], Godefroid et
al. [21], and Yang et al. [53] suggested incremental symbolic
execution techniques to reduce the cost of regression testing
of gradually evolving programs.

Function summaries [45, 38] have been used extensively
in static program analysis. Graph-reachability based anal-
ysis [38], constraint-based analysis [52, 26], pointer analy-
sis [51, 14], alias analysis [18], shape analysis [31], separation
logic [12, 24], and abstract interpretation [39, 8] have incor-
porated function summaries for scalability. More recently,
Gulwani et al. [25] and Yorsh et al. [54] investigated a general
framework for summary-based static analysis. In general,
function summaries in static analysis use interface symbolic
values at function boundaries. Summaries are instantiated
by replacing interface variables with real variables at call
sites. Therefore, static analysis faces the same problem: a
function behavior can be captured precisely only if it can be
described in underlying decidable theories. However, this
is not a serious limitation for static analysis because sum-
maries can always be over approximated. Dynamic symbolic
execution cannot over approximate a summary since over-
approximation leads to loss of soundness.

Saturn [52] is one of the most closely related static anal-
ysis techniques. For intra-procedural analysis, Saturn and
MultiSE have a number of commonalities: both perform
symbolic execution, use guarded values to track values in
a path sensitive manner, and maintain a path constraint.
However, Saturn introduces fresh symbolic variables at func-
tion interfaces and updates guards of values at join points.
MultiSE, in contrast, never introduces auxiliary symbolic
values and performs join at every assignment to maintain
a consolidated state throughout the execution. Guarded
value flow analysis [15] is another closely related work. It
performs value flow analysis using both path constraints
and guards on values. Value can flow from a source to a
sink if the conjunction of the guard on a value at the sink
and the path constraint at the sink is satisfiable. However,
the technique computes path constraint and guards on de-
mand, while MultiSE performs symbolic execution to obtain
guarded values at every execution point.

In general, one of the biggest advantages of static anal-
ysis techniques using summaries is that they can over-
approximate a summary if it falls outside the scope of de-
cidable theories; dynamic symbolic execution cannot over-
approximate because it needs to know the exact path con-
straint for test generation.
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