
1

Prof. Necula CS 294-4 Lecture 1 1

Techniques for Automated Deduction

CS 294-4
Lecture 1

Prof. Necula CS 294-4 Lecture 1 2

Course Administration

• Please write down your name, email address

• Time: Tuesday, Thursday 3:30-5:00pm
• Office hours: Monday 9-11am + by appt.

• Web page:
http://www.cs.berkeley.edu/~necula/autded

2

Prof. Necula CS 294-4 Lecture 1 3

Automated Deduction: Historical Perspective

• Automated deduction
= logical deduction performed by machine
• As simple as type checking or as complex as proving

mathematical conjectures
• At the intersection of several areas

– Mathematics: original motivation and techniques
– Logic: the framework and the meta-reasoning techniques
– Computing theory: decidability and complexity results

• One of the most advanced and technically deep fields
of computer science
– Some results as much as 75 years old
– Automation efforts are about 40 years old

Prof. Necula CS 294-4 Lecture 1 4

Applications

• Software/hardware productivity tools
– Hardware and software verification (i.e. debugging)
Ø An extension of type checkers

• Security checkers
– Security protocols

• Automatic program synthesis from specifications
– Constraint-based programming
– Using formal methods to select components from a library

• Discovery of proofs of conjectures
– A conjecture of Tarski was proved by machine (1996)
– There are effective geometry theorem provers

3

Prof. Necula CS 294-4 Lecture 1 5

Program Verification

• Fact: mechanical verification of software would
improve software productivity, reliability, efficiency

• Fact: such systems are still in experimental stage
– After 40 years !
– Research has revealed formidable obstacles
– Many believe that program verification is dead

Prof. Necula CS 294-4 Lecture 1 6

Program Verification

• Myth:
– “Think of the peace of mind you will have when the verifier

finally says “Verified”, and you can relax in the
mathematical certainty that no more errors exist”

• Answer:
– This is not the purpose of PV.
– We use PV to find bugs,
– We should change “verified” to “Sorry, I can’t find
more bugs”

– Just like we use type-checkers
– Think of PV and stronger (and harder) type checking

4

Prof. Necula CS 294-4 Lecture 1 7

Program Verification

• Fact:
– Many logical theories are undecidable or decidable by super-

exponential algorithms
– There are theorems with super-exponential proofs

• Answer:
– Such limits apply to human proof discovery as well
– If the correctness of program P is huge then how did the

programmer find it?
– We only want machines to find proofs that humans can find
– Theorems arising in PV are usually shallow but tedious

Prof. Necula CS 294-4 Lecture 1 8

Program Verification

• Opinion:
– Mathematicians do not use formal methods to develop proofs
– Correctness of a theorem is established by a social process
– Why then should we try to verify programs formally

• Answer:
– We are not looking for proofs from first principles
– Compare the statements

• Show that the area bounded by y=0, x=1 and y=x2 is 1/3
• Show that by splicing two circular lists we obtain another

circular list with the union of the elements
– In programming, we are often lacking an effective formal

framework for describing and checking results

5

Prof. Necula CS 294-4 Lecture 1 9

Program Verification

• Fact:
– Verification is done with respect to a specification
– Is the specification simpler than the program
– What if the specification is not right

• Answer:
– Indeed, there usually are as many bugs in the specification as

in the program
– Still redundancy turns many bugs into inconsistencies
– We are interested in partial specifications

• An index is within bounds
• A lock is released

• Discovering specifications is harder than proving their
correctness !

Prof. Necula CS 294-4 Lecture 1 10

Coursework

• Attend lectures
• Course Project
• A few homeworks (?)
• Prepare 40 minute lecture

– Temporal logic, linear logic, belief logics, BDDs, arithmetic
decision procedures

• Please register
– For grade: must do project
– For S/U: no project

• Course can be used for software breadth req.

6

Prof. Necula CS 294-4 Lecture 1 11

Course Project

• Develop an automatic theorem prover
– Use Nelson-Oppen cooperating decision procedures
– We’ll be able to mix-and-match decision procedures
– Example: equality + arithmetic. Prove the unsatisfiability of:

f(f(x) - f(y)) ≠ f(z) x ≤y y + z ≤x 0 ≤z

false

f(x) = f(y)

y ≤x
x = y

0 = z
f(x) - f(y) = z

Prof. Necula CS 294-4 Lecture 1 12

Course Project (II)

• We develop together the core of the theorem prover
• Each group develops a decision procedure

– Example: arithmetic, equality, typing, etc.
– Range from 400 lines to 2000 lines
– Groups of 2-3

• In Objective CAML (dialect of ML)
– Will give tutorial if needed
– Will provide infrastructure (pretty printing, etc.)

• Test cases:
– Proof-carrying code for Java type safety
– Translation validation of GCC

7

Prof. Necula CS 294-4 Lecture 1 13

Course Overview

Meets spec/Found Bug

• Focus on automated deduction for software debugging

Verification
condition

Program

Specification

Semantics

VC
generation

Validity

Provability

Prof. Necula CS 294-4 Lecture 1 14

Course Overview (II)

• We will discuss fundamentals of logic
– Propositional calculus

• Syntax
• Semantics
• Deduction systems
• Automated proof methods

– Variations: classical, intuitionistic, modal
– First-order logic

• Same structure
• And we will discuss theories + decision procedures

– Arithmetic, equality, arrays, linked data structures

8

Prof. Necula CS 294-4 Lecture 1 15

Course Overview (III)

• For all proof methods we will explore strategies for
proof generation

• Advantages of proof generation
– No more trusting of theorem provers
– Helps debug the theorem prover
– Produce proof-carrying code

• Challenges of proof generation
– Many decision procedures do not follow directly an

axiomatization
– Proofs are produced by “coding the correctness argument”

for the decision procedure

Prof. Necula CS 294-4 Lecture 1 16

Course Overview (IV)

• The hardest part of program verification is invariant
generation

• Any systematic method for generating (correct)
invariants induces a method for proving invariants

• We will look at several methods
– Abstract interpretation
– Induction iteration

9

Prof. Necula CS 294-4 Lecture 1 17

An Imperative Programming Language

• Syntax:
– L-values

L ::= x | *E
– Expressions:

E ::= L | n | E1 + E2 | E1 = E2 | E1 ≥ E2 | …
– Commands:

C ::= skip | C1; C2 | let x = E in C | L := E |
if E then C1 else C2 | while E do C |
L := f(E1,… ,En) | return E

– Programs:
P ::= sequence of f(x1,… ,xn) = C

Prof. Necula CS 294-4 Lecture 1 18

Programming Language Notes

• Simple variables with integer and pointer values
• Only structured control flow (no goto)
• No constructs for allocation/deallocation of locations
• Call-by-value semantics
• Return values by assignment to special variable

– As in Pascal, Visual Basic

10

Prof. Necula CS 294-4 Lecture 1 19

Operational Semantics

• Values (results of evaluating expressions):
V ::= n (integer literals)

| a (addresses)
• A command changes the evaluation state
• State: two components

– Environment: a mapping from local variables to values
ρ : Var → Value

– Store: a mapping from addresses to values
σ : Addr → Value

Prof. Necula CS 294-4 Lecture 1 20

State Manipulation

• Accessing state
ρ(x) - the value of variable x in the environment ρ
σ(a) - the content of store σ at index n

• Updating state: changes the environment or the store
– ρ[x := v] - an environment like ρ but with x mapped to v
– σ[*a := v] - a store like σ but with a mapped to v

11

Prof. Necula CS 294-4 Lecture 1 21

Evaluation of Expressions

Prof. Necula CS 294-4 Lecture 1 22

Evaluation of Commands (I)

12

Prof. Necula CS 294-4 Lecture 1 23

Evaluation of Commands (II)

Prof. Necula CS 294-4 Lecture 1 24

Evaluation of Commands (III)

13

Prof. Necula CS 294-4 Lecture 1 25

Evaluation of Commands (IV)

Prof. Necula CS 294-4 Lecture 1 26

Evaluation of Commands (V)

