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Review - Operational Semantics

• We have an imperative language with pointers and 
function calls

• We have defined the semantics of the language
• Operational semantics

– Relatively simple
– Not compositional
– Adequate guide for an implementation
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More Semantics

• There is also denotational semantics
– Each program has a meaning in the form of a mathematical 

object
– Compositional
– More complex formalism

• e.g. what are appropriate meanings ?
• Neither is good for arguing program correctness
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Axiomatic Semantics

• Usually consists of
– A language for making assertions about programs
– Rules for establishing when assertions hold

• Typical assertions
– This program terminates with x = 0
– If this program terminates, variables x and y have the same 

value
– Throughout the execution, all pointers dereferenced are non-

null
• Axiomatic semantics is equivalent in expressiveness 

with other forms of semantics
– Sound and complete
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Languages for Assertions

• A specification language
– Must be easy to use and expressive (conflicting needs)
– Must have 

• Syntax: how to construct assertions
• Semantics: what assertions mean 

• Typical examples
– Extensions of first-order logic
– Temporal logic (used in protocol specification, hardware 

specification)
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State-Based Assertions

• Assertions that characterize the state of the 
execution
– Recall: state = state of locals + state of memory

• Our assertions will need to be able to refer to 
– Variables
– Contents of memory

• What are not state-based assertions 
– Variable x is live 
– Lock L will be released
– There is no correlation between the values of x and y
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An Assertion Language

• We’ll use a fragment of first-order logic first
Formulas  P ::= A | T | ⊥ | P1 ∧ P2 | ∀ x.P | P1 ⇒ P2 | 
Atoms     A ::=   E | f(A1,… ,An) | E1 ≤E2 | E1 = E2 | …

• All boolean expressions are atoms
• We can also have an arbitrary assortment of function 

symbols
– ptr(E,T)      - expression E denotes a pointer to T
– E : ptr(T)    - same in a different notation
– reachable(E1,E2)  - list cell E2 is reachable from E1
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Handling Memory State

• We want our assertion language to have a 
compositional semantics
– If E1 = E2 then for any context Ctx we want Ctx[E1] = Ctx[E2] 
– Thus we have cannot have side effects in assertions

• We model the state of memory as a mapping from 
addresses to values
– If E denotes an address and M a memory state then sel(M,E)

denotes the contents of memory cell 
– If E denotes an address and V a value then upd(M,E,V)

denotes a new memory state obtained from M by writing V at 
address E
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More on Memory

• We allow variables to range over memory states
– So we can quantify over all possible memory states 

• And we use the special pseudo-variable µ in assertions 
to refer to the current state of memory

• Example:

∀ i. i ≥ 0 ∧ i < 5 ⇒ sel(µ, A + i) > 0

says that entries 0..4 in array A are positive
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Semantics of Assertions

• An assertion can hold or not in a given state
– Equivalently, an assertion denotes a set of states

• We write ρ,σ ||-- P to say that assertion P holds in 
state ρ,σ
– Implies that all variables in P are defined in ρ

• We define the ||-- judgment inductively 
• And we rely on the semantics of expressions 
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Semantics of Assertions
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Semantics of Memory Expressions

• We need a new kind of values (memory values)
Values v ::= n | a | σ
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Partial Correctness Assertion

{A} c {B}  means that 
– Whenever we start the execution of c in a state that 

satisfies A, the program either does not terminate or it 
terminates in a state that satisfies B 

• Formally:
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Total Correctness Assertion

[A] c [B]  means that 
– Whenever we start the execution of c in a state that 

satisfies A the program does terminate in a state that 
satisfies B 

• Formally:
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Why Aren’t We Done Yet ?

• Now we can assert things about programs
• But the only way to check them is to 

– Start the program in a state that satisfies the precondition
– Evaluate the program and get the final state
– Verify the postcondition

• This is called testing
• Not enough

– We cannot start the program in all states that satisfy the 
precondition

– If the program is non-deterministic we cannot find all the 
final states

– We cannot verify the postcondition in general
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Derivation Rules

• We write |-- {A} c {B} when we can derive (prove) the 
partial correctness assertion
– We wish that ||-- {A} c {B} iff  |-- {A} c {B}

• We write |-- A when we can derive (prove) the 
assertion A
– We wish that  (∀ ρσ. ρ,σ ||-- A)   iff    |-- A
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Derivation Rules for Assertions

• We also need rules for literals
• Those are part of various theories that extend first-

order logic
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Hoare Rules
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Hoare Rules: while

• The rule for while is not syntax-directed
– It requires a loop invariant
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Hoare Rules: Assignment

• Example:    { A } x := x + 2 {x >= 5 }. What is A?
• General rule:

• A is   “*y = 5 or x = y” 
• How come the rule does not work?

• Surprising how simple the rule is !
• Try { A } *x = 5 { *x + *y = 10 }
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Hoare Rules: Side-Effects

• To correctly model store to memory we must use 
memory expressions

• We also have some axioms for the theory of memory 
expressions
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Loop Example

• Want to derive that
|-- {x <= 0} while x <= 5 do x := x + 1 { x = 6 }

• Then, by rule of consequence we get the conclusion
• Note, it was crucial to “invent” the loop invariant
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GCD Example
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GCD Example (2)

• Crucial to select
– Precondition, postcondition and loop invariant
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GCD Example (3)
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GCD Example (4)
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GCD Example (5)

Prof.  Necula  CS 294-4  Lecture 2 28

GCD Example (6)

• The above can be proved by realizing that
gcd(x,y)  = gcd(x-y,y)

• Q.e.d.
• This completes the proof
• We used a lot of arithmetic
• We had to invent the loop invariants


