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n  Kalman Filter = special case of a Bayes’ filter with dynamics model and 
sensory model being linear Gaussian: 

n  Above can also be written as follows:  

Overview 

2 -1 

Note: I switched time indexing on u to be in line with typical control community conventions (which is 
different from the probabilistic robotics book). 
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Time update 

n  Assume we have current belief for           : 

n  Then, after one time step passes: Xt+1 Xt 

n  Now we can choose to continue by either of  

n  (i) mold it into a standard multivariate Gaussian format so 
we can read of the joint distribution’s mean and covariance 

n  (ii) observe this is a quadratic form in x_{t} and x_{t+1} in 
the exponent; the exponent is the only place they appear; 
hence we know this is a multivariate Gaussian.  We directly 
compute its mean and covariance.  [usually simpler!] 

Time Update: Finding the joint 
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n  We follow (ii) and find the means and covariance matrices in 

Time Update: Finding the joint 

[Exercise: Try to prove each of these 
without referring to this slide!] 

Time Update Recap 

n  Assume we have 

n  Then we have 

n  Marginalizing the joint, we immediately get 

Xt+1 Xt 
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Generality! 

n  Assume we have 

n  Then we have 

n  Marginalizing the joint, we immediately get 

W V 

Observation update 

n  Assume we have: 

n  Then: 

n  And, by conditioning on                 (see lecture slides on 
Gaussians) we readily get: 

Zt+1 

Xt+1 
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n  At time 0:  

n  For t = 1, 2, … 

n  Dynamics update: 

n  Measurement update: 

n  Often written as: 

Complete Kalman Filtering Algorithm 

(Kalman gain) 

“innovation” 

10 

Kalman Filter Summary 

n  Highly efficient: Polynomial in measurement dimensionality k 
and state dimensionality n:  
             O(k2.376 + n2)  

n  Optimal for linear Gaussian systems! 
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n  Nonlinear systems 

n  Extended Kalman Filter, Unscented Kalman Filter 

n  Very large systems with sparsity structure 

n  Sparse Information Filter 

n  Very large systems with low-rank structure   

n  Ensemble Kalman Filter 

n  Kalman filtering over SE(3) 

n  How to estimate At, Bt, Ct, Qt, Rt from data (z0:T, u0:T) 

n  EM algorithm 

n  How to compute     (note the capital “T”) 

n  Smoothing 

Forthcoming Extensions 

n  Square-root Kalman filter --- keeps track of square root of covariance matrices --- 
equally fast, numerically more stable (bit more complicated conceptually) 

n  If At = A, Qt = Q, Ct = C, Rt = R   

n  If system is “observable” then covariances and Kalman gain will converge to 
steady-state values for t -> 1 

n  Can take advantage of this: pre-compute them, only track the mean, which is done by 
multiplying Kalman gain with “innovation” 

n  System is observable if and only if the following holds true:  if there were zero 
noise you could determine the initial state after a finite number of time steps 

n  Observable if and only if:  rank( [ C ; CA ; CA2 ; CA3 ; … ; CAn-1]) = n 

n  Typically if a system is not observable you will want to add a sensor to make 
it observable 

n  Kalman filter can also be derived as the (recursively computed) least-squares 
solutions to a (growing) set of linear equations 

Things to be aware of that we won’t cover 


