

Linear Quadratic Regulator (LQR)

The LQR setting assumes a linear dynamical system:

$$x_{t+1} = Ax_t + Bu_t,$$

 x_t : state at time t u_t : input at time tIt assumes a quadratic cost function:

$$g(x_t, u_t) = x_t^\top Q x_t + u_t^\top R u_t$$

with $Q \succ 0, R \succ 0$.

For a square matrix X we have $X \succ 0$ if and only if for all vectors z we have $z^{\top}Xz > 0$. Hence there is a non-zero cost for any state different from the all-zeros state, and any input different from the all-zeros input.

$\begin{aligned} \text{LQR value iteration: } J_1 \\ J_{i+1}(x) &\leftarrow \min_u \left[x^\top Q x + u^\top R u + J_i (Ax + Bu) \right] \\ \text{Initialize } J_0(x) &= x^\top P_0 x. \end{aligned}$ $\begin{aligned} J_1(x) &= \min_u \left[x^\top Q x + u^\top R u + J_0 (Ax + Bu) \right] \\ &= \min_u \left[x^\top Q x + u^\top R u + (Ax + Bu)^\top P_0 (Ax + Bu) \right] \quad (1) \end{aligned}$ $\text{To find the minimum over } u, \text{ we set the gradient w.r.t. } u \text{ equal to zero:} \\ \nabla_u [\dots] &= 2Ru + 2B^\top P_0 (Ax + Bu) = 0, \\ \text{ hence: } u &= -(R + B^\top P_0 B)^{-1} B^\top P_0 Ax \quad (2) \end{aligned}$ $(2) \text{ into } (1): J_1(x) &= x^\top P_1 x \\ \text{ for: } P_1 &= Q + K_1^\top R K_1 + (A + BK_1)^\top P_0 (A + BK_1) \\ K_1 &= -(R + B^\top P_0 B)^{-1} B^\top P_0 A. \end{aligned}$

Value iteration solution to LQR

Set $P_0 = 0$. for i = 1, 2, 3, ... $K_i = -(R + B^\top P_{i-1}B)^{-1}B^\top P_{i-1}A$ $P_i = Q + K_i^\top RK_i + (A + BK_i)^\top P_{i-1}(A + BK_i)$

The optimal policy for a i-step horizon is given by:

$$\pi(x) = K_i x$$

The cost-to-go function for a i-step horizon is given by:

$$J_i(x) = x^\top P_i x$$

 $\begin{array}{rcl} x_{t+1} &=& Ax_t + Bu_t \\ g(x_t, u_t) &=& x_t^\top Q x_t + u_t^\top R u_t \end{array}$

= for keeping a linear system at the all-zeros state while preferring to keep the control input small.

Extensions which make it more generally applicable:

- Affine systems
- System with stochasticity
- Regulation around non-zero fixed point for non-linear systems
- Penalization for change in control inputs
- Linear time varying (LTV) systems
- Trajectory following for non-linear systems

LQR Ext0: Affine systems

```
\begin{aligned} x_{t+1} &= Ax_t + Bu_t + c\\ g(x_t, u_t) &= x_t^\top Q x_t + u_t^\top R u_t \end{aligned}
```

- Optimal control policy remains linear, optimal cost-to-go function remains quadratic
- Two avenues to do derivation:
 - 1. Re-derive the update, which is very similar to what we did for standard setting
 - 2. Re-define the state as: Z_t = [X_t; I], then we have:

$$z_{t+1} = \begin{bmatrix} x_{t+1} \\ 1 \end{bmatrix} = \begin{bmatrix} A & c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ 1 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u_t = A'z_t + B'u_t$$

LQR Ext1: stochastic system

 $\begin{aligned} x_{t+1} &= Ax_t + Bu_t + w_t \\ g(x_t, u_t) &= x_t^\top Q x_t + u_t^\top R u_t \\ w_t, t = 0, 1, \dots \text{ are zero mean and independent} \end{aligned}$

- Exercise: work through similar derivation as we did for the deterministic case.
- Result:
 - Same optimal control policy
 - Cost-to-go function is almost identical: has one additional term which depends on the variance in the noise (and which cannot be influenced by the choice of control inputs)

LQR Ext2: non-linear systems

Nonlinear system: $x_{t+1} = f(x_t, u_t)$ We can keep the system at the state x^* iff $\exists u^*$ s.t. $x^* = f(x^*, u^*)$ Linearizing the dynamics around x^* gives: $x_{t+1} \approx f(x^*, u^*) + \frac{\partial f}{\partial x}(x^*, u^*)(x_t - x^*) + \frac{\partial f}{\partial u}(x^*, u^*)(u_t - u^*)$ Equivalently: A B $x_{t+1} - x^* \approx A(x_t - x^*) + B(u_t - u^*)$ Let $z_t = x_t - x^*$, let $v_t = u_t - u^*$, then: $z_{t+1} = Az_t + Bv_t$, $\text{cost} = z_t^\top Qz_t + v_t^\top Rv_t$ [=standard LQR] $v_t = Kz_t \Rightarrow u_t - u^* = K(x_t - x^*) \Rightarrow u_t = u^* + K(x_t - x^*)$

LQR Ext4: Linear Time Varying (LTV) Systems

$$\begin{array}{rcl} x_{t+1} &=& A_t x_t + B_t u_t \\ g(x_t, u_t) &=& x_t^\top Q_t x_t + u_t^\top R_t u_t \end{array}$$

LQR Ext4: Linear Time Varying (LTV) Systems Set $P_0 = 0$. for i = 1, 2, 3, ... $K_i = -(R_{H-i} + B_{H-i}^{\top}P_{i-1}B_{H-i})^{-1}B_{H-i}^{\top}P_{i-1}A_{H-i}$ $P_i = Q_{H-i} + K_i^{\top}R_{H-i}K_i + (A_{H-i} + B_{H-i}K_i)^{\top}P_{i-1}(A_{H-i} + B_{H-i}K_i)$ The optimal policy for a *i*-step horizon is given by: $\pi(x) = K_i x$ The cost-to-go function for a *i*-step horizon is given by: $J_i(x) = x^{\top}P_i x.$

Most general cases

 Methods which attempt to solve the generic optimal control problem

$$\min_{u} \qquad \sum_{t=0}^{H} g(x_{t}, u_{t})$$

subject to $x_{t+1} = f(x_{t}, u_{t}) \quad \forall t$

by iteratively approximating it and leveraging the fact that the linear quadratic formulation is easy to solve.

Iteratively apply LQR

Initialize the algorithm by picking either (a) A control policy $\pi^{(0)}$ or (b) A sequence of states $x_0^{(0)}, x_1^{(0)}, \ldots, x_H^{(0)}$ and control inputs $u_0^{(0)}, u_1^{(0)}, \ldots, u_H^{(0)}$. With initialization (a), start in Step (1). With initialization (b), start in Step (2). Iterate the following:

- (1) Execute the current policy $\pi^{(i)}$ and record the resulting state-input trajectory $x_0^{(i)}, u_0^{(i)}, x_1^{(i)}, u_1^{(i)}, \dots, x_H^{(i)}, u_H^{(i)}$.
- (2) Compute the LQ approximation of the optimal control problem around the obtained state-input trajectory by computing a first-order Taylor expansion of the dynamics model, and a second-order Taylor expansion of the cost function.
- (3) Use the LQR back-ups to solve for the optimal control policy $\pi^{(i+1)}$ for the LQ approximation obtained in Step (2).
- (4) Set i = i + 1 and go to Step (1).

Iterative LQR: in standard LTV format

Standard LTV is of the form $z_{t+1} = A_t z_t + B_t v_t$, $g(z, v) = z^{\top} Q z + v^{\top} R v$. Linearizing around $(x_t^{(i)}, u_t^{(i)})$ in iteration *i* of the iterative LQR algorithm gives us (up to first order!):

$$x_{t+1} = f(x_t^{(i)}, u_t^{(i)}) + \frac{\partial f}{\partial x}(x_t^{(i)}, u_t^{(i)})(x_t - x_t^{(i)}) + \frac{\partial f}{\partial u}(x_t^{(i)}, u_t^{(i)})(u_t - u_t^{(i)})$$

Subtracting the same term on both sides gives the format we want:

$$x_{t+1} - x_{t+1}^{(i)} = f(x_t^{(i)}, u_t^{(i)}) - x_{t+1}^{(i)} + \frac{\partial f}{\partial x}(x_t^{(i)}, u_t^{(i)})(x_t - x_t^{(i)}) + \frac{\partial f}{\partial u}(x_t^{(i)}, u_t^{(i)})(u_t - u_t^{(i)})$$

Hence we get the standard format if using:

$$\begin{aligned} z_t &= [x_t - x_t^{(i)} \quad 1]^\top \\ v_t &= (u_t - u_t^{(i)}) \\ A_t &= \begin{bmatrix} \frac{\partial f}{\partial x}(x_t^{(i)}, u_t^{(i)}) & f(x_t^{(i)}, u_t^{(i)}) - x_{t+1}^{(i)} \\ 0 & 1 \end{bmatrix} \\ B_t &= \begin{bmatrix} \frac{\partial f}{\partial u}(x_t^{(i)}, u_t^{(i)}) \\ 0 \end{bmatrix} \end{aligned}$$

A similar derivation is needed to find Q and R.

Determine the optimal policy for the LQ approximation might end up not staying close to the sequence of points around which the LQ approximation was computed by Taylor expansion. Solution: in each iteration, adjust the cost function so this is the case, i.e., use the cost function (1 - α)g(xt, ut) + α(||xt - xtticle || 2 + ||ut - utticle || 2) Assuming g is bounded, for α close enough to one, the 2nd term will dominate and ensure the linearizations are good approximations around the solution trajectory found by LQR.

Controllability

- A system is t-time-steps controllable if from any start state, X₀, we can reach any target state, X^{*}, at time t.
- For a linear time-invariant systems, we have:

$$x_t = A^t x_0 + A^{t-1} B u_0 + A^{t-2} B u_1 + \ldots + A B u_{t-2} + B u_{t-1}$$

hence the system is t-time-steps controllable if and only if the above linear system of equations in $U_0, ..., U_{t-1}$ has a solution for all choices of X_0 and X_t . This is the case if and only if

$$\operatorname{rank} \begin{bmatrix} A^{t-1}B & A^{t-2}B & \cdots & A^2B & AB & B \end{bmatrix} = n$$

with n the dimension of the statespace.

The Cayley-Hamilton theorem from linear algebra says that for all A, for all $t \geq n$:

$$\exists w \in \mathbb{R}^n, \ A^t = \sum_{i=0}^{n-1} w_i A^i$$

Hence we obtain that the system (A,B) is controllable for all times t>=n, if and only if

$$\operatorname{rank} \begin{bmatrix} A^{n-1}B & A^{n-2}B & \cdots & A^2B & AB & B \end{bmatrix} = n$$

Feedback linearization

Consider system of the form:

 $\dot{x} = f(x) + g(x)u$

If g(x) is square (i.e., number of control inputs = number of state variables) and it is invertible, then we can linearize the system by a change of input variables:

v = f(x) + g(x)u

gives us:

 $\dot{x} = v$

Prototypical example: fully actuated manipulators:

 $H(q)\ddot{q} + b(q,\dot{q}) + g(q) = \tau$

Feedback linearize by using the following transformed input:

$$v = H^{-1}(q) \left(\tau - g(q) - b(q, \dot{q})\right)$$

which results in

 $\ddot{q} = v$

Feedback linearization	
Example from Scoline & L:, 6.12 $\begin{cases} \dot{z}_{1} = -2z_{1} + a x_{2} + sin x_{1} \\ \dot{z}_{2} = -x_{2} \cos z_{1} + u \cos(2x_{1}) \end{cases}$ Change of sight (sample): $\begin{cases} z_{1} = z_{1} \\ z_{2} = a x_{2} + sin x_{1} \end{cases}$ $= \begin{cases} \dot{z}_{1} = -2z_{1} + z_{2} \\ \dot{z}_{1} = -2z_{1} \cos z_{1} + \cos z_{1} \sin z_{1} - a u cos(ex_{1}) \end{cases}$ $= AT = a u cos(2z_{1}) + \cos z_{1} \sin z_{1} - 2z_{1} \cos z_{1} \end{cases}$ $\begin{cases} \dot{z}_{1} = -2z_{1} + z_{2} \\ \dot{z}_{2} = -2z_{1} + z_{2} \\ \dot{z}_{3} = -2z_{1} + z_{2} \end{cases}$	

Feedback linearization

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector fields, is input-state linearizable if, and only if, there exists a region Ω such that the following conditions hold:

• the vector fields $\{g, ad_f g, ..., ad_f^{n-1}g\}$ are linearly independent in Ω

 \bullet the set $\{g, ad_f\, g\, , \ldots \, , \, \, ad_f{}^{n-2}\, g\}$ is involutive in Ω

Definition 6.1 Let $h: \mathbb{R}^n \to \mathbb{R}$ be a smooth scalar function, and $f: \mathbb{R}^n \to \mathbb{R}^n$ be a smooth vector field on \mathbb{R}^n , then the <u>Lie derivative of h with respect to f</u> is a scalar function defined by $L_f h = \nabla h f$.

Thus, the Lie derivative $L_{\mathbf{f}}h$ is simply the directional derivative of h along the direction of the vector \mathbf{f} .

Repeated Lie derivatives can be defined recursively

 $L_{\mathbf{f}}^{o} h = h$

 $L_{f}^{i}h = L_{f}(L_{f}^{i-1}h) = \nabla(L_{f}^{i-1}h) f$

for i = 1, 2,

Similarly, if g is another vector field, then the scalar function $L_{g}L_{f}h(\mathbf{x})$ is

 $L_{\mathbf{g}} L_{\mathbf{f}} h = \nabla(L_{\mathbf{f}} h) \mathbf{g}$

Feedback linearization

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector fields, is input-state linearizable if, and only if, there exists a region Ω such that the following conditions hold:

• the vector fields $\{g, ad_f g, ..., ad_f^{n-1} g\}$ are linearly independent in Ω

 \bullet the set $\{g, \textit{ad}_f \: g \:, \ldots \:, \: \textit{ad}_f^{n-2} \: g\}$ is involutive in Ω

Definition 6.2 Let \mathbf{f} and \mathbf{g} be two vector fields on \mathbb{R}^n . The Lie bracket of \mathbf{f} and \mathbf{g} is a third vector field defined by

 $[\mathbf{f},\mathbf{g}] = \nabla \mathbf{g} \ \mathbf{f} - \nabla \mathbf{f} \ \mathbf{g}$

The Lie bracket [f, g] is commonly written as $ad_f g$ (where ad stands for "adjoint"). Repeated Lie brackets can then be defined recursively by

 $ad_{\mathbf{f}}^{o}\mathbf{g} = \mathbf{g}$

 $ad_{\mathbf{f}}^{i}\mathbf{g} = [\mathbf{f}, ad_{\mathbf{f}}^{i-1}\mathbf{g}]$

for i = 1, 2,

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector fields, is input-state linearizable if, and only if, there exists a region Ω such that the following conditions hold:

 \bullet the vector fields $\{g, \textit{ad}_f g, ..., , \textit{ad}_f^{n-1} g\}$ are linearly independent in Ω

• the set $\{g, ad_f g, ..., ad_f^{n-2} g\}$ is involutive in Ω

Definition 6.5 A linearly independent set of vector fields $\{\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_m\}$ is said to be <u>involutive</u> if, and only if, there are scalar functions $\alpha_{ijk} : \mathbf{R}^n \to \mathbf{R}$ such that

$$[\mathbf{f}_i, \mathbf{f}_j](\mathbf{x}) = \sum_{k=1}^m \alpha_{ijk}(\mathbf{x}) \, \mathbf{f}_k(\mathbf{x}) \qquad \forall \ i, j$$
(6.51)

Lagrangian dynamics Newton: F = ma Quite generally applicable Its application can become a bit cumbersome in multibody systems with constraints/internal forces Lagrangian dynamics method eliminates the internal forces from the outset and expresses dynamics w.r.t. the degrees of freedom of the system

Lagrangian dynamics: point mass example

Consider a point mass m with coordinates (x, y, z) close to earth and with external forces F_x, F_y, F_z .

$$T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$$

$$U = mgz$$

Lagrangian dynamic equations:

$$F_x = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = m\ddot{x}$$

$$F_y = \frac{d}{dt} \frac{\partial L}{\partial \dot{y}} - \frac{\partial L}{\partial y} = m\ddot{y}$$

$$F_z = \frac{d}{dt} \frac{\partial L}{\partial \dot{z}} - \frac{\partial L}{\partial z} = m\ddot{z} - mg$$

