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n  Maximum likelihood (ML) 

n  Priors, and maximum a posteriori (MAP) 

n  Cross-validation 

n  Expectation Maximization (EM) 

Outline 
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n  Let µ = P(up),  1-µ = P(down) 

n  How to determine µ ? 

n  Empirical estimate:  8 up, 2 down à 

Thumbtack 

n  http://web.me.com/todd6ton/Site/Classroom_Blog/Entries/2009/10/7_A_Thumbtack_Experiment.html 
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n  µ = P(up),  1-µ = P(down) 

n  Observe: 

n  Likelihood of the observation sequence depends on µ: 

n  Maximum likelihood finds  

 

à  extrema at µ = 0, µ = 1, µ = 0.8 

à  Inspection of each extremum yields  µML = 0.8  

Maximum Likelihood 

n  More generally, consider binary-valued random variable with µ = P(1), 1-µ = 
P(0), assume we observe n1 ones, and n0 zeros 

n  Likelihood: 

n  Derivative: 

n  Hence we have for the extrema: 

n  n1/(n0+n1) is the maximum 

n  = empirical counts.  

Maximum Likelihood 
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n  The function            

is a monotonically increasing function of x 

n  Hence for any (positive-valued) function f: 

n  In practice often more convenient to optimize the log-
likelihood rather than the likelihood itself 

n  Example:  

 

 

Log-likelihood 

n  Reconsider thumbtacks: 8 up, 2 down 

n  Likelihood 

n  Definition: A function f is concave if and only 

n  Concave functions are generally easier to maximize then 
non-concave functions  

Log-likelihood ßà Likelihood 

n  log-likelihood 

Concave Not Concave 
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f is concave if and only 

 

 

 

 

 

 

 

 

“Easy” to maximize 

Concavity and Convexity 

x1 x2 
¸ x2+(1-¸)x2 

f is convex if and only 

 

 

 

 

 

 

 

 

“Easy” to minimize 

x1 x2 
¸ x2+(1-¸)x2 

n  Consider having received samples 

ML for Multinomial 
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n  Given samples 

n  Dynamics model: 

n  Observation model:   

 

 

 

 

à Independent ML problems for each        and each  

ML for Fully Observed HMM 

n  Consider having received samples 

n  3.1, 8.2, 1.7 

ML for Exponential Distribution 
Source: wikipedia 

ll 
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n  Consider having received samples 

n    

ML for Exponential Distribution 
Source: wikipedia 

n  Consider having received samples 

n    

Uniform 
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n  Consider having received samples 

n    

ML for Gaussian 

Equivalently: 

 

 

More generally: 

ML for Conditional Gaussian 
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ML for Conditional Gaussian 

ML for Conditional Multivariate Gaussian 
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Aside: Key Identities for Derivation on 
Previous Slide 

n  Consider the Linear Gaussian setting: 

n  Fully observed, i.e., given 

n  à Two separate ML estimation problems for conditional 
multivariate Gaussian:  

n  1: 

n  2:    

ML Estimation in Fully Observed 
Linear Gaussian Bayes Filter Setting 
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n  Let µ = P(up),  1-µ = P(down) 

n  How to determine µ ? 

n  ML estimate:  5 up, 0 down à 

n  Laplace estimate: add a fake count of 1 for each outcome 

Priors --- Thumbtack 

n  Alternatively, consider $µ$ to be random variable 

n  Prior P(µ) / µ(1-µ) 

n  Measurements: P( x | µ ) 

n  Posterior: 

n  Maximum A Posterior (MAP) estimation  

n  = find µ that maximizes the posterior     

à  

Priors --- Thumbtack 
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Priors --- Beta Distribution 

Figure source: Wikipedia 

n  Generalizes Beta distribution 

n  MAP estimate corresponds to adding fake counts n1, …, nK 

Priors --- Dirichlet Distribution 
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n  Assume variance known.  (Can be extended to also find MAP for variance.) 

n  Prior:  

MAP for Mean of Univariate Gaussian 

n  Assume variance known.  (Can be extended to also find MAP 
for variance.) 

n  Prior:  

MAP for Univariate Conditional Linear 
Gaussian 

[Interpret!] 
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MAP for Univariate Conditional Linear 
Gaussian: Example 

TRUE --- 
Samples . 
ML --- 
MAP --- 

n  Choice of prior will heavily influence quality of result 

n  Fine-tune choice of prior through cross-validation: 

n  1. Split data into “training” set and “validation” set 

n  2. For a range of priors,  
n  Train: compute µMAP on training set 
n  Cross-validate: evaluate performance on validation set by evaluating 

the likelihood of the validation data under µMAP just found 

n  3. Choose prior with highest validation score  
n  For this prior, compute µMAP on (training+validation) set 

n  Typical training / validation splits: 

n  1-fold: 70/30, random split 

n  10-fold: partition into 10 sets, average performance for each of the sets being the 
validation set and the other 9 being the training set 

Cross Validation 
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n  Maximum likelihood (ML) 

n  Priors, and maximum a posteriori (MAP) 

n  Cross-validation 

n  Expectation Maximization (EM) 

Outline 

n  Generally: 

n  Example:  

n  ML Objective: given data z(1), …, z(m) 

n  Setting derivatives w.r.t. µ, µ, § equal to zero does not enable to solve 
for their ML estimates in closed form 

We can evaluate function à we can in principle perform local optimization, see future lectures.  In this 
lecture: “EM” algorithm, which is typically used to efficiently optimize the objective (locally)  

Mixture of Gaussians 
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n  Example: 

n  Model: 

n  Goal:  
n  Given data z(1), …, z(m)  (but no x(i) observed) 
n  Find maximum likelihood estimates of µ1, µ2 

n  EM basic idea: if x(i) were known à two easy-to-solve separate ML 
problems 

n  EM iterates over 
n  E-step: For i=1,…,m   fill in missing data x(i) according to what is most 

likely given the current model µ 

n  M-step: run ML for completed data, which gives new model µ 

Expectation Maximization (EM) 

n  EM solves a Maximum Likelihood problem of the form: 

  
µ: parameters of the probabilistic model we try to find 
x: unobserved variables 
z: observed variables 

 
  

EM Derivation 

Jensen’s Inequality 
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Jensen’s inequality 

x1 x2 
E[X] = ¸ x2+(1-¸)x2 

Illustration:  
P(X=x1) = 1-¸,  
P(X=x2) = ¸ 

EM Algorithm: Iterate 

 1. E-step: Compute 

  

 2. M-step: Compute  

  

EM Derivation (ctd) 

Jensen’s Inequality: equality holds when       is an affine  
 
function.  This is achieved for   

M-step optimization can be done efficiently in most cases 
E-step is usually the more expensive step 
It does not fill in the missing data x with hard values, but finds a distribution q(x) 
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n  M-step objective is upper-
bounded by true objective 

n  M-step objective is equal 
to true objective at 
current parameter 
estimate 

 

EM Derivation (ctd) 

n  à Improvement in true objective is at least as large as 
improvement in M-step objective 

n  Estimate 1-d mixture of two Gaussians with unit variance: 

n    

n  one parameter µ ; µ1 = µ - 7.5, µ2 = µ+7.5 

EM 1-D Example --- 2 iterations 
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n  X ~ Multinomial Distribution, P(X=k ; µ) = µk 

n  Z ~ N(µk, §k) 

n  Observed: z(1), z(2), …, z(m) 

 

EM for Mixture of Gaussians 

n  E-step: 

n  M-step: 

EM for Mixture of Gaussians 
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n  Given samples 

n  Dynamics model: 

n  Observation model:   

n  ML objective: 

 

 

 

à  No simple decomposition into independent ML problems for    
each        and each  

à  No closed form solution found by setting derivatives equal to zero 

ML Objective HMM 

n    

à   µ and ° computed from “soft” counts  

EM for HMM --- M-step 
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n  No need to find conditional full joint  

n  Run smoother to find: 

EM for HMM --- E-step 

n  Linear Gaussian setting: 

n  Given 

n  ML objective: 

n  EM-derivation: same as HMM 

ML Objective for Linear Gaussians 
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n  Forward: 

n  Backward: 

EM for Linear Gaussians --- E-Step 

EM for Linear Gaussians --- M-step 

[Updates for A, B, C, d. TODO: Fill in once found/derived.] 
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n  When running EM, it can be good to keep track of the log-
likelihood score --- it is supposed to increase every iteration 

EM for Linear Gaussians --- The 
Log-likelihood  

n  As the linearization is only an approximation, when 
performing the updates, we might end up with parameters 
that result in a lower (rather than higher) log-likelihood 
score 

n  à Solution: instead of updating the parameters to the newly 
estimated ones, interpolate between the previous parameters 
and the newly estimated ones.  Perform a “line-search” to 
find the setting that achieves the highest log-likelihood score 

EM for Extended Kalman Filter Setting 


