Maximum Likelihood (ML), Expectation Maximization (EM)

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Outline

- Maximum likelihood (ML)
- Priors, and maximum a posteriori (MAP)
- Cross-validation
- Expectation Maximization (EM)

Thumbtack

- Let $\theta=\mathrm{P}($ up $), \quad \mathrm{I}-\theta=\mathrm{P}($ down $)$
- How to determine θ ?

- Empirical estimate: 8 up, 2 down $\rightarrow \quad \theta=\frac{8}{2+8}=0.8$

2. In making your 10 tosses, you dropped a total of 100 thumbtacks. What fraction of the thumbtacks landed point down?

Write this fraction on a small stick-on note. Also write it as a decimal and as a percent.
4. For the whole class, the chance that a tack will land point down is

Maximum Likelihood

- $\theta=\mathrm{P}(\mathrm{up}), \mathrm{I}-\theta=\mathrm{P}($ down $)$
- Observe:

- Likelihood of the observation sequence depends on θ :

$$
\begin{aligned}
l(\theta) & =\theta(1-\theta) \theta(1-\theta) \theta \theta \theta \theta \theta \theta \theta \theta \\
& =\theta^{8}(1-\theta)^{2}
\end{aligned}
$$

- Maximum likelihood finds

$\arg \max _{\theta} l(\theta)=\arg \max _{\theta} \theta^{8}(1-\theta)^{2}$
$\frac{\partial}{\partial \theta} l(\theta)=8 \theta^{7}(1-\theta)^{2}-2 \theta^{8}(1-\theta)=\theta^{7}(1-\theta)(8(1-\theta)-2 \theta)=\theta^{7}(1-\theta)(8-10 \theta)$
\rightarrow extrema at $\theta=0, \theta=\mathrm{I}, \theta=0.8$
\rightarrow Inspection of each extremum yields $\theta_{\text {MI }}=0.8$

Maximum Likelihood

- More generally, consider binary-valued random variable with $\theta=\mathrm{P}(\mathrm{I}), \mathrm{I}-\theta=$ $\mathrm{P}(0)$, assume we observe n_{1} ones, and n_{0} zeros
- Likelihood: $l(\theta)=\theta^{n_{1}}(1-\theta)^{n_{0}}$
- Derivative: $\quad \frac{\partial}{\partial \theta} l(\theta)=n_{1} \theta^{n_{1}-1}(1-\theta)^{n_{0}}-n_{0} \theta^{n_{1}}(1-\theta)^{n_{0}-1}$
$=\theta^{n_{1}-1}(1-\theta)^{n_{0}-1}\left(n_{1}(1-\theta)-n_{0} \theta\right)$
$=\theta^{n_{1}-1}(1-\theta)^{n_{0}-1}\left(n_{1}-\left(n_{1}+n_{0}\right) \theta\right)$
- Hence we have for the extrema:

$$
\theta=0, \quad \theta=1, \quad \theta=\frac{n_{1}}{n_{0}+n_{1}}
$$

- $\mathrm{nl} /(\mathrm{n} 0+\mathrm{nl})$ is the maximum
- = empirical counts.

Log-likelihood

- The function $\log : \mathbb{R}^{+} \rightarrow \mathbb{R}: x \rightarrow \log (x)$
is a monotonically increasing function of x
- Hence for any (positive-valued) function f:

$\arg \max _{\theta} f(x)=\arg \max _{\theta} \log f(x)$
- In practice often more convenient to optimize the loglikelihood rather than the likelihood itself
- Example: $\quad \log l(\theta)=\log \theta^{n_{1}}(1-\theta)^{n_{0}}$
$=n_{1} \log \theta+n_{0} \log (1-\theta)$

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log l(\theta) & =n_{1} \frac{1}{\theta}+n_{0} \frac{-1}{1-\theta}=\frac{n_{1}-\left(n_{1}+n_{0}\right) \theta}{\theta(1-\theta)} \\
& \rightarrow \theta=\frac{n_{1}}{n_{1}+n_{0}}
\end{aligned}
$$

Log-likelihood $\leftarrow \rightarrow$ Likelihood

- Reconsider thumbtacks: 8 up, 2 down

- Definition: A function f is concave if and only $\forall x_{1}, x_{2}, \quad \forall \lambda \in(0,1), f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$
- Concave functions are generally easier to maximize then non-concave functions

ML for Multinomial

$p(x=k ; \theta)=\theta_{k}$

- Consider having received samples $\quad\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$
$\log l(\theta)=\log \prod_{i=1}^{m} \theta_{1}^{1\left\{x^{(i)}=1\right\}} \theta_{2}^{\left\{\left\{x^{(i)}\right)=2\right\}} \cdots \theta_{K-1}^{1\left\{x^{(i)}=K-1\right\}}\left(1-\theta_{1}-\theta_{2}-\ldots-\theta_{K-1}\right)^{1\left\{x^{(i)}=K\right\}}$
$=\sum_{i=1}^{m} 1\left\{x^{(i)}=1\right\} \log \theta_{1}+1\left\{x^{(i)}=2\right\} \log \theta_{2}+\cdots+1\left\{x^{(i)}=K-1\right\} \log \theta_{K-1}+1\left\{x^{(i)}=K\right\} \log \left(1-\theta_{1}-\theta_{2}-\cdots-\theta_{K-1}\right.$
$=\sum_{k=1}^{K-1} n_{k} \log \theta_{k}+n_{K} \log \left(1-\theta_{1}-\theta_{2}-\cdots-\theta_{K-1}\right)$
$\frac{\partial}{\partial \theta_{k}} \log l(\theta)=\frac{n_{k}}{\theta_{k}}-n_{K} \frac{1}{1-\theta_{1}-\theta_{2}-\cdots-\theta_{K-1}}$
$\rightarrow \theta_{k}^{\mathrm{ML}}=\frac{n_{k}}{\sum_{j=1}^{K} n_{j}}$

ML for Fully Observed HMM

- Given samples $\left\{x_{0}, z_{0}, x_{1}, z_{1}, x_{2}, z_{2}, \ldots, x_{T}, z_{T}\right\}, x_{t} \in\{1,2, \ldots, I\}, z_{t} \in\{1,2, \ldots, K\}$
- Dynamics model: $P\left(x_{t+1}=i \mid x_{t}=j\right)=\theta_{i \mid j}$
- Observation model: $P\left(z_{t}=k \mid z_{t}=l\right)=\gamma_{k \mid l}$

$$
\begin{aligned}
\log l(\theta, \gamma) & =\log P\left(x_{0}\right) \prod_{t=1}^{T} P\left(x_{t} \mid x_{t-1} ; \theta\right) P\left(z_{t} \mid x_{t} ; \gamma\right) \\
& =\log P\left(x_{0}\right) \sum_{t=1}^{T} \log \theta_{x_{t} \mid x_{t-1}}+\sum_{t=1}^{T} \log \gamma_{z_{t} \mid x_{t}} \quad \begin{array}{c}
\left.n_{(, j)}\right): \text { number of occurences of } x_{t}=i, x_{t+1}=j \\
\left.m_{(k, t)}\right): \text { number of ocurrences of } x_{t}=k_{, ~ 2}=z_{t}=l . \\
\hline
\end{array} \\
& =\log P\left(x_{0}\right) \sum_{i=1}^{I} \sum_{j=1}^{I} \log \theta_{i \mid j}^{n_{(i, j)}}+\sum_{k=1}^{K} \sum_{l=1}^{K} \log \gamma_{k \mid l}^{m_{(k, l)}}
\end{aligned}
$$

\rightarrow Independent ML problems for each $\theta_{\cdot \mid j}$ and each $\gamma_{\cdot \mid l}$

$$
\theta_{i \mid j}=\frac{n_{(i, j)}}{\sum_{i^{\prime}=1}^{I} n_{\left(i^{\prime}, j\right)}} \quad \gamma_{k \mid l}=\frac{m_{(k, l)}}{\sum_{k^{\prime}=1}^{K} m_{\left(k^{\prime}, l\right)}}
$$

ML for Exponential Distribution

$$
p(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

- Consider having received samples

- 3.I, 8.2, I. 7

$$
\begin{aligned}
\lambda_{\mathrm{ML}}= & \arg \max _{\lambda} \log l(\lambda) \\
= & \arg \max _{\lambda}\left(\lambda e^{-\lambda 3.1} \lambda e^{-\lambda 8.2} \lambda e^{-\lambda 1.7}\right) \\
= & \arg \max _{\lambda} 3 \log \lambda+(-3.1-8.2-1.7) \lambda \\
\frac{\partial}{\partial \lambda} \log l(\lambda)= & 3 \frac{1}{\lambda}-13 \\
& \rightarrow \lambda_{\mathrm{ML}}=\frac{3}{13}
\end{aligned}
$$

ML for Exponential Distribution

$p(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}$

- Consider having received samples
- $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$

$$
\begin{aligned}
\log l(\lambda) & =\log \prod_{i=1}^{m} p\left(x^{(i)} ; \lambda\right) & \frac{\partial}{\partial \lambda} \log l(\lambda)=m \frac{1}{\lambda}-\sum_{i=1}^{m} x^{(i)} \\
& =\sum_{i=1}^{m} \log p\left(x^{(i)} ; \lambda\right) & \\
& =\sum_{i=1}^{m} \log \left(\lambda e^{-\lambda x^{(i)}}\right) & \rightarrow \lambda_{\mathrm{ML}}=\frac{1}{\frac{1}{m} \sum_{i=1}^{m} x^{(i)}}
\end{aligned}
$$

$$
=m \log \lambda-\lambda \sum_{i=1}^{m} x^{(i)}
$$

- Consider having received samples
- $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$
$\log l(a, b)=\sum_{i=1}^{m} \log \left(1\left\{x^{(i)} \in[a, b]\right\} \frac{1}{b-a}\right)$
$\rightarrow a_{\mathrm{ML}}=\min _{i} x^{(i)}, \quad b_{\mathrm{ML}}=\max _{i} x^{(i)}$

ML for Gaussian

$$
p(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Consider having received samples
- $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$
$\log l(\mu, \sigma)=\sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}\right)$
$=C+\sum_{i=1}^{m}-\log \sigma-\frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}$

$\frac{\partial}{\partial \mu} \log l(\mu, \sigma)=\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(x^{(i)}-\mu\right)$	$\frac{\partial}{\partial \sigma} \log l(\mu, \sigma)=\sum_{i=1}^{m} \frac{1}{\sigma}-\frac{\left(x^{(i)}-\mu\right)^{2}}{\sigma^{3}}$

$\rightarrow \mu_{\mathrm{ML}}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}$

$$
\rightarrow \sigma_{\mathrm{ML}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\mu_{\mathrm{ML}}\right)^{2}
$$

ML for Conditional Gaussian

$$
y=a_{0}+a_{1} x+\epsilon \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Equivalently:

$$
p\left(y \mid x ; a_{0}, a_{1}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y-\left(a_{0}+a_{1} x\right)\right)^{2}}{2 \sigma^{2}}}
$$

More generally:

$$
\begin{aligned}
& y=a^{\top} x+\epsilon \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
& p\left(y \mid x ; a, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y-a^{\top} x\right)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

ML for Conditional Gaussian

Given samples $\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}$.
$\log l\left(a, \sigma^{2}\right)=\sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y^{(i)}-a^{\top} x^{(i)}\right)^{2}}{2 \sigma^{2}}}\right)$
$=C-m \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(y^{(i)}-a^{\top} x^{(i)}\right)^{2}$

$\nabla_{a} \log l\left(a, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(y^{(i)}-a^{\top} x^{(i)}\right) x^{(i)}$	$\frac{\partial}{\partial \sigma} \log l\left(a, \sigma^{2}\right)=-m \frac{1}{\sigma}-\frac{1}{\sigma^{3}} \sum_{i=1}^{m}\left(y^{(i)}-a^{\top} x^{(i)}\right)^{2}$

$=\sum_{i=1}^{m} y^{(i)} x^{(i)}-\left(\sum_{i=1}^{m} x^{(i)} x^{(i) \top}\right) a$
$\rightarrow \sigma_{\mathrm{ML}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-a_{\mathrm{ML}}^{\top} x^{(i)}\right)^{2}$
$\rightarrow a_{\mathrm{ML}}=\left(\sum_{i=1}^{m} x^{(i)} x^{(i) \top}\right)^{-1}\left(\sum_{i=1}^{m} y^{(i)} x^{(i)}\right)$
$=\left(X^{\top} X\right)^{-1} X^{\top} y$
$\left.X=\left[\begin{array}{c}x^{(1) \top} \\ x^{(2) \top} \\ \cdots \\ x^{(m) \top}\end{array}\right] \quad y=\left[\begin{array}{c}y^{(1)} \\ y^{(2)} \\ \cdots \\ y^{(m)}\end{array}\right] \quad \right\rvert\,$

$$
\begin{aligned}
& \text { ML for Conditional Multivariate Gaussian } \\
& y=C x+\epsilon, \quad \epsilon \sim \mathcal{N}(0, \Sigma) \\
& p(y \mid x ; C, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{-1 / 2}} e^{-\frac{1}{2}(y-C x)^{\top} \Sigma^{-1}(y-C x)} \\
& \log l(C, \Sigma)=-m \frac{n}{2} \log (2 \pi)+\frac{m}{2} \log \left|\Sigma^{-1}\right|-\frac{1}{2} \sum_{i=1}^{m}\left(y^{(i)}-C x^{(i)}\right)^{\top} \Sigma^{-1}\left(y^{(i)}-C x^{(i)}\right) \\
& \nabla_{\Sigma^{-1}} \log l(C, \Sigma)=-\frac{m}{2} \Sigma-\frac{1}{2} \sum_{i=1}^{m}\left(y^{(i)}-C^{\top} x^{(i)}\right)\left(y^{(i)}-C^{\top} x^{(i)}\right)^{\top} \\
& \rightarrow \quad \Sigma_{\mathrm{ML}}=\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-C^{\top} x^{(i)}\right)\left(y^{(i)}-C^{\top} x^{(i)}\right)^{\top}=\frac{1}{m}\left(Y^{\top}-C X^{\top}\right)\left(Y^{\top}-C X^{\top}\right)^{\top} \\
& \nabla_{C} \log l(C, \Sigma)=-\frac{1}{2} \sum_{i=1}^{m} \Sigma^{-1} C x^{(i)} x^{(i) \top}+x^{(i)} x^{(i) \top} C^{\top} \Sigma^{-1}-x^{(i)} y^{(i) \top} \Sigma^{-1}-\Sigma^{-1} y^{(i)} x^{(i) \top} \\
& \begin{aligned}
= & -\frac{1}{2}\left(\Sigma^{-1} C X^{\top} X+X^{\top} X C^{\top} \Sigma^{-1}-X^{\top} Y \Sigma^{-1}-\Sigma^{-1} Y^{\top} X\right) \\
& C=Y^{\top} X\left(X^{\top} X\right)^{-1}
\end{aligned} \\
& X=\left[\begin{array}{l}
x^{(1) T} \\
x^{(2) T} \\
\vdots \\
x^{(m) T}
\end{array}\right] \quad y=\left[\begin{array}{l}
y^{(1) T} \\
y^{(2) T} \\
y^{(m) T}
\end{array}\right]
\end{aligned}
$$

Aside: Key Identities for Derivation on Previous Slide

$$
\begin{equation*}
\operatorname{Trace}(A)=\sum_{i=1}^{n} A_{i i} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\operatorname{Trace}(A B C)=\operatorname{Trace}(B C A)=\operatorname{Trace}(C A B) \tag{2}\\
\nabla_{A} \operatorname{Trace}(A B)=B^{\top} \tag{3}\\
\nabla_{A} \log |A|=A^{-1} \tag{4}
\end{gather*}
$$

Special case of (2), for $x \in \mathbb{R}^{n}$:

$$
\begin{equation*}
x^{\top} \Gamma x=\operatorname{Trace}\left(x^{\top} \Gamma x\right)=\operatorname{Trace}\left(\Gamma x x^{\top}\right) \tag{5}
\end{equation*}
$$

ML Estimation in Fully Observed Linear Gaussian Bayes Filter Setting

- Consider the Linear Gaussian setting:

$$
\begin{aligned}
X_{t+1} & =A X_{t}+B u_{t}+w_{t} & w_{t} & \sim \mathcal{N}(0, Q) \\
Z_{t+1} & =C X_{t}+d+v_{t} & v_{t} & \sim \mathcal{N}(0, R)
\end{aligned}
$$

- Fully observed, i.e., given $x_{0}, u_{0}, z_{0}, x_{1}, u_{1}, z_{1}, \ldots, x_{T}, u_{T}, z_{t}$
- \rightarrow Two separate ML estimation problems for conditional multivariate Gaussian:
- 1 :
$\left[A_{\text {MI }} B_{\text {MII }}\right]=Y^{\top} X\left(X^{\top} X\right)^{-1}$

$$
X=\left[\begin{array}{c}
{\left[\begin{array}{c}
x_{0}^{\top} u_{T}^{\top} \\
x_{1}^{\top} u_{1}^{1} \\
x_{T-1}^{T_{-1}} u_{T-1}^{\top}
\end{array}\right] \quad y=\left[\begin{array}{c}
\left.A_{\mathrm{ML}}^{\top} B_{\mathrm{MLL}}^{\top}\right]=Y^{\top} X\left(X^{\top} X\right)^{-1} \\
x_{2}^{1} \\
x_{x}^{T}
\end{array}\right] \quad Q_{\mathrm{ML}}=\frac{1}{T} \sum_{t=0}^{T-1}\left(x_{t+1}-\left(A x_{t}+B u_{t}\right)\right)\left(x_{t+1}-\left(A x_{t}+B u_{t}\right)^{\top}\right.}
\end{array}\right.
$$

- 2 :
$\left[C_{\text {MI }} d_{\text {MII }}\right]=Y^{\top} X\left(X^{\top} X\right)^{-1}$
$R_{\mathrm{ML}}=\frac{1}{T} \sum_{t=0}^{T}\left(z_{t}-\left(C x_{t}+d\right)\right)\left(z_{t}-\left(C x_{t}+d\right)^{\top}\right.$

Priors --- Thumbtack

- Let $\theta=\mathrm{P}($ up $), \quad \mathrm{I}-\theta=\mathrm{P}($ down $)$
- How to determine θ ?

- ML estimate: 5 up, 0 down $\rightarrow \theta_{\mathrm{ML}}=\frac{5}{5+0}=1$
- Laplace estimate: add a fake count of I for each outcome

$$
\theta_{\text {Laplace }}=\frac{5+1}{5+1+0+1}=\frac{6}{7}
$$

Priors --- Thumbtack

- Alternatively, consider $\$ \theta \$$ to be random variable
- Prior $\mathrm{P}(\theta) \propto \theta(\mathrm{I}-\theta)$
- Measurements: $\mathrm{P}(\mathrm{x} \mid \theta)$
- Posterior:

$$
\begin{aligned}
P\left(\theta \mid x^{(1)}, \ldots, x^{(5)}\right) & \propto P\left(\theta, x^{(1)}, \ldots, x^{(5)}\right) \\
& =P(\theta) P\left(x^{(1)} \mid \theta\right) \ldots P\left(x^{(5)} \mid \theta\right) \\
& =\theta(1-\theta) \theta \theta \theta \theta \theta \\
& =\theta^{6}(1-\theta)
\end{aligned}
$$

- Maximum A Posterior (MAP) estimation
- = find θ that maximizes the posterior
$\rightarrow \quad \theta_{\mathrm{MAP}}=\frac{6}{7}$

Priors --- Beta Distribution

$$
P(\theta ; \alpha, \beta)=\theta^{\alpha-1}(1-\theta)^{\beta-1} \quad \theta_{\mathrm{MAP}}=\frac{\alpha-1+n_{1}}{\alpha-1+n_{1}+\beta-1+n_{0}}
$$

Priors --- Dirichlet Distribution

$$
\begin{gathered}
P\left(\theta ; \alpha_{1}, \ldots, \alpha_{K}\right)=\prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \\
\theta_{k}^{\mathrm{MAP}}=\frac{n_{k}+\alpha_{k}-1}{\sum_{j=1}^{K}\left(n_{j}+\alpha_{j}-1\right)}
\end{gathered}
$$

- Generalizes Beta distribution
- MAP estimate corresponds to adding fake counts $\mathrm{n}_{\mathrm{l}}, \ldots, \mathrm{n}_{\mathrm{K}}$

MAP for Mean of Univariate Gaussian

- Assume variance known. (Can be extended to also find MAP for variance.)
- Prior: $\quad P\left(\mu ; \mu_{0}, \sigma_{0}^{2}\right)=\mathcal{N}\left(\mu_{0}, \sigma_{0}^{2}\right)$

$$
\begin{aligned}
& \log P\left(\mu ; \mu_{0}, \sigma_{0}^{2}\right)+\log l(\mu)=\log \left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\right)+\sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}}\right) \\
&=C-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\sum_{i=1}^{m} \frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}} \\
& \frac{\partial}{\partial \mu}\left(\log P\left(\mu ; \mu_{0}, \sigma_{0}\right)+\log l(\mu)\right)=\frac{1}{\sigma_{0}^{2}}\left(\mu_{0}-\mu\right)+\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(x^{(i)}-\mu\right) \\
& \rightarrow \mu_{\mathrm{ML}}=\frac{\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{\sum_{i=1}^{m} x^{(i)}}{\sigma^{2}}}{\frac{1}{\sigma_{0}^{2}}+\frac{m}{\sigma^{2}}}
\end{aligned}
$$

MAP for Univariate Conditional Linear Gaussian

- Assume variance known. (Can be extended to also find MAP for variance.)
- Prior: $P\left(a ; \mu_{0}, \Sigma_{0}\right)=\mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)$
$\log P\left(a ; \mu_{0}, \Sigma_{0}\right)+\log l(a)=\log \left(\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{0}\right|^{1 / 2}} e^{-\frac{1}{2}\left(a-\mu_{0}\right)^{\top} \Sigma_{0}^{-1}\left(a-\mu_{0}\right)}\right)+\sum_{i=1}^{m} \log \left(\frac{1}{(2 \pi)^{1 / 2} \sigma} e^{-\frac{\left(a^{\top} x^{\left.(i)-y^{(i)}\right)^{2}}\right.}{2 \sigma^{2}}}\right)$ $=C-\frac{1}{2}\left(a-\mu_{0}\right)^{\top} \Sigma_{0}^{-1}\left(a-\mu_{0}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(a^{\top} x^{(i)}-y^{(i)}\right)^{2}$
$\nabla_{a}(\cdots)=-\Sigma_{0}^{-1}\left(a-\mu_{0}\right)-\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(a^{\top} x^{(i)}-y^{(i)}\right) x^{(i)}$
$=-\left(\Sigma_{0}^{-1}+\frac{1}{\sigma^{2}} X^{\top} X\right) a+\Sigma_{0}^{-1} \mu_{0}+\frac{1}{\sigma^{2}} X^{\top} y$
$\rightarrow a_{\mathrm{ML}}=\left(\Sigma_{0}^{-1}+\frac{1}{\sigma^{2}} X^{\top} X\right)^{-1}\left(\Sigma_{0}^{-1} \mu_{0}+\frac{1}{\sigma^{2}} X^{\top} y\right) \quad X=\left[\begin{array}{c}x^{(1) \top} \\ x^{(2) \top} \\ \ldots \\ x^{(m) \top}\end{array}\right] \quad y=\left[\begin{array}{c}y^{(1)} \\ y^{(2)} \\ \ldots \\ y^{(m)}\end{array}\right]$

MAP for Univariate Conditional Linear Gaussian: Example

$\mu_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right], \Sigma_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \sigma=1$
for run=1:4
$\mathrm{a}=$ randn;
$\mathrm{b}=$ randn;
$\mathrm{x}=($ rand $(5,1)-0.5) ;$

$\mathrm{x}=$ [ones $(5,1) \mathrm{x}]$;

figure; plot(x, y, '.);
plot (x, ba ML $(1)+$ ba_ML(2)*x, $r-1)$;
 $\operatorname{plot}(x, b \overline{+} a * x, ' g-1)$;
end

TRUE ---
Samples .
ML ---
MAP ---

Cross Validation

- Choice of prior will heavily influence quality of result
- Fine-tune choice of prior through cross-validation:
- I. Split data into "training" set and "validation" set
- 2. For a range of priors,
- Train: compute $\theta_{\text {MAP }}$ on training set
- Cross-validate: evaluate performance on validation set by evaluating the likelihood of the validation data under $\theta_{\text {MAP }}$ just found
- 3. Choose prior with highest validation score
- For this prior, compute $\theta_{\text {MAP }}$ on (training+validation) set
- Typical training / validation splits:
- I-fold: 70/30, random split
- IO-fold: partition into 10 sets, average performance for each of the sets being the validation set and the other 9 being the training set

Outline

- Maximum likelihood (ML)
- Priors, and maximum a posteriori (MAP)
- Cross-validation
- Expectation Maximization (EM)

Mixture of Gaussians

- Generally: $\quad X \sim \operatorname{Multinomial}(\theta)$

$$
Z \mid X=k \sim \mathcal{N}\left(\mu_{k}, \Sigma_{k}\right)
$$

- Example: $P(X=1)=\frac{1}{2}, P(X=2)=\frac{1}{2}$
$Z \mid X=1 \sim \mathcal{N}(-1,1)$ $Z \mid X=2 \sim \mathcal{N}(2,1)$
$\rightarrow Z \sim \frac{1}{2} \mathcal{N}(-1,1)+\frac{1}{2} \mathcal{N}(2,1)$

- ML Objective: given data $\mathbf{z}^{(1)}, \ldots, z^{(m)}$

$$
\max _{\theta, \mu, \Sigma} \sum_{i=1}^{m} \log \sum_{k=1}^{n} \theta_{k} \frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{k}\right|^{-\frac{1}{2}\left(z-\mu_{k}\right)^{\top} \Sigma_{k}^{-1}\left(z-\mu_{k}\right)}}
$$

- Setting derivatives w.r.t. θ, μ, Σ equal to zero does not enable to solve for their ML estimates in closed form

Expectation Maximization (EM)

- Example:
- Model: $\quad P(X=1)=\frac{1}{2}, P(X=2)=\frac{1}{2}$
$Z \mid X=1 \sim \mathcal{N}\left(\mu_{1}, 1\right)$
$Z \mid X=2 \sim \mathcal{N}\left(\mu_{2}, 1\right)$
- Goal:
- Given data $z^{(1)}, \ldots, z^{(m)}$ (but no $x^{(i)}$ observed)
- Find maximum likelihood estimates of μ_{1}, μ_{2}
- EM basic idea: if $\mathrm{x}^{(\mathrm{i})}$ were known \rightarrow two easy-to-solve separate ML problems
- EM iterates over
- E-step: For $\mathrm{i}=\mathrm{I}, \ldots, \mathrm{m}$ fill in missing data $\mathrm{x}^{(\mathrm{i})}$ according to what is most likely given the current model μ
- M-step: run ML for completed data, which gives new model μ

EM Derivation

- EM solves a Maximum Likelihood problem of the form:

$$
\max _{\theta} \log \int_{x} p(x, z ; \theta) d x
$$

θ : parameters of the probabilistic model we try to find x : unobserved variables
z: observed variables

$$
\begin{aligned}
\max _{\theta} \log \int_{x} p(x, z ; \theta) d x & =\max _{\theta} \log \int_{x} \frac{q(x)}{q(x)} p(x, z ; \theta) d x \\
& =\max _{\theta} \log \int_{x} q(x) \frac{p(x, z ; \theta)}{q(x)} d x \\
& =\max _{\theta} \log E_{X \sim q}\left[\frac{p(X, z ; \theta)}{q(X)}\right] \\
\text { Jensen's Inequality } & \geq \max _{\theta} E_{X \sim q} \log \left[\frac{p(X, z ; \theta)}{q(X)}\right] \\
& =\max _{\theta} \int_{x} q(x) \log p(x, z ; \theta) d x-\int_{x} q(x) \log q(x) d x
\end{aligned}
$$

Jensen's inequality

Suppose f is concave, then for all probability measures P we have that:

$$
f\left(\mathrm{E}_{X \sim P}\right) \geq E_{X \sim P}[f(X)]
$$

with equality holding only if f is an affine function.

Illustration:
$P\left(X=x_{1}\right)=1-\lambda$,
$\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{2}\right)=\lambda$

EM Derivation (ctd)

$\max _{\theta} \log \int_{x} p(x, z ; \theta) d x \geq \max _{\theta} \int_{x} q(x) \log p(x, z ; \theta) d x-\int_{x} q(x) \log q(x) d x$
Jensen's Inequality: equality holds when $f(x)=\log \frac{p(x, z ; \theta)}{q(x)}$ is an affine
function. This is achieved for $q(x)=p(x \mid z ; \theta) \propto p(x, z ; \theta)$

EM Algorithm: Iterate

I. E-step: Compute $\quad q(x)=p(x \mid z ; \theta)$
2. M-step: Compute $\quad \theta=\arg \max _{\theta} \int_{x} q(x) \log p(x, z ; \theta) d x$

[^0]
EM Derivation (ctd)

- M-step objective is upperbounded by true objective
- M-step objective is equal to true objective at current parameter estimate

- \rightarrow Improvement in true objective is at least as large as improvement in M-step objective

EM 1-D Example --- 2 iterations

- Estimate I-d mixture of two Gaussians with unit variance:
- $p(x ; \mu)=\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(x-\mu_{1}\right)^{2}}+\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(x-\mu_{2}\right)^{2}}$

- one parameter $\mu ; \mu_{1}=\mu$ - ${ }^{\text {mu }} 7.5, \mu_{2}=\mu+7.5$

EM for Mixture of Gaussians

- $X \sim$ Multinomial Distribution, $P(X=k ; \theta)=\mu_{k}$
- $\mathbf{Z} \sim \mathbf{N}\left(\mu_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right)$
- Observed: $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \ldots, \mathbf{z}^{(m)}$

$$
\begin{gathered}
p(x=k, z ; \theta, \mu, \Sigma)=\theta_{k} \frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{k}\right|^{1 / 2}} e^{-\frac{1}{2}\left(z-\mu_{k}\right)^{\top} \Sigma_{k}^{-1}\left(z-\mu_{k}\right)} \\
p(z ; \theta, \mu, \Sigma)=\sum_{k=1}^{K} \theta_{k} \frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{k}\right|^{1 / 2}} e^{-\frac{1}{2}\left(z-\mu_{k}\right)^{\top} \Sigma_{k}^{-1}\left(z-\mu_{k}\right)}
\end{gathered}
$$

EM for Mixture of Gaussians

- E-step: $\quad q(x)=p(x \mid z ; \theta, \mu, \Sigma)=\prod_{i=1}^{m} p\left(x^{(i)} \mid z^{(i)} ; \theta, \mu, \Sigma\right)$

$$
\begin{aligned}
\rightarrow q\left(x^{(i)}=k\right) & =p\left(x^{(i)}=k \mid z^{(i)} ; \theta, \mu, \Sigma\right) \\
& \propto p\left(x^{(i)}=k, z^{(i)} ; \theta, \mu, \Sigma\right) \\
& =\theta_{k} \mathcal{N}\left(z^{(i)} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

- M-step: $\max _{\theta, \mu, \Sigma} \sum_{i=1}^{m} \sum_{k=1}^{k} q\left(x^{(i)}=k\right) \log \left(\theta_{k} \mathcal{N}\left(z^{(i)} ; \mu_{k}, \Sigma_{k}\right)\right)$
$\rightarrow \theta_{k}=\frac{1}{m} \sum_{i=1}^{m} q\left(x^{(i)}=k\right) \quad \rightarrow \mu_{k}=\frac{1}{\sum_{i=1}^{m} q\left(x^{(i)}=k\right)} q\left(x^{(i)}=k\right) z^{(i)}$
$\rightarrow \Sigma_{k}=\frac{1}{\sum_{i=1}^{m} q\left(x^{(i)}=k\right)} q\left(x^{(i)}=k\right)\left(z^{(i)}-\mu_{k}\right)\left(z^{(i)}-\mu_{k}\right)^{\top}$

ML Objective HMM

- Given samples
$\left\{z_{0}, z_{1}, z_{2}, \ldots, z_{T}\right\}, x_{t} \in\{1,2, \ldots, I\}, z_{t} \in\{1,2, \ldots, K\}$
- Dynamics model: $\quad P\left(x_{t+1}=i \mid x_{t}=j\right)=\theta_{i \mid j}$
- Observation model: $\quad P\left(z_{t}=k \mid z_{t}=l\right)=\gamma_{k \mid l}$
- ML objective:

$$
\begin{aligned}
\log l(\theta, \gamma) & =\log \left(\sum_{x_{0}, x_{1}, \ldots, x_{T}} P\left(x_{0}\right) \prod_{t=1}^{T} P\left(x_{t} \mid x_{t-1} ; \theta\right) P\left(z_{t} \mid x_{t} ; \gamma\right)\right) \\
& =\log \left(\sum_{x_{0}, x_{1}, \ldots, x_{T}} P\left(x_{0}\right) \prod_{t=1}^{T} \theta_{x_{t} \mid x_{t-1}} \prod_{t=1}^{T} \gamma_{z_{t} \mid x_{t}}\right)
\end{aligned}
$$

\rightarrow No simple decomposition into independent ML problems for each $\theta_{\cdot \mid j}$ and each $\gamma_{\cdot \mid l}$
\rightarrow No closed form solution found by setting derivatives equal to zero

EM for HMM --- M-step

- $\quad \max _{\theta, \gamma} \sum_{x_{0: T}} q\left(x_{0: T}\right) \log p\left(x_{0: T}, z_{0: T} ; \theta, \gamma\right)$
$=\max _{\theta, \gamma} \sum_{x_{0: T}} q\left(x_{0: T}\right)\left(\sum_{t=0}^{T-1} \log p\left(x_{t+1} \mid x_{t} ; \theta\right)+\sum_{t=0}^{T} \log p\left(z_{t} \mid x_{t} ; \gamma\right)\right)$
$=\max _{\theta, \gamma} \sum_{t=0}^{T-1} \sum_{x_{t}, x_{t+1}} q\left(x_{t}, x_{t+1}\right) \log p\left(x_{t+1} \mid x_{t} ; \theta\right)+\sum_{t=0}^{T} \sum_{x_{t}} q\left(x_{t}\right) \log p\left(z_{t} \mid x_{t} ; \gamma\right)$
$\rightarrow \theta$ and γ computed from "soft" counts

$$
\begin{aligned}
n_{(i, j)} & =\sum_{t=0}^{T-1} q\left(x_{t+1}=i, x_{t}=j\right) \\
m_{(k, l)} & =\sum_{t=0}^{T} q\left(z_{t}=k, x_{t}=l\right)
\end{aligned}
$$

$$
\theta_{i \mid j}=\frac{n_{(i, j)}}{\sum_{i^{\prime}=1}^{I} n_{\left(i^{\prime}, j\right)}} \quad \gamma_{k \mid l}=\frac{m_{(k, l)}}{\sum_{k^{\prime}=1}^{K} m_{\left(k^{\prime}, l\right)}}
$$

EM for HMM --- E-step

- No need to find conditional full joint $q\left(x_{0: T}\right)=p\left(x_{0: T} \mid z_{0: T} ; \theta, \gamma\right)$
- Run smoother to find:

$$
\begin{aligned}
q\left(x_{t}, x_{t+1}\right) & =p\left(x_{t}, x_{t+1} \mid z_{0: T} ; \theta, \gamma\right) \\
q\left(x_{t}\right) & =p\left(x_{t} \mid z_{0: T} ; \theta, \gamma\right)
\end{aligned}
$$

ML Objective for Linear Gaussians

- Linear Gaussian setting:

$$
\begin{aligned}
X_{t+1} & =A X_{t}+B u_{t}+w_{t} & w_{t} & \sim \mathcal{N}(0, Q) \\
Z_{t+1} & =C X_{t}+d+v_{t} & v_{t} & \sim \mathcal{N}(0, R)
\end{aligned}
$$

- Given $u_{0}, z_{0}, u_{1}, z_{1}, \ldots, u_{T}, z_{t}$
- ML objective:

$$
\max _{Q, R, A, B, C, d} \log \int_{x_{0: T}} p\left(x_{0: T}, z_{0: T} ; Q, R, A, B, C, d\right)
$$

- EM-derivation: same as HMM

EM for Linear Gaussians --- E-Step

- Forward:

$$
\begin{aligned}
\mu_{t+1 \mid 0: t} & =A_{t} \mu_{t \mid 0: t}+B_{t} u_{t} \\
\Sigma_{t+1 \mid 0: t} & =A_{t} \Sigma_{t \mid 0: t} A_{t}^{\top}+Q_{t} \\
K_{t+1} & =\Sigma_{t+1 \mid 0: t} C_{t+1}^{\top}\left(C_{t+1} \Sigma_{t+1 \mid 0: t} C_{t+1}^{\top}+R_{t+1}\right)^{-1} \\
\mu_{t+1 \mid 0: t+1} & =\mu_{t+1 \mid 0: t}+K_{t+1}\left(z_{t+1}-\left(C_{t+1} \mu_{t+1 \mid 0: t}+d\right)\right) \\
\Sigma_{t+1 \mid 0: t+1} & =\left(I-K_{t+1} C_{t+1}\right) \Sigma_{t+1 \mid 0: t}
\end{aligned}
$$

- Backward:

$$
\begin{aligned}
\mu_{t \mid 0: T} & =\mu_{t \mid 0: t}+L_{t}\left(\mu_{t+1 \mid 0: T}-\mu_{t+1 \mid 0: t}\right) \\
\Sigma_{t \mid 0: T} & =\Sigma_{t \mid 0: t}+L_{t}\left(\Sigma_{t+1 \mid 0: T}-\Sigma_{t+1 \mid 0: t}\right) L_{t}^{\top} \\
L_{t} & =\Sigma_{t \mid 0: t} A_{t}^{\top} \Sigma_{t+1 \mid 0: t}^{-1}
\end{aligned}
$$

EM for Linear Gaussians --- M-step

$$
\begin{aligned}
Q= & \frac{1}{T} \sum_{t=0}^{T-1}\left(\mu_{t+1 \mid 0: T}-A_{t} \mu_{t \mid 0: T}-B_{t} u_{t}\right)\left(\mu_{t+1 \mid 0: T}-A_{t} \mu_{t \mid 0: T}-B_{t} u_{t}\right)^{\top} \\
& +A_{t} \Sigma_{t \mid 0: T} A_{t}^{\top}+\Sigma_{t+1 \mid 0: T}-\Sigma_{t+1 \mid 0: T} L_{t}^{\top} A_{t}^{\top}-A_{t} L_{t} \Sigma_{t+1 \mid 0: T} \\
R= & \frac{1}{T+1} \sum_{t=0}^{T}\left(z_{t}-C_{t} \mu_{t \mid 0: T}-d_{t}\right)\left(z_{t}-C_{t} \mu_{t \mid 0: T}-d_{t}\right)^{\top}+C_{t} \Sigma_{t \mid 0: T} C_{t}^{\top}
\end{aligned}
$$

EM for Linear Gaussians --- The Log-likelihood

- When running EM, it can be good to keep track of the loglikelihood score --- it is supposed to increase every iteration

$$
\begin{aligned}
& \begin{aligned}
& \log \prod_{t=1}^{T} p\left(z_{0: T}\right)=\log \left(p\left(z_{0}\right) \prod_{t=1}^{T} p\left(z_{t} \mid z_{0: t-1}\right)\right) \\
&=\log p\left(z_{0}\right)+\sum_{t=1}^{T} \log p\left(z_{t} \mid z_{0: t-1}\right) \\
& Z_{t} \mid z_{0: t-1} \sim \mathcal{N}\left(\bar{\mu}_{t}, \bar{\Sigma}_{t}\right) \\
& \bar{\mu}_{t}=C_{t} \mu_{t \mid 0: t-1}+d_{t} \\
& \bar{\Sigma}_{t}=C_{t} \Sigma_{t+1 \mid 0: t} C_{t}^{\top}+R_{t}
\end{aligned} .
\end{aligned}
$$

EM for Extended Kalman Filter Setting

- As the linearization is only an approximation, when performing the updates, we might end up with parameters that result in a lower (rather than higher) log-likelihood score
- \rightarrow Solution: instead of updating the parameters to the newly estimated ones, interpolate between the previous parameters and the newly estimated ones. Perform a "line-search" to find the setting that achieves the highest log-likelihood score

[^0]: M-step optimization can be done efficiently in most cases
 E -step is usually the more expensive step
 It does not fill in the missina data x with hard values, but finds a distribution $\mathrm{a}(\mathrm{x})$

