Motion Planning

Pieter Abbeel
UC Berkeley EECS

Many images from Lavalle, Planning Algorithms

Motion Planning

|
= Problem

= Given start state X, goal state Xg

= Asked for: a sequence of control inputs that leads from
start to goal
= Why tricky?
= Need to avoid obstacles
= For systems with underactuated dynamics: can’t simply

move along any coordinate at will

= E.g., car, helicopter, airplane, but also robot manipulator hitting
joint limits

Page 1

Solve by Nonlinear Optimization for Control?

' Could try by, for example, following formulation:

min, ,; (zp — xG)T(zT —zq)
s.t. Tip1 = [z, ug) VE
uy € Uy
zy € Xy

To =1Ts

X can encode obstacles

= Or, with constraints, (which would require using an infeasible method):

s.t. Tep1 = f(e,ug) VE
uy € Uy
T € Xy
To =Ts

XT:IG

= Can work surprisingly well, but for more complicated problems with longer
horizons, often get stuck in local maxima that don’t reach the goal

Examples

|
= Helicopter path planning

= Swinging up cart-pole

= Acrobot

Page 2

‘ Examples

Examples

Page 3

Examples

Motion Planning: Outline

I
= Configuration Space

Probabilistic Roadmap
= Boundary Value Problem
= Sampling

= Collision checking

Rapidly-exploring Random Trees (RRTs)

Smoothing

Page 4

Configuration Space (C-Space)

|
={x| xis a pose of the robot}

= obstacles = configuration space obstacles

Workspace Configuration Space

(2 DOF: translation only, no rotation)

free space [
obstacles I

' 4
=

‘ Motion planning

conf-3

Page 5

Probabilistic Roadmap (PRM)

Free/feasible space

Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random

Page 6

Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Sampled configurations are tested for collision

Page 7

Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Page 8

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM

)

P

Page 9

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

)

>

Probabilistic Roadmap (PRM)

The PRM is searched for a path from s to g

Page 10

Probabilistic Roadmap

= Initialize set of points with Xg and Xg
= Randomly sample points in configuration space

= Connect nearby points if they can be reached from each
other

= Find path from X to X in the graph

= alternatively: keep track of connected components
incrementally, and declare success when X; and X are in
same connected component

PRM example

Page 11

PRM example 2

PRM: Challenges

|

I. Connecting neighboring points: Only easy for holonomic
systems (i.e., for which you can move each degree of freedom at
will at any time). Generally requires solving a Boundary Value
Problem

ming ,; |ul|

st w1 = flw,w) VE Typically solved without
ue € Us collision checking; later
T € & verified if valid by
%o =2s collision checking
XT =g

2. Collision checking:
Often takes majority of time in applications (see Lavalle)

3. Sampling: how to sample uniformly (or biased according to
prior information) over configuration space?

Page 12

Sampling

= How to sample uniformly at random from [0, 1]" ?

= Sample uniformly at random from [0, |] for each
coordinate

= How to sample uniformly at random from the surface of the
n-D unit sphere?

= Sample from n-D Gaussian = isotropic; then just
normalize

= How to sample uniformly at random for orientations in 3-D?

PRM’s Pros and Cons

|
s Pro:

= Probabilistically complete: i.e., with probability one, if run
long the graph will contain a solution path if one exists.

= Cons:
= Required to solve 2 point boundary value problem

= Build graph over state space but no particular focus on
generating a path

Page 13

Rapidly exploring Random Trees

|
m Basic idea:

= Build up a tree through generating “next states” in the
tree by executing random controls

= However: not exactly above to ensure good coverage

Rapidly-exploring Random Trees (RRT)

GENERATE RRT (init, K, At)
1 T .init(zipi);
2 fork=1to K do
3 Zrand RANDOM_STATE();
4 Znear — NEAREST_NEIGHBOR(2;and, T);
5 u ¢ SELECTINPUT(2and, Tnear);
6 ZTnew — NEW_STATE(2,cqr, u, At);
7 T .add_vertex(Z,ew);
8 T .add-edge(Tnear, Tnew, U);
9 Return T

Page 14

RRT Practicalities

= Finding (approximate) nearest neighbor efficiently
= KD Trees data structure (upto 20-D) [e.g., FLANN]

= Locality Sensitive Hashing

Growing RRT

Page 15

Bi-directional RRT

Multi-directional RRT

Page 16

Resolution-Complete RRT

Smoothing

= Shortcutting

= Nonlinear optimization for optimal control

Page 17

Example: Swing up Pendulum

Example: Swing up Acrobot

Page 18

