Motion Planning

Pieter Abbeel
UC Berkeley EECS

Many images from Lavalle, Planning Algorithms

Motion Planning

- Problem
 - Given start state X_S, goal state X_G
 - Asked for: a sequence of control inputs that leads from start to goal
- Why tricky?
 - Need to avoid obstacles
 - For systems with underactuated dynamics: can't simply move along any coordinate at will
 - E.g., car, helicopter, airplane, but also robot manipulator hitting joint limits

Solve by Nonlinear Optimization for Control?

Could try by, for example, following formulation:

$$\begin{aligned} \min_{u,x} & & (x_T - x_G)^\top (x_T - x_G) \\ \text{s.t.} & & x_{t+1} = f(x_t, u_t) & \forall t \\ & & u_t \in \mathcal{U}_t \\ & & x_t \in \mathcal{X}_t \\ & & x_0 = x_S \end{aligned}$$

 $X_{\rm t}$ can encode obstacles

Or, with constraints, (which would require using an infeasible method):

$$\begin{aligned} \min_{u,x} & & \|u\| \\ \text{s.t.} & & x_{t+1} = f(x_t, u_t) & \forall t \\ & & u_t \in \mathcal{U}_t \\ & & x_t \in \mathcal{X}_t \\ & & x_0 = x_S \\ & & X_T = x_G \end{aligned}$$

 Can work surprisingly well, but for more complicated problems with longer horizons, often get stuck in local maxima that don't reach the goal

Examples

Helicopter path planning

Swinging up cart-pole

Acrobot

Examples

Motion Planning: Outline

- Configuration Space
- Probabilistic Roadmap
 - Boundary Value Problem
 - Sampling
 - Collision checking
- Rapidly-exploring Random Trees (RRTs)
- Smoothing

Probabilistic Roadmap

- Initialize set of points with X_S and X_G
- Randomly sample points in configuration space
- Connect nearby points if they can be reached from each other
- Find path from X_S to X_G in the graph
 - alternatively: keep track of connected components incrementally, and declare success when X_S and X_G are in same connected component

PRM example

PRM example 2

PRM: Challenges

I. Connecting neighboring points: Only easy for holonomic systems (i.e., for which you can move each degree of freedom at will at any time). Generally requires solving a Boundary Value Problem

$$\begin{aligned} \min_{u,x} & & \|u\| \\ \text{s.t.} & & x_{t+1} = f(x_t, u_t) & \forall t \\ & & u_t \in \mathcal{U}_t \\ & & x_t \in \mathcal{X}_t \\ & & x_0 = x_S \\ & & X_T = x_G \end{aligned}$$

Typically solved without collision checking; later verified if valid by collision checking

2. Collision checking:

Often takes majority of time in applications (see Lavalle)

3. Sampling: how to sample uniformly (or biased according to prior information) over configuration space?

Sampling

- How to sample uniformly at random from [0,1]ⁿ?
 - Sample uniformly at random from [0,1] for each coordinate
- How to sample uniformly at random from the surface of the n-D unit sphere?
 - Sample from n-D Gaussian → isotropic; then just normalize
- How to sample uniformly at random for orientations in 3-D?

PRM's Pros and Cons

- Pro:
 - Probabilistically complete: i.e., with probability one, if run long the graph will contain a solution path if one exists.
- Cons:
 - Required to solve 2 point boundary value problem
 - Build graph over state space but no particular focus on generating a path

Rapidly exploring Random Trees

- Basic idea:
 - Build up a tree through generating "next states" in the tree by executing random controls
 - However: not exactly above to ensure good coverage

Rapidly-exploring Random Trees (RRT)

```
GENERATE_RRT(x_{init}, K, \Delta t)

1 \mathcal{T}.init(x_{init});

2 for k = 1 to K do

3 x_{rand} \leftarrow RANDOM\_STATE();

4 x_{near} \leftarrow NEAREST\_NEIGHBOR(x_{rand}, \mathcal{T});

5 u \leftarrow SELECT\_INPUT(x_{rand}, x_{near});

6 x_{new} \leftarrow NEW\_STATE(x_{near}, u, \Delta t);

7 \mathcal{T}.add\_vertex(x_{new});

8 \mathcal{T}.add\_edge(x_{near}, x_{new}, u);

9 Return \mathcal{T}
```

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state with probability 1%, this ensures it attempts to connect to goal semi-regularly

RRT Practicalities

- NEAREST_NEIGHBOR(X_{rand}, T): need to find (approximate) nearest neighbor efficiently
 - KD Trees data structure (upto 20-D) [e.g., FLANN]
 - Locality Sensitive Hashing
- SELECT_INPUT(x_{rand}, x_{near})
 - Two point boundary value problem
 - If too hard to solve, often just select best out of a set of control sequences. This set could be random, or some well chosen set of primitives.

RRT Extension

No obstacles, holonomic:

With obstacles, holonomic:

 Non-holonomic: approximately (sometimes as approximate as picking best of a few random control sequences) solve two-point boundary value problem

Multi-directional RRT

 Planning around obstacles or through narrow passages can often be easier in one direction than the other

Resolution-Complete RRT (RC-RRT)

 Issue: nearest points chosen for expansion are (too) often the ones stuck behind an obstacle

 q_{ϵ}

RC-RRT solution:

- Choose a maximum number of times, m, you are willing to try to expand each node
- For each node in the tree, keep track of its Constraint Violation Frequency (CVF)
- Initialize CVF to zero when node is added to tree
- Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):
 - Increase CVF of that node by I
 - Increase CVF of its parent node by I/m, its grandparent I/m², ...
- When a node is selected for expansion, skip over it with probability CVF/m

Smoothing

Randomized motion planners tend to find not so great paths for execution: very jagged, often much longer than necessary.

- → In practice: do smoothing before using the path
- Shortcutting:
 - along the found path, pick two vertices X_{t1}, X_{t2} and try to connect them directly (skipping over all intermediate vertices)
- Nonlinear optimization for optimal control
 - Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc.

Example: Swing up Pendulum

