Nonlinear Optimization for Optimal Control

Pieter Abbeel UC Berkeley EECS

[optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 - I I
[optional] Betts, Practical Methods for Optimal Control Using Nonlinear Programming

Bellman's curse of dimensionality

- n-dimensional state space
- Number of states grows exponentially in n (assuming some fixed number of discretization levels per coordinate)
- In practice
- Discretization is considered only computationally feasible up to 5 or 6 dimensional state spaces even when using
- Variable resolution discretization
- Highly optimized implementations

This Lecture: Nonlinear Optimization for Optimal Control

- Goal: find a sequence of control inputs (and corresponding sequence of states) that solves:

$$
\begin{aligned}
\min _{u, x} & \sum_{t=0}^{H} g\left(x_{t}, u_{t}\right) \\
\text { subject to } & x_{t+1}=f\left(x_{t}, u_{t}\right) \quad \forall t \\
& u_{t} \in \mathcal{U}_{t} \quad \forall t \\
& x_{t} \in \mathcal{X}_{t} \quad \forall t
\end{aligned}
$$

- Generally hard to do. We will cover methods that allow to find a local minimum of this optimization problem.
- Note: iteratively applying LQR is one way to solve this problem if there were no constraints on the control inputs and state

Outline

- Unconstrained minimization
- Gradient Descent
- Newton's Method
- Equality constrained minimization
- Inequality and equality constrained minimization

Unconstrained Minimization

(Implicitly assumed x can be chosen from the entire domain of f, often \mathbb{R}^{n}.)

- If x^{*} satisfies:

$$
\begin{aligned}
& \nabla_{x} f\left(x^{*}\right)=0 \\
& \nabla_{x}^{2} f\left(x^{*}\right) \succeq 0
\end{aligned}
$$

then x^{*} is a local minimum of f.

- In simple cases we can directly solve the system of n equations given by (2) to find candidate local minima, and then verify (3) for these candidates.
- In general however, solving (2) is a difficult problem. Going forward we will consider this more general setting and cover numerical solution methods for (I).

Steepest Descent

- Idea:
- Start somewhere
- Repeat: Take a small step in the steepest descent direction

Steep Descent

- Another example, visualized with contours:

Figure source: yihui.name

Steepest Descent Algorithm

I. Initialize x
2. Repeat
I. Determine the steepest descent direction Δx
2. Line search. Choose a step size $\mathrm{t}>0$.
3. Update. $\mathrm{x}:=\mathrm{x}+\mathrm{t} \Delta \mathrm{x}$.
3. Until stopping criterion is satisfied

What is the Steepest Descent Direction?

Assuming a smooth function, we have that

$$
f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\nabla_{x} f\left(x_{0}\right)^{\top} \Delta x
$$

The (locally at x_{0}) direction of steepest descent is given by:

$$
\begin{aligned}
\Delta x^{*} & =\arg \min _{\Delta x:\|\Delta x\|_{2}=1} f\left(x_{0}\right)+\nabla_{x} f\left(x_{0}\right)^{\top} \Delta x \\
& =\arg \min _{\Delta x:\|\Delta x\|_{2}=1} \nabla_{x} f\left(x_{0}\right)^{\top} \Delta x
\end{aligned}
$$

As we have all $a, b \in \mathbb{R}^{n}$ that $\min _{b:\|b\|_{2}=1} a^{\top} b$ is achieved for $b=-\frac{a}{\|a\|_{2}}$, we have that the steepest descent direction

$$
\Delta x^{*}=-\nabla_{x} f\left(x_{0}\right)
$$

Stepsize Selection: Exact Line Search

$$
t=\arg \min _{s \geq 0} f(x+s \Delta x)
$$

- Used when the cost of solving the minimization problem with one variable is low compared to the cost of computing the search direction itself.

Stepsize Selection: Backtracking Line Search

- Inexact: step length is chose to approximately minimize f along the ray $\{x+t \Delta x \mid t \geq 0\}$

Backtracking Line Search.
given a descent direction Δx for f at $x \in \operatorname{dom} f, \alpha \in(0,0.5), \beta \in(0,1)$. $t:=1$
while $f(x+t \Delta x)>f(x)+\alpha t \nabla f(x)^{\top} \Delta x, t:=\beta t$.

Stepsize Selection: Backtracking Line Search

Figure 9.1 Backtracking line search. The curve shows f, restricted to the line over which we search. The lower dashed line shows the linear extrapolation of f, and the upper dashed line has a slope a factor of α smaller. The backtracking condition is that f lies below the upper dashed line, i.e., $0 \leq$ $t \leq t_{0}$.

Gradient Descent Method

```
Algorithm 9.3 Gradient descent method.
given a starting point }x\in\operatorname{dom}f\mathrm{ .
repeat
    1. }\Deltax:=-\nablaf(x)
    2. Line search. Choose step size t via exact or backtracking line search.
    3. Update. }x:=x+t\Deltax\mathrm{ .
until stopping criterion is satisfied.
```

The stopping criterion is usually of the form $\|\nabla f(x)\|_{2} \leq \eta$, where η is small and positive. In most implementations, this condition is checked after step 1, rather than after the update.

Gradient Descent: Example 1
 $$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

backtracking line search

exact line search

Figure source: Boyd and Vandenberghe

Gradient Descent: Example 2

a problem in \mathbf{R}^{100}

$$
f(x)=c^{T} x-\sum_{i=1}^{500} \log \left(b_{i}-a_{i}^{T} x\right)
$$

'linear' convergence, i.e., a straight line on a semilog plot
Figure source: Boyd and Vandenberghe

Gradient Descent: Example 3

$$
f(x)=(1 / 2)\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\gamma>0)
$$

with exact line search, starting at $x^{(0)}=(\gamma, 1)$:

$$
x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \quad x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma=10$:

Gradient Descent Convergence

Condition number $=10$

Condition number $=1$

- For quadratic function, convergence speed depends on ratio of highest second derivative over lowest second derivative ("condition number")
- In high dimensions, almost guaranteed to have a high (=bad) condition number
- Rescaling coordinates (as could happen by simply expressing quantities in different measurement units) results in a different condition number

Outline

- Unconstrained minimization
- Gradient Descent
- Newton's Method
- Equality constrained minimization
- Inequality and equality constrained minimization

Newton's Method

- $2^{\text {nd }}$ order Taylor Approximation rather than $I^{\text {st }}$ order:

$$
f(x+\Delta x) \approx f(x)+\nabla f(x)^{\top} \Delta x+\frac{1}{2} \Delta x^{\top} \nabla^{2} f(x) \Delta x
$$

assuming $\nabla^{2} f(x) \succeq 0$, the minimum of the $2^{\text {nd }}$ order approximation is achieved at: $\Delta x_{\mathrm{nt}}=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)$

Figure source: Boyd and Vandenberghe

Newton's Method

Algorithm 9.5 Newton's method.
given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon>0$.
repeat

1. Compute the Newton step and decrement.
$\Delta x_{\mathrm{nt}}:=-\nabla^{2} f(x)^{-1} \nabla f(x) ; \quad \lambda^{2}:=\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)$.
2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.

Affine Invariance

- Consider the coordinate transformation $y=A x$
- If running Newton's method starting from $x^{(0)}$ on $f(x)$ results in

$$
x^{(0)}, x^{(1)}, x^{(2)}, \ldots
$$

- Then running Newton's method starting from $y^{(0)}=A x^{(0)}$ on g $(y)=f\left(A^{-1} y\right)$, will result in the sequence

$$
y^{(0)}=A x^{(0)}, y^{(1)}=A x^{(1)}, y^{(2)}=A x^{(2)}, \ldots
$$

- Exercise: try to prove this.

Newton's method when we don't have $\nabla^{2} f(x) \succeq 0$

- Issue: now $\Delta \mathrm{x}_{\mathrm{nt}}$ does not lead to the local minimum of the quadratic approximation --- it simply leads to the point where the gradient of the quadratic approximation is zero, this could be a maximum or a saddle point
- Three possible fixes, let $X \Lambda X^{\top}=\nabla^{2} f(x)$ be the eigenvalue decomposition.
- Fix I: Replace $\nabla^{2} f(x)$ with $X \bar{\Lambda} X^{\top}$,
with $\bar{\Lambda}$ a diagonal matrix with $\bar{\Lambda}_{i, i}=\max \left(0, \Lambda_{i, i}\right)$.
- Fix 2: Replace $\nabla^{2} f(x)$ with $X \bar{\Lambda} X^{\top}$,
with $\bar{\Lambda}$ a diagonal matrix with $\bar{\Lambda}_{i, i}^{\prime}=\Lambda_{i, i}+(-1) * \min _{j} \Lambda_{j, j}$
- Fix 3: Use a gradient descent step, rather than a Newton step, in the current iteration.
In my experience Fix 2 works best.

Example 1

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

Figure source: Boyd and Vandenberghe

Example 2

a problem in \mathbf{R}^{100}

$$
f(x)=c^{T} x-\sum_{i=1}^{500} \log \left(b_{i}-a_{i}^{T} x\right)
$$

gradient descent

Newton's method

Figure source: Boyd and Vandenberghe

Larger Version of Example 2

example in \mathbf{R}^{10000} (with sparse a_{i})

$$
f(x)=-\sum_{i=1}^{10000} \log \left(1-x_{i}^{2}\right)-\sum_{i=1}^{100000} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- backtracking parameters $\alpha=0.01, \beta=0.5$.
- performance similar as for small examples

Gradient Descent: Example 3

$$
f(x)=(1 / 2)\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\gamma>0)
$$

with exact line search, starting at $x^{(0)}=(\gamma, 1)$:

$$
x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \quad x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma=10$:

- Gradient descent
- Newton's method (converges in one step if f convex quadratic)

Quasi-Newton Methods

- Quasi-Newton methods use an approximation of the Hessian
- Example I: Only compute diagonal entries of Hessian, set others equal to zero. Note this also simplfies computations done with the Hessian.
- Example 2: natural gradient --- see next slide

Natural Gradient

- Consider a standard maximum likelihood problem:

$$
\max _{\theta} f(\theta)=\max _{\theta} \sum_{i} \log p\left(x^{(i)} ; \theta\right)
$$

- Gradient:

$$
\frac{\partial f(\theta)}{\partial \theta_{p}}=\sum_{i} \frac{\partial \log p\left(x^{(i)} ; \theta\right)}{\partial \theta_{p}}=\sum_{i} \frac{\partial p\left(x^{(i)} ; \theta\right)}{\partial \theta_{p}} \frac{1}{p\left(x^{(i)} ; \theta\right)}
$$

- Hessian:

$$
\begin{gathered}
\frac{\partial^{2} f(\theta)}{\partial \theta_{q} \partial \theta_{p}}=\sum_{i} \frac{\partial^{2} p\left(x^{(i)} ; \theta\right)}{\partial \theta_{q} \partial \theta_{p}} \frac{1}{p\left(x^{(i)} ; \theta\right)}-\frac{\partial p\left(x^{(i)} ; \theta\right)}{\partial \theta_{q}} \frac{1}{p\left(x^{(i)} ; \theta\right)} \frac{\partial p\left(x^{(i)} ; \theta\right)}{\partial \theta_{p}} \frac{1}{p\left(x^{(i)} ; \theta\right)} \\
\nabla^{2} \log f(\theta)=\sum_{i} \frac{\nabla^{2} p\left(x^{(i)} ; \theta\right)}{p\left(x^{(i)} ; \theta\right)}-\left(\nabla \log p\left(x^{(i)} ; \theta\right)\right)\left(\nabla \log p\left(x^{(i)} ; \theta\right)\right)^{\top}
\end{gathered}
$$

- Natural gradient only keeps the $2^{\text {nd }}$ term I : faster to compute (only gradients needed); 2: guaranteed to be negative definite; 3 : found to be superior in some experiments

Outline

- Unconstrained minimization
- Gradient Descent
- Newton's Method
- Equality constrained minimization
- Inequality and equality constrained minimization

Outline

- Unconstrained minimization
- Equality constrained minimization
- Inequality and equality constrained minimization

