Nonlinear Optimization for Optimal Control

Pieter Abbeel UC Berkeley EECS

[optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 – 11 [optional] Betts, Practical Methods for Optimal Control Using Nonlinear Programming

Steepest Descent Algorithm 1. Initialize × 2. Repeat Determine the steepest descent direction Δx Line search. Choose a step size t > 0. Update. x := x + t Δx. Until stopping criterion is satisfied

What is the Steepest Descent Direction?

Assuming a smooth function, we have that

 $f(x_0 + \Delta x) \approx f(x_0) + \nabla_x f(x_0)^\top \Delta x$

The (locally at x_0) direction of steepest descent is given by:

$$\Delta x^* = \arg \min_{\Delta x: \|\Delta x\|_2 = 1} f(x_0) + \nabla_x f(x_0)^\top \Delta x$$
$$= \arg \min_{\Delta x: \|\Delta x\|_2 = 1} \nabla_x f(x_0)^\top \Delta x$$

As we have all $a, b \in \mathbb{R}^n$ that $\min_{b:||b||_2=1} a^\top b$ is achieved for $b = -\frac{a}{||a||_2}$, we have that the steepest descent direction

$$\Delta x^* = -\nabla_x f(x_0)$$

Affine Invariance

- Consider the coordinate transformation y = A x
- If running Newton's method starting from x⁽⁰⁾ on f(x) results in x⁽⁰⁾, x⁽¹⁾, x⁽²⁾, ...
- Then running Newton's method starting from y⁽⁰⁾ = A x⁽⁰⁾ on g
 (y) = f(A⁻¹ y), will result in the sequence

 $y^{(0)} = A x^{(0)}, y^{(1)} = A x^{(1)}, y^{(2)} = A x^{(2)}, \dots$

• Exercise: try to prove this.

Outline

- Unconstrained minimization
- Equality constrained minimization
- Inequality and equality constrained minimization