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Bellman’s curse of dimensionality 

n  n-dimensional state space 

n  Number of states grows exponentially in n (assuming some fixed 
number of discretization levels per coordinate) 

n  In practice 

n  Discretization is considered only computationally feasible up 
to 5 or 6 dimensional state spaces even when using 

n  Variable resolution discretization 
n  Highly optimized implementations 
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n  Goal: find a sequence of control inputs (and corresponding sequence 
of states) that solves: 

n  Generally hard to do.  We will cover methods that allow to find a 
local minimum of this optimization problem. 

n  Note: iteratively applying LQR is one way to solve this problem if 
there were no constraints on the control inputs and state  

   

This Lecture: Nonlinear Optimization for 
Optimal Control 

n  Unconstrained minimization 

n  Gradient Descent 

n  Newton’s Method 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 
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n  If x* satisfies: 

    

  then x* is a local minimum of f.   

n  In simple cases we can directly solve the system of n equations given by (2) to find 
candidate local minima, and then verify (3) for these candidates. 

n  In general however, solving (2) is a difficult problem.  Going forward we will 
consider this more general setting and cover numerical solution methods for (1). 

 

Unconstrained Minimization 

n  Idea:  

n  Start somewhere 

n  Repeat:  Take a small step in the steepest descent direction 

Steepest Descent 

Local 

Figure source: Mathworks 
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n  Another example, visualized with contours: 

Steep Descent 

Figure source: yihui.name 

1. Initialize x 

2. Repeat 

1. Determine the steepest descent direction ¢x 

2. Line search.  Choose a step size t > 0. 

3. Update.  x := x + t ¢x. 

3. Until stopping criterion is satisfied 

Steepest Descent Algorithm 
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What is the Steepest Descent Direction? 

n  Used when the cost of solving the minimization problem with 
one variable is low compared to the cost of computing the 
search direction itself. 

Stepsize Selection: Exact Line Search  
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n  Inexact: step length is chose to approximately minimize f 
along the ray {x + t ¢x | t ¸ 0} 

Stepsize Selection: Backtracking Line Search  

Stepsize Selection: Backtracking Line Search  

Figure source: Boyd and Vandenberghe 
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Gradient Descent Method 

Figure source: Boyd and Vandenberghe 

Gradient Descent: Example 1 

Figure source: Boyd and Vandenberghe 
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Gradient Descent: Example 2 

Figure source: Boyd and Vandenberghe 

Gradient Descent: Example 3 

Figure source: Boyd and Vandenberghe 
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n  For quadratic function, convergence speed depends on ratio of highest 
second derivative over lowest second derivative (“condition number”) 

n  In high dimensions, almost guaranteed to have a high (=bad) condition 
number 

n  Rescaling coordinates (as could happen by simply expressing quantities in 
different measurement units) results in a different condition number 

Gradient Descent Convergence 

 

 

 

 

 

 

 

 

Condition number = 10 Condition number = 1 

n  Unconstrained minimization 

n  Gradient Descent 

n  Newton’s Method 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 
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n  2nd order Taylor Approximation rather than 1st order: 

   assuming                 , the minimum of the 2nd order 
approximation is achieved at: 

Newton’s Method 

Figure source: Boyd and Vandenberghe 

Newton’s Method 

Figure source: Boyd and Vandenberghe 
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n  Consider the coordinate transformation y = A x 

n  If running Newton’s method starting from x(0) on f(x) results in  

 x(0), x(1), x(2), …  

n  Then running Newton’s method starting from y(0) = A x(0) on g
(y) = f(A-1 y), will result in the sequence  

 y(0) = A x(0), y(1) = A x(1), y(2) = A x(2), … 

 

n  Exercise: try to prove this. 

Affine Invariance 

Newton’s method when we don’t have  

n  Issue:  now ¢ xnt does not lead to the local minimum of the 
quadratic approximation --- it simply leads to the point where 
the gradient of the quadratic approximation is zero, this could 
be a maximum or a saddle point 

n  Three possible fixes, let                   be the eigenvalue 
decomposition.  

n  Fix 1: 

n  Fix 2: 

n  Fix 3: 

  
In my experience Fix 2 works best. 
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Example 1 

Figure source: Boyd and Vandenberghe 

gradient descent with Newton’s method with 
backtracking line search 

Example 2 

Figure source: Boyd and Vandenberghe 

gradient descent Newton’s method 
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Larger Version of Example 2 

Gradient Descent: Example 3 

Figure source: Boyd and Vandenberghe 
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n  Gradient descent 

n  Newton’s method (converges in one step if f convex quadratic) 

Example 3 

n  Quasi-Newton methods use an approximation of the Hessian 

n  Example 1: Only compute diagonal entries of Hessian, set 
others equal to zero.  Note this also simplfies 
computations done with the Hessian. 

n  Example 2: natural gradient --- see next slide 

Quasi-Newton Methods 
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n  Consider a standard maximum likelihood problem: 

n  Gradient: 

n  Hessian:  

n  Natural gradient only keeps the 2nd term                             
1: faster to compute (only gradients needed); 2: guaranteed to be 
negative definite; 3: found to be superior in some experiments  

Natural Gradient 

n  Unconstrained minimization 

n  Gradient Descent 

n  Newton’s Method 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 
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n  Problem to be solved: 

n  We will cover three solution methods: 

n  Elimination 

n  Newton’s method 

n  Infeasible start Newton method 

Equality Constrained Minimization 

n  From linear algebra we know that there exist a matrix F (in fact infinitely many) 
such that: 

    can be any solution to Ax = b 

 F spans the nullspace of A 
A way to find an F: compute SVD of A, A = U S V’, for A having k nonzero singular values, set F = U(:, k+1:end) 

n  So we can solve the equality constrained minimization problem by solving an 
unconstrained minimization problem over a new variable z: 

n  Potential cons: (i) need to first find a solution to Ax=b, (ii) need to find F, (iii) 
elimination might destroy sparsity in original problem structure 

 

Method 1: Elimination 
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n  Recall the problem to be solved: 

Methods 2 and 3 Require Us to First 
Understand the Optimality Condition 

n  Problem to be solved: 

n    

n  Assume x is feasible, i.e., satisfies Ax = b, now use 2nd order 
approximation of f: 

n  à Optimality condition for 2nd order approximation: 

Method 2: Newton’s Method 
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With Newton step obtained by solving a linear system of equations: 

 

 

Feasible descent method:  

Method 2: Newton’s Method 

n  Problem to be solved: 

n    

n  Use 1st order approximation of the optimality conditions at current x: 

Method 3: Infeasible Start Newton Method 
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n  Recall the problem to be solved: 

Methods 2 and 3 Require Us to First 
Understand the Optimality Condition 

n  We can now solve: 

n  And often one can efficiently solve  

  

by iterating over (i) linearizing the constraints, and (ii) solving 
the resulting problem. 

Optimal Control 
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n  Given:  

n  For k=0, 1, 2, …, T 

n  Solve 

n  Execute uk 

n  Observe resulting state, 

à  = an instantiation of Model Predictive Control. 

à  Initialization with solution from iteration k-1 can make solver very fast (and 
would be done most conveniently with infeasible start Newton method)  

Optimal Control: A Complete Algorithm 

n  Unconstrained minimization 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 
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n  Recall the problem to be solved: 

Equality and Inequality Constrained Minimization 

n  Problem to be solved: 

n  Reformulation via indicator function,  

à No inequality constraints anymore, but very poorly 
conditioned objective function 

Equality and Inequality Constrained Minimization 
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n  Problem to be solved: 

n  Approximation via logarithmic barrier: 

 for t>0, -(1/t) log(-u) is a smooth approximation of I_(u) 

 approximation improves for t à 1, better conditioned for smaller t 

Equality and Inequality Constrained Minimization 

n  Reformulation via indicator function 

à No inequality constraints anymore, but 
very poorly conditioned objective function 

n  Given: strictly feasible x, t=t(0) > 0, µ > 1, tolerance ² > 0  

n  Repeat 

1.   Centering Step.  Compute x*(t) by solving 

  

 starting from x 

2.  Update.   x := x*(t). 

3.  Stopping Criterion.  Quit if m/t < ² 

4.  Increase t.  t := µ t 

Barrier Method 
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Example 1: Inequality Form LP 

Example 2: Geometric Program 
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Example 3: Standard LPs 

n  Basic phase I method: 

    Initialize by first solving: 

n  Easy to initialize above problem, pick some x such that Ax = b, and then 
simply set s = maxi fi(x) 

n  Can stop early---whenever s < 0 

Initalization 
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n  Sum of infeasibilities phase I method: 

n  Initialize by first solving: 

n  Easy to initialize above problem, pick some x such that Ax = b, and then 
simply set si = max(0, fi(x)) 

n  For infeasible problems, produces a solution that satisfies many more 
inequalities than basic phase I method 

Initalization 

n  We have covered a primal interior point method 

n  one of several optimization approaches 

n  Examples of others: 

n  Primal-dual interior point methods 

n  Primal-dual infeasible interior point methods 

Other methods 
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n  We can now solve: 

n  And often one can efficiently solve  

  

by iterating over (i) linearizing the equality constraints, convexly 
approximating the inequality constraints with convex inequality constraints, 
and (ii) solving the resulting problem. 

Optimal Control 

n  Disciplined convex programming 

n  = convex optimization problems of forms that it can easily 
verify to be convex 

n  Convenient high-level expressions 

n  Excellent for fast implementation 

n  Designed by Michael Grant and Stephen Boyd, with input 
from Yinyu Ye. 

n  Current webpage: http://cvxr.com/cvx/ 

  

CVX 
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n  Matlab Example for Optimal Control, see course webpage 

CVX 

n  Example of SQP 

n  Potential exercises: 

n  Recover (2nd order approximation to) cost-to-go from 
open-loop optimal control formulation 


