
Page 1!

Rao-Blackwellized Particle Filtering

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

 TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.:
AAAAAAAAAAAAA

Particle Filters Recap
1.  Algorithm particle_filter(St-1, ut , zt):

2. 

3.  For Generate new samples
4.  Sample index j(i) from the discrete distribution given by wt-1

5.  Sample from

6.  Compute importance weight

7.  Update normalization factor
8.  Insert
9.  For

10.  Normalize weights
11.  Return St

0, =∅= ηtS
ni …1=

},{ ><∪= i
t

i
ttt wxSS

i
tw+=ηη

i
tx ! (xt | x

j (i)
t!1,ut, zt)

wt
i =

p(zt | xt
i)p(xt

i | xt!1
i ,ut)

! (xt
i | xt!1

i ,ut , zt)

ni …1=

η/it
i
t ww =

Page 2!

n  mt: map at time t

n  Often map is assumed static, then denoted by m

Motivating Example: Simultaneous
Localization and Mapping (SLAM)

u1

m1

x1

z1

u2

m2

x2

z2

u3

m3

x3

z3

n  Each particle < (x^i, m^i), w^i > encodes a weighted
hypothesis of robot pose and map

n  E.g., 20m x 10m space, mapped at 5cm x 5cm resolution

 à 400 x 200 = 80,000 cells

 à 2^{80,000} possible maps

n  Impractical to get sufficient coverage of such a large state
space

Naive Particle Filter for SLAM

Page 3!

Let’s consider just the robot pose:

n  Sample from

n  Reweight

Recall a particle really corresponds to an entire history, this will matter going
forward, so let’s make this explicit, also account for the fact that by ignoring
the other state variable, we lost Markov property:

n  Reweight

Still defines a valid particle filter just for x, BUT as z depends both
on x and m, some quantities are not readily available (yet).

Particle Filter Revisited

! (xt | x
i
t!1,ut, zt)

wt
i =

p(zt | xt
i)p(xt

i | xt!1
i ,ut)

! (xt
i | xt!1

i ,ut , zt)

wt
i =

p(zt | x1:t
i , z1:t!1)p(xt

i | x1:t!1
i ,ut , z1:t!1)

! (xt
i | xt!1

i ,ut , zt)

n 

This integral is over large space, but we’ll see how to still
compute it efficiently (sometimes approximately).

n 

Weights Computation

p(zt | x1:t
i , z1:t!1) = p(zt | x1:t

i ,mt, z1:t!1)p(mt | z1:t!1, x1:t!1
i)" dmt

wt
i =

p(zt | x1:t
i , z1:t!1)p(xt

i | x1:t!1
i ,ut , z1:t!1)

! (xt
i | xt!1

i ,ut , zt)

= p(zt | xt
i,mt)p(mt | z1:t!1, x1:t!1

i)dmt"

sensor model mapping with KNOWN poses

p(xt
i | x1:t!1

i ,ut , z1:t!1) = p(xt
i | xt!1

i ,ut)

motion model

Page 4!

n  We’ll consider

 hence

n  Examples for which can be computed efficiently

n  “Color-tile” SLAM

n  FastSLAM:
n  Not in this lecture. Need to cover multi-variate Gaussians first.

n  SLAM with gridmaps

Examples

! (xt | x
i
t!1,ut, zt) = p(xt | x

i
t!1,ut)

wi
t = p(zt | xt

i,mt)p(mt | z1:t!1, x1:t!1
i)dmt"

wi
t

n  Robot lives in MxN discrete grid:

à  Robot pose space = {1,…,M} x {1,…, N}

n  Every grid-cell can be red or green

à  Map space = {R, G}MN

n  Motion model: robot can try to move to any neighboring cell,
and succeeds with probability a, stays in place with
probability 1-a.

n  Sensor model: robot can measure the color of the cell it is
currently on. Measurement is correct with probability b,
incorrect with probability 1-b.

“Color-tile” SLAM

Page 5!

n  Challenge in running the Rao-Blackwellized Particle Filter:

efficiently evaluate

Note: FastSLAM follows same derivation, difference being that (gridcell à
landmark), (gridcell color à landmark location), (multinomial over color à
Gaussian over location)

“Color-tile” SLAM

wi
t = p(zt | xt

i,mt)p(mt | z1:t!1, x1:t!1
i)dmt"

sensor model posterior for the coloring of the cell the robot
is currently at, which we can efficiently keep
track of over time (mapping w/known poses)

 Challenge in running the Rao-Blackwellized Particle Filter:

efficiently evaluate

Note: FastSLAM follows same derivation, difference being that (gridcell à landmark),
(gridcell color à landmark location), (multinomial over color à Gaussian over location)

“Color-tile” SLAM

wi
t = p(zt | xt

i,mt)p(mt | z1:t!1
i , x1:t!1

i)dmt"

sensor model
posterior for the coloring of the cell the robot is
currently at, which we can efficiently keep track
of over time (mapping w/known poses)

y: all gridcells
y-x^i_t: all gridcells
except for x^i_t

Sensor reading only
depends on current cell

Bring out shared factor

Sum out over other
cell values

Page 6!

n  Robot state (x, y, µ)

n  Map space {0,1}MN where M and N is number of grid cells
considered in X and Y direction

n  Challenge in running the Rao-Blackwellized Particle Filter:

efficiently evaluate

n  Let

 then assuming a peaked posterior for the map, we have

 which is a sensor model evaluation

SLAM with Gridmaps

wi
t = p(zt | xt

i,mt)p(mt | z1:t!1, x1:t!1
i)dmt"

