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Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics 
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Particle Filters Recap 
1.   Algorithm particle_filter( St-1, ut , zt): 

2.   

3.  For                                                Generate new samples 
4.    Sample index j(i) from the discrete distribution given by wt-1 

5.    Sample     from                                        

6.        Compute importance weight 

7.        Update normalization factor 
8.         Insert 
9.   For  

10.       Normalize weights 
11.  Return St 
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n  mt: map at time t  

n  Often map is assumed static, then denoted by m 

Motivating Example: Simultaneous 
Localization and Mapping (SLAM) 
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n  Each particle < (x^i, m^i), w^i > encodes a weighted 
hypothesis of robot pose and map 

n  E.g., 20m x 10m space, mapped at 5cm x 5cm resolution 

 à 400 x 200 = 80,000 cells 

 à 2^{80,000} possible maps 

n  Impractical to get sufficient coverage of such a large state 
space 

 

Naive Particle Filter for SLAM 
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Let’s consider just the robot pose: 

n  Sample from 

n  Reweight 

Recall a particle really corresponds to an entire history, this will matter going 
forward, so let’s make this explicit, also account for the fact that by ignoring 
the other state variable, we lost Markov property: 

n  Reweight 

 

Still defines a valid particle filter just for x, BUT as z depends both 
on x and m, some quantities are not readily available (yet). 

Particle Filter Revisited 
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n     

This integral is over large space, but we’ll see how to still 
compute it efficiently (sometimes approximately). 

n     

Weights Computation 
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sensor model mapping with KNOWN poses 
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motion model 
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n  We’ll consider 

     hence 

n  Examples for which       can be computed efficiently 

n  “Color-tile” SLAM 

n  FastSLAM:  
n  Not in this lecture.  Need to cover multi-variate Gaussians first. 

n  SLAM with gridmaps 

Examples 
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n  Robot lives in MxN discrete grid: 

à  Robot pose space = {1,…,M} x {1,…, N} 

n  Every grid-cell can be red or green 

à  Map space = {R, G}MN 

n  Motion model: robot can try to move to any neighboring cell, 
and succeeds with probability a, stays in place with 
probability 1-a. 

n  Sensor model: robot can measure the color of the cell it is 
currently on.  Measurement is correct with probability b, 
incorrect with probability 1-b. 

“Color-tile” SLAM 
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n  Challenge in running the Rao-Blackwellized Particle Filter:  

efficiently evaluate 

 

 

 

 

 

 

 
 

Note: FastSLAM follows same derivation, difference being that (gridcell à 
landmark), (gridcell color à landmark location), (multinomial over color à 
Gaussian over location) 

 

 

 

 

 

“Color-tile” SLAM 

wi
t = p(zt | xt

i,mt )p(mt | z1:t!1, x1:t!1
i )dmt"

sensor model posterior for the coloring of the cell the robot 
is currently at, which we can efficiently keep 
track of over time (mapping w/known poses) 

 Challenge in running the Rao-Blackwellized Particle Filter:  

efficiently evaluate 

 

 

 

 

 

 

 
 

Note: FastSLAM follows same derivation, difference being that (gridcell à landmark), 
(gridcell color à landmark location), (multinomial over color à Gaussian over location) 

 

 

 

 

 

“Color-tile” SLAM 
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sensor model 
posterior for the coloring of the cell the robot is 
currently at, which we can efficiently keep track 
of over time (mapping w/known poses) 

y: all gridcells 
y-x^i_t: all gridcells 
except for x^i_t 

Sensor reading only 
depends on current cell 

Bring out shared factor 
 

Sum out over other 
cell values 
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n  Robot state (x, y, µ) 

n  Map space {0,1}MN  where M and N is number of grid cells 
considered in X and Y direction 

n  Challenge in running the Rao-Blackwellized Particle Filter:  

efficiently evaluate 

 

n  Let  

   then assuming a peaked posterior for the map, we have 

    which is a sensor model evaluation 

SLAM with Gridmaps 
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