SEIF, EnKF, EKF SLAM, Fast SLAM, Graph SLAM

Pieter Abbeel UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

KF	enKF
Keep track of μ , Σ	Keep track of ensemble $[x_1,, x_N]$
Prediction:	Can update the ensemble
$\overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}u_{t}$ $\overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$	through the dynamics model + adding sampled noise
Correction:	
$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$ $\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$ $\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$?
Return $\mu_p \Sigma_t$	

enKF correction step

KF:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$
$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$
$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

- Current ensemble $X = [x_1, ..., x_N]$
- Build observations matrix $Z = [Z_t + V_1 \dots Z_t + V_N]$ where V_i are sampled according to the observation noise model
- Then the columns of

$$X + K_t(Z - C_t X)$$

form a set of random samples from the posterior

Note: when computing \mathbf{K}_{t} , leave $\boldsymbol{\varSigma}_{t}$ in the format

$$\Sigma_{t} = [\mathbf{x}_{1} - \mu_{t} \dots \mathbf{x}_{N} - \mu_{t}] [\mathbf{x}_{1} - \mu_{t} \dots \mathbf{x}_{N} - \mu_{t}]^{\mathsf{T}}$$

KF Summary

- Kalman filter exact under linear Gaussian assumptions
- Extension to non-linear setting:
 - Extended Kalman filter
 - Unscented Kalman filter
- Extension to extremely large scale settings:
 - Ensemble Kalman filter
 - Sparse Information filter
- Main limitation: restricted to unimodal / Gaussian looking distributions
- Can alleviate by running multiple XKFs + keeping track of the likelihood; but this is still limited in terms of representational power unless we allow a very large number of them

- Landmark measurement model: robot measures [x_k; y_k], the position of landmark k expressed in coordinate frame attached to the robot:
 - $h(n_R, e_R, \theta_R, n_k, e_k) = [x_k; y_k] = R(\theta) ([n_k; e_k] [n_R; e_R])$
- Often also some odometry measurements
 - E.g., wheel encoders
 - As they measure the control input being applied, they are often incorporated directly as control inputs (why?)

