Bayes Filters

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Actions

- Often the world is **dynamic** since
 - actions carried out by the robot,
 - actions carried out by other agents,
 - or just the time passing by

change the world.

How can we incorporate such actions?

Typical Actions

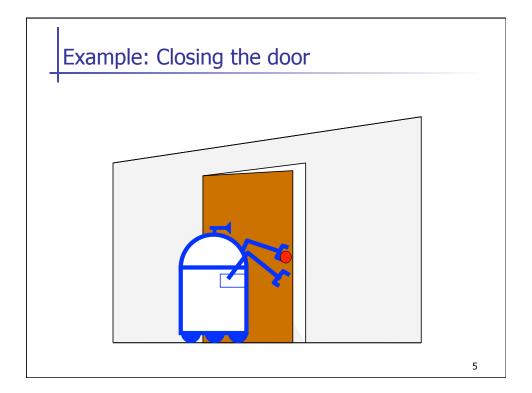
- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time...
- Actions are never carried out with absolute certainty.
- In contrast to measurements, actions generally increase the uncertainty.

3

Modeling Actions

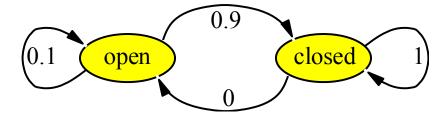
■ To incorporate the outcome of an action *u* into the current "belief", we use the conditional pdf

This term specifies the pdf that executing u changes the state from x' to x.



State Transitions

P(x|u,x') for u = "close door":



If the door is open, the action "close door" succeeds in 90% of all cases.

Integrating the Outcome of Actions

Continuous case:

$$P(x \mid u) = \int P(x \mid u, x') P(x') dx'$$

Discrete case:

$$P(x \mid u) = \sum P(x \mid u, x') P(x')$$

7

Example: The Resulting Belief

$$P(closed \mid u) = \sum P(closed \mid u, x')P(x')$$

$$= P(closed \mid u, open)P(open)$$

$$+ P(closed \mid u, closed)P(closed)$$

$$= \frac{9}{10} * \frac{5}{8} + \frac{1}{1} * \frac{3}{8} = \frac{15}{16}$$

$$P(open \mid u) = \sum P(open \mid u, x')P(x')$$

$$= P(open \mid u, open)P(open)$$

$$+ P(open \mid u, closed)P(closed)$$

$$= \frac{1}{10} * \frac{5}{8} + \frac{0}{1} * \frac{3}{8} = \frac{1}{16}$$

$$= 1 - P(closed \mid u)$$

R

Measurements

Bayes rule

$$P(x|z) = \frac{P(z|x) P(x)}{P(z)} = \frac{\text{likelihood \cdot prior}}{\text{evidence}}$$

Bayes Filters: Framework

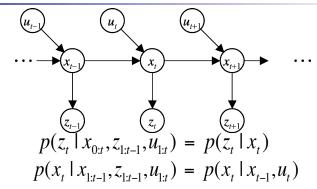
- Given:
 - Stream of observations z and action data u:

$$d_{t} = \{u_{1}, z_{1} \dots, u_{t}, z_{t}\}$$

- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).
- Wanted:
 - Estimate of the state X of a dynamical system.
 - The posterior of the state is also called Belief:

$$Bel(x_t) = P(x_t | u_1, z_1, ..., u_t, z_t)$$

Markov Assumption



Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

11

z = observation **Bayes Filters** u = action $\frac{Bel(x_t)}{} = P(x_t | u_1, z_1, ..., u_t, z_t)$ $= \eta P(z_t | x_t, u_1, z_1, ..., u_t) P(x_t | u_1, z_1, ..., u_t)$ **Bayes** $= \eta \ P(z_t | x_t) \ P(x_t | u_1, z_1, ..., u_t)$ Markov $= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, ..., u_t, x_{t-1})$ Total prob. $P(x_{t-1} | u_1, z_1, ..., u_t) dx_{t-1}$ $= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, ..., u_t) dx_{t-1}$ Markov $= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, ..., z_{t-1}) dx_{t-1}$ Markov $= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$ 12

```
Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}
I.
       Algorithm Bayes_filter( Bel(x),d ):
2.
       \eta = 0
       If d is a perceptual data item z then
          For all x do
                 Bel'(x) = P(z \mid x)Bel(x)
                  \eta = \eta + Bel'(x)
          For all x do
                 Bel'(x) = \eta^{-1}Bel'(x)
       Else if d is an action data item u then
          For all x do
10.
                 Bel'(x) = \int P(x \mid u, x') Bel(x') dx'
11.
12.
        Return Bel'(x)
                                                                                            13
```

Bayes Filters are Familiar!

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

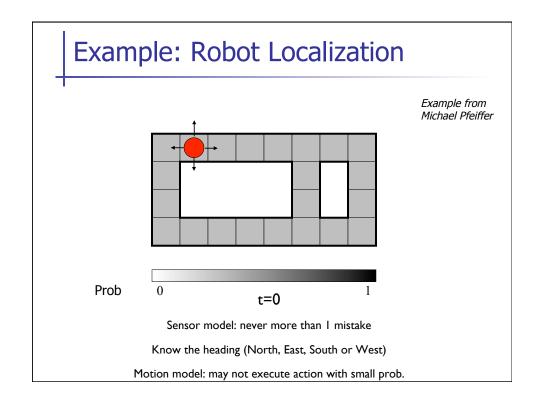
- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

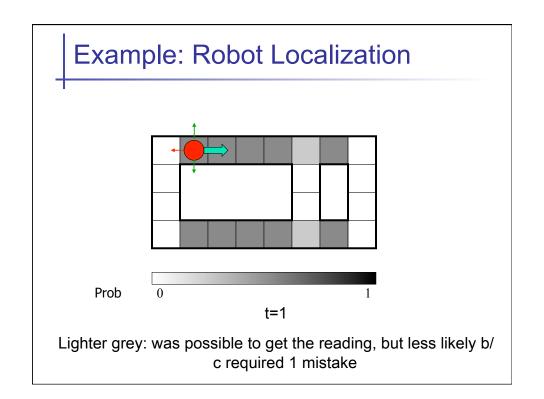
Example Applications

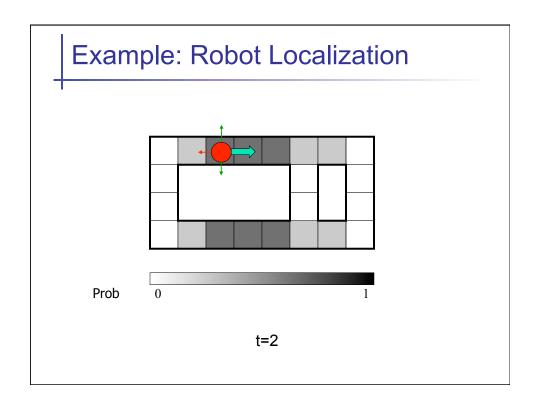
- Robot localization:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)
- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options

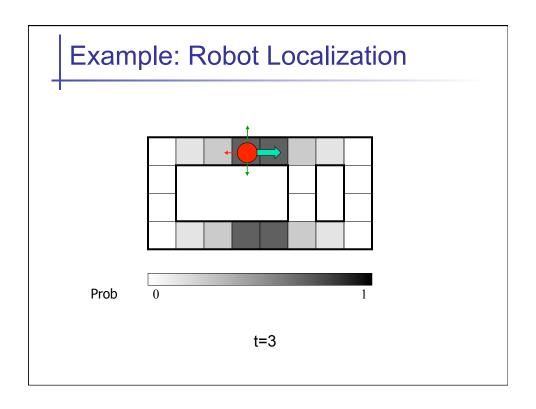
Summary

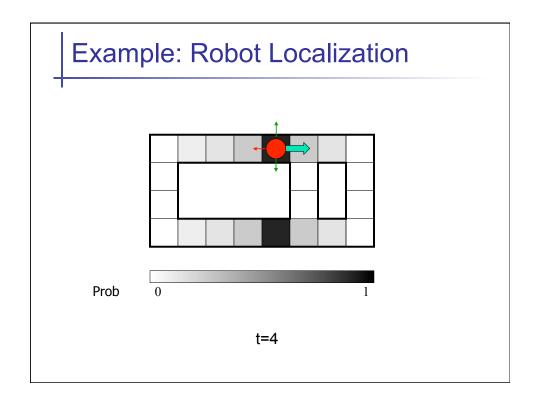
- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.

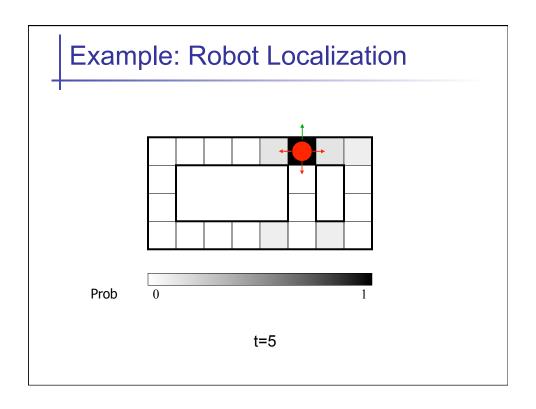












The likelihood of the observations

$$P(z_{1:t}) = \sum_{x_1, x_2, \dots, x_t} P(x_{1:t}, z_{1:t}) = \sum_{x_1, x_2, \dots, x_t} \prod_{k=1}^{t-1} P(x_{k+1}|x_k) P(z_k|x_k) P(z_t|x_t)$$

The forward algorithm first sums over X₁, then over X₂ and so forth, which allows it to efficiently compute the likelihood at all times t, indeed:

$$P(z_{1:t}) = \sum_{x_t} P(x_t, z_{1:t})$$

- Relevance:
 - Compare the fit of several HMM models to the data
 - Could optimize the dynamics model and observation model to maximize the likelihood
 - Run multiple simultaneous trackers --- retain the best and split again whenever applicable (e.g., loop closures in SLAM, or different flight maneuvers)