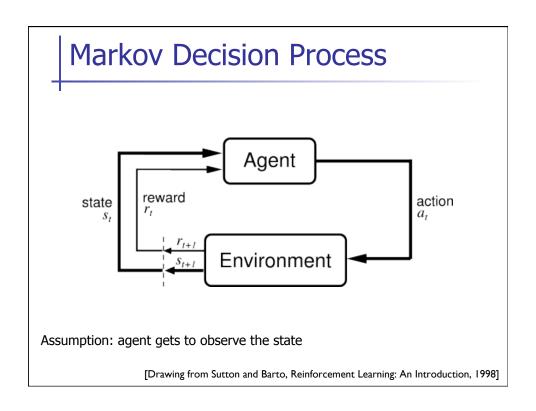
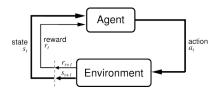
Markov Decision Processes Value Iteration

Pieter Abbeel
UC Berkeley EECS



Markov Decision Process (S, A, T, R, H)

Given



- S: set of states
- A: set of actions
- $T: S \times A \times S \times \{0,1,...,H\} \rightarrow [0,1], \quad T_t(s,a,s') = P(S_{t+1} = s' \mid S_t = s, \ a_t = a)$
- R: $S \times A \times S \times \{0, 1, ..., H\} \rightarrow \Re$ $R_t(s,a,s') = reward for <math>(s_{t+1} = s', s_t = s, a_t = a)$
- H: horizon over which the agent will act

Goal:

■ Find $\pi: S \times \{0, 1, ..., H\} \rightarrow A$ that maximizes expected sum of rewards, i.e.,

$$\pi^* = \arg\max_{\pi} E[\sum_{t=0}^{H} R_t(S_t, A_t, S_{t+1}) | \pi]$$

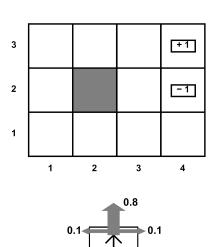
Examples

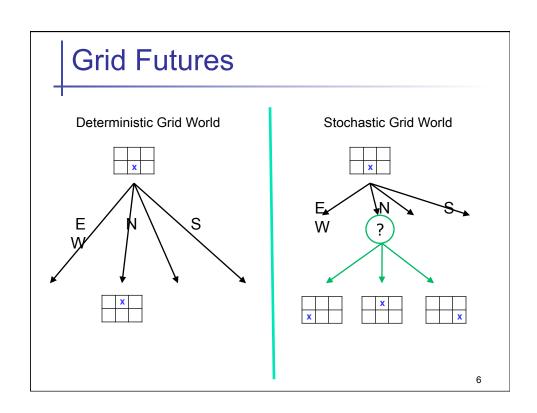
MDP (S, A, T, R, H), goal:
$$max_{\pi} \mathbb{E}[\sum_{t=0}^{H} R(S_t, A_t, S_{t+1}) | \pi]$$

- Cleaning robot
- Walking robot
- Pole balancing
- Games: tetris, backgammon
- Server management
- Shortest path problems
- Model for animals, people

Canonical Example: Grid World

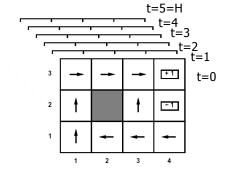
- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Big rewards come at the end





Solving MDPs

- In an MDP, we want an optimal policy π^* : $S \times 0$:H \rightarrow A
 - A policy π gives an action for each state for each time



- An optimal policy maximizes expected sum of rewards
- Contrast: In deterministic, want an optimal plan, or sequence of actions, from start to a goal

Value Iteration

Idea:

$$V_i^*(s) = \max_{\pi_{H-i:H-1}} E[\sum_{t=H-i}^{H-1} R_t(S_t, A_t, S_{t+1}) | \pi_{H-i:H}, s_{H-i} = s]$$

= the expected sum of rewards accumulated when starting from state s and acting optimally for a horizon of i steps

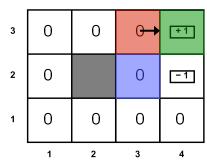
- Algorithm:
 - Start with $V_0^*(s) = 0$ for all s.
 - For i=1, ..., H

Given V_i^* , calculate for all states $s \in S$:

$$V_{i+1}^*(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + V_i^*(s') \right]$$

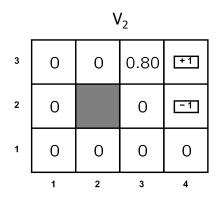
This is called a value update or Bellman update/back-up

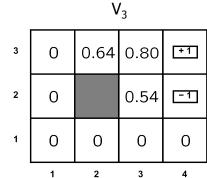
Example



$$\begin{split} V_{i+1}(s) &= \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + V_{i}(s') \right] \\ V_{2}(\langle \mathbf{3}, \mathbf{3} \rangle) &= \sum_{s'} T(\langle \mathbf{3}, \mathbf{3} \rangle, \mathrm{right}, s') \left[R(\langle \mathbf{3}, \mathbf{3} \rangle) + V_{1}(s') \right] \\ &= 0.9 \left[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0 \right] \end{split}$$

Example: Value Iteration





 Information propagates outward from terminal states and eventually all states have correct value estimates

Practice: Computing Actions

- Which action should we chose from state s:
 - Given optimal values V*?

$$\pi_{H-i}(s) = \arg\max_{a} \sum_{s'} T_{H-i}(s, a, s') [R_{H-i}(s, a, s') + \gamma V_{i-1}^*(s')]$$

- = greedy action with respect to V*
- = action choice with one step lookahead w.r.t. V*

11

Today and forthcoming lectures

- Optimal control: provides general computational approach to tackle control problems.
 - Dynamic programming / Value iteration
 - Discrete state spaces (DONE!)
 - Discretization of continuous state spaces
 - Linear systems
 - LQR
 - Extensions to nonlinear settings:
 - Local linearization
 - Differential dynamic programming
 - Optimal Control through Nonlinear Optimization
 - Open-loop
 - Model Predictive Control
 - Examples:

