Markov Decision Processes
Value Iteration

Pieter Abbeel
UC Berkeley EECS

Markov Decision Process

', I Agent

state Eeward action
S{ ! (l!

”~

r

I+

<
-

s | Environment]<

I
] -

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Page 1

Given

Markov Decision Process (S, A, T, R, H)

—= (o }—

reward action
i a,

state
S

Environment

'
1

S: set of states
A: set of actions
T:SxAxSx{0,1l,.,H} 2 [0,1], T(sas)=P(S, =s|S,=s a, =a)

R: SxAxSx{0,1,...,H} >R R(sas’) =rewardfor (S, =5, S, =s, a, =a)

H: horizon over which the agent will act

Goal:

Find w :Sx{0, I, ..., H} > A that maximizes expected sum of rewards, i.e.,

H
7" = arg max E[Z Ry(St, At, Sp41) 7]

t=0
Examples
| H
MDP (S, A, T, R, H), goal: mazzE[> R(Si, Ar, Spp1)|]
t=0

o Cleaning robot

o Walking robot

o Pole balancing

o Games: tetris, backgammon
o Server management

o Shortest path problems

o Model for animals, people

Page 2

Canonical Example: Grid World

The agent lives in a grid

Walls block the agent’s path 3
The agent’s actions do not
always go as planned: 2 =1

80% of the time, the action North
takes the agent North
(if there is no wall there)

10% of the time, North takes the
agent West; 10% East

If there is a wall in the direction 08

the agent would have been taken,

the agent stays put 0.14 > 0.1

Big rewards come at the end

Grid Futures

Deterministic Grid World Stochastic Grid World

Page 3

Solving MDPs

= In an MDP, we want an optimal policy t*: S x 0:H — A

= A policy & gives an action for each state for each time

t=5=H
' t=4
—, t=3
o =2
jm——— 3 |
3 — —_— — t=0
N DE
1 1 —— —— ——
1 2 3 4

= An optimal policy maximizes expected sum of rewards

= Contrast: In deterministic, want an optimal plan, or sequence of actions,
from start to a goal

Value Iteration

|
s ldea:

» Vi(s)= max E[Y Ri(Si, A, Sis)lmm—im,su—i = ¢

TH—i:H—1

—

t=H—1i

= the expected sum of rewards accumulated when starting
from state s and acting optimally for a horizon of i steps

= Algorithm:
s Start with V{(s) =0 forall s.
= Fori=I,..., H
Given V/¥, calculate for all states s € S:

Viii(s) + mngT(s,a, s") {R(s,a,s’) + Vz*(s/)}

S

= This is called a value update or Bellman update/back-up

Page 4

3 [O 0 G—JIE 3 0 0 |0.72

Vig1(s) = mngT(s,a, s') [R(s,a, s + Vi(s’):

S

2((3,3)) = > T((3,3),right, s') [R((3,3)) + Vi(s)]

S

=09[08-140.1-0+0.1-0]

Example: Value Iteration

= |Information propagates outward from terminal states
and eventually all states have correct value estimates

Page 5

Practice: Computing Actions

® Which action should we chose from state s:

= Given optimal values V*?

WH*Z'(S) = arg mgx Z TH*i(Sv a, S/)[RHfi(& a, Sl) + ’Yvitl(sl)]
S/

= = greedy action with respect to V*

= = action choice with one step lookahead w.r.t. V¥

1

Today and forthcoming lectures

|
= Optimal control: provides general computational approach to tackle control

problems.

= Dynamic programming / Value iteration
= Discrete state spaces (DONE!)
= Discretization of continuous state spaces
= Linear systems
= LQR
= Extensions to nonlinear settings:
Local linearization

Differential dynamic programming
= Optimal Control through Nonlinear Optimization
= Open-loop
= Model Predictive Control

= Examples: o
00

Page 6

