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§  For continuous spaces: often no analytical formulas for Bayes filter updates 

§  Solution 1: Histogram Filters: (not studied in this lecture) 

§  Partition the state space 

§  Keep track of probability for each partition 

§  Challenges:  

§  What is the dynamics for the partitioned model? 

§  What is the measurement model? 

§  Often very fine resolution required to get reasonable results 

§  Solution 2: Particle Filters: 

§  Represent belief by random samples 

§  Can use actual dynamics and measurement models 

§  Naturally allocates computational resources where required (~ adaptive 
resolution) 

§  Aka Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter 

Motivation 
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Sample-based Localization (sonar) 

n  Given a sample-based representation       

     of   Bel(xt) = P(xt | z1, …, zt, u1, …, ut) 

    Find a sample-based representation  

     of   Bel(xt+1) = P(xt+1 | z1, …, zt, zt+1 , u1, …, ut+1) 

Problem to be Solved 

St = {xt
1, xt

2,..., xt
N}

St+1 = {xt+1
1 , xt+1

2 ,..., xt+1
N }
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n  Given a sample-based representation       

     of   Bel(xt) = P(xt | z1, …, zt, u1, …, ut) 

    Find a sample-based representation  

     of   P(xt+1 | z1, …, zt, u1, …, ut+1) 

n  Solution: 
n  For i=1, 2, …, N 

n  Sample xi
t+1 from P(Xt+1 | Xt = xi

t) 

 

Dynamics Update 

St = {xt
1, xt

2,..., xt
N}

Sampling Intermezzo 
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n  Given a sample-based representation of 

 P(xt+1 | z1, …, zt) 
 

Find a sample-based representation of 

P(xt+1 | z1, …, zt, zt+1) = C * P(xt+1 | z1, …, zt) * P(zt+1 | xt+1) 
 

n  Solution: 
n  For i=1, 2, …, N 

n  w(i)
t+1 = w(i)

t* P(zt+1 | Xt+1 = x(i)
t+1) 

n  the distribution is represented by the weighted set of samples 

 

 

Observation update 

{xt+1
1 , xt+1

2 ,..., xt+1
N }

{< xt+1
1 ,wt+1

1 >,< xt+1
2 ,wt+1

2 >,...,< xt+1
N ,wt+1

N >}

n  Sample x1
1, x2

1, …, xN
1 from P(X1) 

n  Set wi
1= 1 for all i=1,…,N 

n  For t=1, 2, … 

n  Dynamics update: 
n  For i=1, 2, …, N 

n  Sample xi
t+1 from P(Xt+1 | Xt = xi

t) 

n  Observation update: 
n  For i=1, 2, …, N 

n  wi
t+1 = wi

t* P(zt+1 | Xt+1 = xi
t+1) 

n  At any time t, the distribution is represented by the weighted set of samples  

 { <xi
t, wi

t> ; i=1,…,N} 

 

 

Sequential Importance Sampling (SIS) Particle Filter 
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n  The resulting samples are only weighted by the evidence 

n  The samples themselves are never affected by the evidence 

à Fails to concentrate particles/computation in the high 
probability areas of the distribution P(xt | z1, …, zt) 

SIS particle filter major issue 

n  At any time t, the distribution is represented by the weighted 
set of samples  

 { <xi
t, wi

t> ; i=1,…,N} 

à  Sample N times from the set of particles  

à  The probability of drawing each particle is given by its 
importance weight 

à More particles/computation focused on the parts of the state 
space with high probability mass 

Sequential Importance Resampling (SIR) 
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1.   Algorithm particle_filter( St-1, ut , zt): 

2.   

3.  For                                                Generate new samples 
4.    Sample index j(i) from the discrete distribution given by wt-1 

5.   Sample     from                         using          and 

6.        Compute importance weight 
7.       Update normalization factor 

8.         Insert 
9.   For  

10.       Normalize weights 
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Particle Filters 
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Sensor Information: Importance Sampling 
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Robot Motion 
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Sensor Information: Importance Sampling 

Robot Motion 
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Summary – Particle Filters 

§  Particle filters are an implementation of recursive 
Bayesian filtering 

§  They represent the posterior by a set of weighted 
samples 

§  They can model non-Gaussian distributions 

§  Proposal to draw new samples 

§  Weight to account for the differences between the 
proposal and the target 
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Summary – PF Localization 

§  In the context of localization, the particles are propagated 
according to the motion model. 

§  They are then weighted according to the likelihood of the 
observations. 

§  In a re-sampling step, new particles are drawn with a 
probability proportional to the likelihood of the observation.  


