Particle Filters

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Motivation

- For continuous spaces: often no analytical formulas for Bayes filter updates
- Solution 1: Histogram Filters: (not studied in this lecture)
- Partition the state space
- Keep track of probability for each partition
- Challenges:
- What is the dynamics for the partitioned model?
- What is the measurement model?
- Often very fine resolution required to get reasonable results
- Solution 2: Particle Filters:
- Represent belief by random samples
- Can use actual dynamics and measurement models
- Naturally allocates computational resources where required (\sim adaptive resolution)
- Aka Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter

Problem to be Solved

- Given a sample-based representation $S_{t}=\left\{x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{N}\right\}$
of $\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid z_{1}, \ldots, z_{t}, u_{1}, \ldots, u_{t}\right)$

Find a sample-based representation $S_{t+1}=\left\{x_{t+1}^{1}, x_{t+1}^{2}, \ldots, x_{t+1}^{N}\right\}$ of $\operatorname{Bel}\left(x_{t+1}\right)=P\left(x_{t+1} \mid z_{1}, \ldots, z_{t}, z_{t+1}, u_{1}, \ldots, u_{t+1}\right)$

Dynamics Update

- Given a sample-based representation $S_{t}=\left\{x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{N}\right\}$
of $\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid z_{1}, \ldots, z_{t}, u_{l}, \ldots, u_{t}\right)$

Find a sample-based representation
of $P\left(x_{t+1} \mid z_{1}, \ldots, z_{t}, u_{1}, \ldots, u_{t+1}\right)$

- Solution:
- For $\mathrm{i}=\mathrm{I}, 2, \ldots, \mathrm{~N}$
- Sample x_{t+1}^{i} from $P\left(X_{t+1} \mid X_{t}=x_{t}^{i}\right)$

Sampling Intermezzo

Observation update

- Given a sample-based representation of $\left\{x_{t+1}^{1}, x_{t+1}^{2}, \ldots, x_{t+1}^{N}\right\}$

$$
P\left(x_{t+1} \mid z_{1}, \ldots, z_{t}\right)
$$

Find a sample-based representation of

$$
P\left(x_{t+1} \mid z_{1}, \ldots, z_{t}, z_{t+1}\right)=C * P\left(x_{t+1} \mid z_{1}, \ldots, z_{t}\right) * P\left(z_{t+1} \mid x_{t+1}\right)
$$

- Solution:
- For $i=1,2, \ldots, N$

$$
-w^{(i)}{ }_{t+1}=w^{(i)} * P\left(z_{t+1} \mid X_{t+1}=x^{(i)}{ }_{t+1}\right)
$$

- the distribution is represented by the weighted set of samples

$$
\left\{<x_{t+1}^{1}, w_{t+1}^{1}>,<x_{t+1}^{2}, w_{t+1}^{2}>, \ldots,<x_{t+1}^{N}, w_{t+1}^{N}>\right\}
$$

Sequential Importance Sampling (SIS) Particle Filter

- Sample $x^{1}{ }_{1}, x^{2}{ }_{1}, \ldots, x^{N}$, from $P\left(X_{1}\right)$
- Set $\mathrm{w}_{\mathrm{I}_{1}}=\mathrm{I}$ for all $\mathrm{i}=1, \ldots, \mathrm{~N}$
- For $\mathrm{t}=1,2, \ldots$
- Dynamics update:
- For $\mathrm{i}=\mathrm{I}, 2, \ldots, \mathrm{~N}$
= Sample x_{t+1}^{i} from $P\left(X_{t+1} \mid X_{t}=x_{t}^{i}\right)$
- Observation update:
- For $i=1,2, \ldots, N$
$=w_{t+1}^{i}=w_{t}^{i *} P\left(z_{t+1} \mid X_{t+1}=x_{t+1}^{i}\right)$
- At any time t, the distribution is represented by the weighted set of samples $\left\{\left\langle x_{t}^{i}, w_{t}^{i}\right\rangle ; i=1, \ldots, N\right\}$

SIS particle filter major issue

- The resulting samples are only weighted by the evidence
- The samples themselves are never affected by the evidence
\rightarrow Fails to concentrate particles/computation in the high probability areas of the distribution $\mathrm{P}\left(\mathrm{x}_{\mathrm{t}} \mid \mathrm{Z}_{\mathrm{l}}, \ldots, \mathrm{z}_{\mathrm{t}}\right)$

Sequential Importance Resampling (SIR)

- At any time t, the distribution is represented by the weighted set of samples
$\left\{\left\langle\mathrm{x}_{\mathrm{t}}^{\mathrm{i}}, \mathrm{w}_{\mathrm{t}}^{\mathrm{i}}\right\rangle ; \mathrm{i}=\mathrm{I}, \ldots, \mathrm{N}\right\}$
\rightarrow Sample N times from the set of particles
\rightarrow The probability of drawing each particle is given by its importance weight
\rightarrow More particles/computation focused on the parts of the state space with high probability mass

1. Algorithm particle_filter $\left(S_{t-1}, u_{t}, z_{t}\right)$:
2. $S_{t}=\varnothing, \quad \eta=0$
3. For $i=1 \ldots n$

Generate new samples
4. Sample index $j(i)$ from the discrete distribution given by w_{t-1}
5. Sample x_{t}^{i} from $p\left(x_{t} \mid x_{t-1}, u_{t}\right)$ using $x_{t-1}^{j(i)}$ and u_{t}
6. $w_{t}^{i}=p\left(z_{t} \mid x_{t}^{i}\right)$
7. $\quad \eta=\eta+w_{t}^{i}$
8. $\left.S_{t}=S_{t} \cup\left\{<x_{t}^{i}, w_{t}^{i}\right\rangle\right\}$ Update normalization factor

Insert
9. For $i=1 \ldots n$
10. $w_{t}^{i}=w_{t}^{i} / \eta$

Normalize weights

Particle Filters

A $\mathrm{P}(\mathrm{s})$

Page 9

Page 10

Page 11

Page 12

Page 13

Page 14

Page 15

Page 16

Page 17

Summary - Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model non-Gaussian distributions
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target

Summary - PF Localization

- In the context of localization, the particles are propagated according to the motion model.
* They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.

