Velocity Motion Model

Pieter Abbeel
UC Berkeley EECS

Velocity Motion Model

- Assumes:
- Can control robot through two velocities:
- Translational velocity v
- Rotational velocity ω

Figure 5.3 The velocity motion model, for different noise parameter settings.

Sampling from Velocity Motion Model

$$
\begin{aligned}
\hat{v} & =v+\operatorname{sample}\left(\alpha_{1} v^{2}+\alpha_{2} \omega^{2}\right) \\
\hat{\omega} & =\omega+\operatorname{sample}\left(\alpha_{3} v^{2}+\alpha_{4} \omega^{2}\right) \\
\hat{\gamma} & =\operatorname{sample}\left(\alpha_{5} v^{2}+\alpha_{6} \omega^{2}\right) \\
x^{\prime} & =x+\frac{\hat{v}}{\hat{\omega}}(\sin (\theta+\hat{\omega} \Delta t)-\sin (\theta)) \\
y^{\prime} & =y+\frac{\hat{v}}{\hat{\omega}}(\cos (\theta)-\cos (\theta+\hat{\omega} \Delta t)) \\
\theta^{\prime} & =\theta+\hat{\omega} \Delta t+\hat{\gamma} \Delta t
\end{aligned}
$$

sample(v) provides a sample from a distribution with mean zero and variance v

Samples from Velocity Motion Model

(a)

(b)

Figure 5.4 Sampling from the velocity motion model, using the same parameters as in Figure 5.3. Each diagram shows 500 samples.

