
1

Lecture 15
Multimedia Instruction Sets:

SIMD and Vector

Christoforos E. Kozyrakis
(kozyraki@cs.berkeley.edu)

CS252 Graduate Computer Architecture
University of California at Berkeley

March 14th, 2001

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

2

What is Multimedia Processing?
• Desktop:

– 3D graphics (games)
– Speech recognition (voice input)
– Video/audio decoding (mpeg-mp3 playback)

• Servers:
– Video/audio encoding (video servers, IP telephony)
– Digital libraries and media mining (video servers)
– Computer animation, 3D modeling & rendering (movies)

• Embedded:
– 3D graphics (game consoles)
– Video/audio decoding & encoding (set top boxes)
– Image processing (digital cameras)
– Signal processing (cellular phones)

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

3

The Need for Multimedia ISAs
• Why aren’t general-purpose processors and ISAs

sufficient for multimedia (despite Moore’s law)?
• Performance

– A 1.2GHz Athlon can do MPEG-4 encoding at 6.4fps
– One 384Kbps W-CDMA channel requires 6.9 GOPS

• Power consumption
– A 1.2GHz Athlon consumes ~60W
– Power consumption increases with clock frequency and

complexity
• Cost

– A 1.2GHz Athlon costs ~$62 to manufacture and has a list
price of ~$600 (module)

– Cost increases with complexity, area, transistor count,
power, etc

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

4

Example: MPEG Decoding

Parsing

Dequantization

IDCT

Block Reconstruction

RGB->YUV

Input Stream

Output to Screen

10%

20%

25%

30%

15%

Load Breakdown

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

5

Example: 3D Graphics

Transform
Lighting

Display Lists

Output to Screen

Geometry Pipe

Setup

Rasterization
Anti-aliasing

Shading, fogging
Texture mapping
Alpha blending

Z-buffer
Clipping

Frame-buffer ops

Rendering Pipe

10%

10%

35%

55%

Load Breakdown

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

6

Characteristics of Multimedia Apps (1)

• Requirement for real-time response
– “Incorrect” result often preferred to slow result
– Unpredictability can be bad (e.g. dynamic execution)

• Narrow data-types
– Typical width of data in memory: 8 to 16 bits
– Typical width of data during computation: 16 to 32 bits
– 64-bit data types rarely needed
– Fixed-point arithmetic often replaces floating-point

• Fine-grain (data) parallelism
– Identical operation applied on streams of input data
– Branches have high predictability
– High instruction locality in small loops or kernels

2

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

7

Characteristics of Multimedia Apps (2)

• Coarse-grain parallelism
– Most apps organized as a pipeline of functions
– Multiple threads of execution can be used

• Memory requirements
– High bandwidth requirements but can tolerate high

latency
– High spatial locality (predictable pattern) but low

temporal locality
– Cache bypassing and prefetching can be crucial

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

8

Examples of Media Functions
• Matrix transpose/multiply
• DCT/FFT
• Motion estimation
• Gamma correction
• Haar transform
• Median filter
• Separable convolution
• Viterbi decode
• Bit packing
• Galois-fields arithmetic
• …

(3D graphics)
(Video, audio, communications)
(Video)
(3D graphics)
(Media mining)
(Image processing)
(Image processing)
(Communications, speech)
(Communications, cryptography)
(Communications, cryptography)

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

9

Approaches to Mediaprocessing

Multimedia

Processing

General-purpose
 processors with
 SIMD extensions

Vector Processors

VLIW with SIMD extensions
(aka mediaprocessors)

DSPs ASICs/FPGAs

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

10

SIMD Extensions for GPP
• Motivation

– Low media-processing performance of GPPs
– Cost and lack of flexibility of specialized ASICs for

graphics/video
– Underutilized datapaths and registers

• Basic idea: sub-word parallelism
– Treat a 64-bit register as a vector of 2 32-bit or 4 16-bit

or 8 8-bit values (short vectors)
– Partition 64-bit datapaths to handle multiple narrow

operations in parallel
• Initial constraints

– No additional architecture state (registers)
– No additional exceptions
– Minimum area overhead

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

11

Overview of SIMD Extensions

8x128 (new)24 (fp)99E 3DNow!AMD

01

?

98

98

98

97

95

94,95
Year

8x128 (new)144 (int,fp)SSE-2Intel

FP 32x64b23 (fp)MIPS-3DMIPS

8x128b (new)70 (fp)SSEIntel

32x128b (new)162 (int,fp)AltivecMotorola

FP 8x64b21 (fp)3DNow!AMD

FP 8x64b57 (int)MMXIntel

FP 32x64b121 (int)VISSun

Int 32x64b9,8 (int)MAX-1 and 2HP
Registers# InstrExtensionVendor

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

12

Example of SIMD Operation (1)

* * * *

+ +

Sum of Partial Products

3

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

13

Example of SIMD Operation (2)

Pack (Int16->Int8)

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

14

Summary of SIMD Operations (1)
• Integer arithmetic

– Addition and subtraction with saturation
– Fixed-point rounding modes for multiply and shift
– Sum of absolute differences
– Multiply-add, multiplication with reduction
– Min, max

• Floating-point arithmetic
– Packed floating-point operations
– Square root, reciprocal
– Exception masks

• Data communication
– Merge, insert, extract
– Pack, unpack (width conversion)
– Permute, shuffle

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

15

Summary of SIMD Operations (2)
• Comparisons

– Integer and FP packed comparison
– Compare absolute values
– Element masks and bit vectors

• Memory
– No new load-store instructions for short vector

• No support for strides or indexing
– Short vectors handled with 64b load and store

instructions
– Pack, unpack, shift, rotate, shuffle to handle alignment of

narrow data-types within a wider one
– Prefetch instructions for utilizing temporal locality

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

16

Programming with SIMD Extensions
• Optimized shared libraries

– Written in assembly, distributed by vendor
– Need well defined API for data format and use

• Language macros for variables and operations
– C/C++ wrappers for short vector variables and function calls
– Allows instruction scheduling and register allocation optimizations

for specific processors
– Lack of portability, non standard

• Compilers for SIMD extensions
– No commercially available compiler so far
– Problems

• Language support for expressing fixed-point arithmetic and
SIMD parallelism

• Complicated model for loading/storing vectors
• Frequent updates

• Assembly coding

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

17

SIMD Performance

0

2

4

6

8

Athlon Alpha
21264

Pentium III P o we r P C
G4

UltraSparc
IIi

S
p

ee
d

u
p

 o
ve

r
B

as
e

A
rc

h
it

ec
tu

re
 f

o
r

B
er

ke
le

y
M

ed
ia

 B
en

ch
m

ar
ks

Arithmetic Mean Geometic Mean

Limitations
• Memory bandwidth
• Overhead of handling alignment and data width adjustments

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

18

A Closer Look at MMX/SSE

• Higher speedup for kernels with narrow data where 128b
SSE instructions can be used

• Lower speedup for those with irregular or strided accesses

PentiumIII (500MHz) with MMX/SSE

6.4
4.9

1.3

5.6

1.7
2.8

3.8

2 2.5
1.5

7.6

1.3
2.2 1.8

4.7

31.1

0

2

4

6

8

10

S
p

ee
d

u
p

 o
ve

r
B

as
e

A
rc

h
it

ec
tu

re

4

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

19

CS 252 Administrivia
• No announcements for today

• Chip design “toys” to see during break ☺
– Wafers
– Packages
– Packaged chips
– Boards

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

20

Vector Processors
• Initially developed for super-computing applications,

but we will focus only on multimedia today
• Vector processors have high-level operations that

work on linear arrays of numbers: "vectors"

+

r1 r2

r3

add r3, r1, r2

SCALAR
(1 operation)

v1 v2

v3

+

vector
length

vadd.vv v3, v1, v2

VECTOR
(N operations)

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

21

Properties of Vector Processors
• Single vector instruction implies lots of work (loop)

– Fewer instruction fetches
• Each result independent of previous result

– Compiler ensures no dependencies
– Multiple operations can be executed in parallel
– Simpler design, high clock rate

• Reduces branches and branch problems in pipelines
• Vector instructions access memory with known

pattern
– Effective prefetching
– Amortize memory latency of over large number of elements
– Can exploit a high bandwidth memory system
– No (data) caches required!

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

22

Styles of Vector Architectures
• Memory-memory vector processors

– All vector operations are memory to memory
• Vector-register processors

– All vector operations between vector registers (except
vector load and store)

– Vector equivalent of load-store architectures
– Includes all vector machines since late 1980s
– We assume vector-register for rest of the lecture

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

23

Components of a Vector Processor
• Scalar CPU: registers, datapaths, instruction fetch logic
• Vector register

– Fixed length memory bank holding a single vector
– Has at least 2 read and 1 write ports
– Typically 8-32 vector registers, each holding 1 to 8 Kbits
– Can be viewed as array of 64b, 32b, 16b, or 8b elements

• Vector functional units (FUs)
– Fully pipelined, start new operation every clock
– Typically 2 to 8 FUs: integer and FP
– Multiple datapaths (pipelines) used for each unit to process

multiple elements per cycle
• Vector load-store units (LSUs)

– Fully pipelined unit to load or store a vector
– Multiple elements fetched/stored per cycle
– May have multiple LSUs

• Cross-bar to connect FUs , LSUs, registers

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

24

Basic Vector Instructions
Instr. Operands Operation Comment
VADD.VV V1,V2,V3 V1=V2+V3 vector + vector
VADD.SV V1,R0,V2 V1=R0+V2 scalar + vector
VMUL.VV V1,V2,V3 V1=V2xV3 vector x vector
VMUL.SV V1,R0,V2 V1=R0xV2 scalar x vector
VLD V1,R1 V1=M[R1..R1+63] load, stride=1
VLDS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
VLDX V1,R1,V2 V1=M[R1+V2i,i=0..63] indexed("gather")
VST V1,R1 M[R1..R1+63]=V1 store, stride=1
VSTS V1,R1,R2 V1=M[R1..R1+63*R2] store, stride=R2
VSTX V1,R1,V2 V1=M[R1+V2i,i=0..63] indexed(“scatter")

+ all the regular scalar instructions (RISC style)…

5

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

25

Vector Memory Operations
• Load/store operations move groups of data

between registers and memory
• Three types of addressing

– Unit stride
• Fastest

– Non-unit (constant) stride
– Indexed (gather-scatter)

• Vector equivalent of register indirect
• Good for sparse arrays of data
• Increases number of programs that vectorize

• Support for various combinations of data widths in
memory and registers
– {.L,.W,.H.,.B} x {64b, 32b, 16b, 8b}

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

26

Vector Code Example

64 element SAXPY: scalar
LD R0,a

ADDI R4,Rx,#512

loop: LD R2, 0(Rx)
MULTD R2,R0,R2
LD R4, 0(Ry)

 ADDD R4,R2,R4
SD R4, 0(Ry)
ADDI Rx,Rx,#8
ADDI Ry,Ry,#8
SUB R20,R4,Rx
BNZ R20,loop

64 element SAXPY: vector
LD R0,a #load scalar a

VLD V1,Rx #load vector X

VMUL.SV V2,R0,V1 #vector mult

VLD V3,Ry #load vector Y

VADD.VV V4,V2,V3 #vector add

VST Ry,V4 #store vector Y

Y[0:63] = Y[0:653] + a*X[0:63]

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

27

Setting the Vector Length
• A vector register can hold some maximum number of

elements for each data width (maximum vector length
or MVL)

• What to do when the application vector length is not
exactly MVL?

• Vector-length (VL) register controls the length of any
vector operation, including a vector load or store
– E.g. vadd.vv with VL=10 is
for (I=0; I<10; I++) V1[I]=V2[I]+V3[I]

• VL can be anything from 0 to MVL
• How do you code an application where the vector

length is not known until run-time?

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

28

Strip Mining
• Suppose application vector length > MVL
• Strip mining

– Generation of a loop that handles MVL elements per iteration
– A set operations on MVL elements is translated to a single vector

instruction
• Example: vector saxpy of N elements

– First loop handles (N mod MVL) elements, the rest handle MVL

VL = (N mod MVL); // set VL = N mod MVL

for (I=0; I<VL; I++) // 1st loop is a single set of

Y[I]=A*X[I]+Y[I]; // vector instructions

low = (N mod MVL);

VL = MVL; // set VL to MVL

for (I=low; I<N; I++) // 2nd loop requires N/MVL

Y[I]=A*X[I]+Y[I]; // sets of vector instructions

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

29

Choosing the Data Type Width
• Alternatives for selecting the width of elements in

a vector register (64b, 32b, 16b, 8b)
• Separate instructions for each width

– E.g. vadd64, vadd32, vadd16, vadd8
– Popular with SIMD extensions for GPPs
– Uses too many opcodes

• Specify it in a control register
– Virtual-processor width (VPW)
– Updated only on width changes

• NOTE
– MVL increases when width (VPW) gets narrower
– E.g. with 2Kbits for register, MVL is 32,64,128,256 for

64-,32-,16-,8-bit data respectively
– Always pick the narrowest VPW needed by the application

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

30

Other Features for Multimedia
• Support for fixed-point arithmetic

– Saturation, rounding-modes etc
• Permutation instructions of vector registers

– For reductions and FFTs
– Not general permutations (too expensive)

• Example: permutation for reductions
– Move 2nd half a a vector register into another one
– Repeatedly use with vadd to execute reduction
– Vector length halved after each step

0 15 16 63
V0

0 15 16 63
V1

6

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

31

Optimization 1: Chaining
• Suppose:

vmul.vv V1,V2,V3
vadd.vv V4,V1,V5 # RAW hazard

• Chaining
– Vector register (V1) is not as a single entity but as a

group of individual registers
– Pipeline forwarding can work on individual vector elements

• Flexible chaining: allow vector to chain to any other
active vector operation => more read/write ports

vmul vadd

vmul

vadd

Unchained

Chained

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

32

Optimization 2: Multi-lane Implementation

• Elements for vector registers interleaved across the lanes
• Each lane receives identical control
• Multiple element operations executed per cycle
• Modular, scalable design
• No need for inter-lane communication for most vector

instructions

To/From Memory System

Pipelined
Datapath

Functional
Unit

Lane

Vector Reg.
Partition

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

33

Chaining & Multi-lane Example

• VL=16, 4 lanes, 2 FUs, 1 LSU, chaining -> 12 ops/cycle
• Just one new instruction issued per cycle !!!!

vld

vmul.vv

vadd.vv

addu

vld

vmul.vv

vadd.vv

addu

LSU FU0 FU1Scalar

Time

Element Operations: Instr. Issue:

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

34

Optimization 3: Conditional Execution
• Suppose you want to vectorize this:

for (I=0; I<N; I++)

if (A[I]!= B[I]) A[I] -= B[I];

• Solution: vector conditional execution
– Add vector flag registers with single-bit elements
– Use a vector compare to set the a flag register
– Use flag register as mask control for the vector sub

• Addition executed only for vector elements with
corresponding flag element set

• Vector code
vld V1, Ra
vld V2, Rb

vcmp.neq.vv F0, V1, V2 # vector compare

vsub.vv V3, V2, V1, F0 # conditional vadd

vst V3, Ra

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

35

Vector Architecture State

General
Purpose
Registers

Flag
Registers

(32)

VP0 VP1 VP$mvl-1

vr0

vr1

vr31

vf0

vf1

vf31

$vpw bits

1 bit

Virtual Processors ($mvl)

r0

r1

r31

Scalar
Registers

64 bits

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

36

Two Ways to Vectorization
• Inner loop vectorization

– Think of machine as, say, 32 vector registers each with 16
elements

– 1 instruction updates 32 elements of 1 vector register
– Good for vectorizing single-dimension arrays or regular

kernels (e.g. saxpy)
• Outer loop vectorization

– Think of machine as 16 “virtual processors” (VPs)
each with 32 scalar registers! (multithreaded processor)

– 1 instruction updates 1 scalar register in 16 VPs
– Good for irregular kernels or kernels with loop-carried

dependences in the inner loop
• These are just two compiler perspectives

– The hardware is the same for both

7

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

37

Outer-loop Example (1)

// Matrix-matrix multiply:
// sum a[i][t] * b[t][j] to get c[i][j]
for (i=1; i<n; i++)
{
 for (j=1; j<n; j++)
 {
 sum = 0;
 for (t=1; t<n; t++)
 {
 sum += a[i][t] * b[t][j]; // loop-carried

 } // dependence
 c[i][j] = sum;
 }
}

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

38

Outer-loop Example (2)
// Outer-loop Matrix-matrix multiply:
// sum a[i][t] * b[t][j] to get c[i][j]
// 32 elements of the result calculated in parallel
// with each iteration of the j-loop (c[i][j:j+31])
for (i=1; i<n; i++) {

 for (j=1; j<n; j+=32) { // loop being vectorized
 sum[0:31] [0:31] = 0;

 for (t=1; t<n; t++) {
 ascalar = a[i][t]; // scalar load

bvector[0:31] = b[t][j:j+31]; // vector load
prod[0:31] = b_vector[0:31]*ascalar; // vector mul
sum[0:31] += prod[0:31]; // vector add

 }

 c[i][j:j+31] = sum[0:31]; // vector store
 }
}

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

39

Designing a Vector Processor
• Changes to scalar core
• How to pick the maximum vector length?
• How to pick the number of vector registers?
• Context switch overhead?
• Exception handling?
• Masking and flag instructions?

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

40

Changes to Scalar Processor
• Decode vector instructions
• Send scalar registers to vector unit

(vector-scalar ops)
• Synchronization for results back from vector

register, including exceptions
• Things that don’t run in vector don’t have high ILP,

so can make scalar CPU simple

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

41

How to Pick Max. Vector Length?
• Vector length => Keep all VFUs busy:

• Vector length >=

• Notes:
– Single instruction issue is always the simplest
– Don’t forget you have to issue some scalar instructions as

well

(# lanes) X (# VFUs)
Vector instr. issued/cycle

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

42

How to Pick Max Vector Length?
• Longer good because:

– Lower instruction bandwidth
– If know max length of app. is < max vector length, no strip

mining overhead
– Tiled access to memory reduce scalar processor memory

bandwidth needs
– Better spatial locality for memory access

• Longer not much help because:
– Diminishing returns on overhead savings as keep doubling

number of elements
– Need natural app. vector length to match physical

register length, or no help
– Area for multi-ported register file

8

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

43

How to Pick # of Vector Registers?

• More vector registers:
– Reduces vector register “spills” (save/restore)
– Aggressive scheduling of vector instructions: better

compiling to take advantage of ILP
• Fewer

– Fewer bits in instruction format (usually 3 fields)

• 32 vector registers are usually enough

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

44

Context Switch Overhead?
• The vector register file holds a huge amount of

architectural state
– To expensive to save and restore all on each context

switch
• Extra dirty bit per processor

– If vector registers not written, don’t need to save on
context switch

• Extra valid bit per vector register, cleared on
process start
– Don’t need to restore on context switch until needed

• Extra tip:
– Save/restore vector state only if the new context needs

to issue vector instructions

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

45

Exception Handling: Arithmetic
• Arithmetic traps are hard
• Precise interrupts => large performance loss

– Multimedia applications don’t care much about arithmetic
traps anyway

• Alternative model
– Store exception information in vector flag registers
– A set flag bit indicates that the corresponding element

operation caused an exception
– Software inserts trap barrier instructions from SW to

check the flag bits as needed
– IEEE floating point requires 5 flag registers (5 types of

traps)

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

46

Exception Handling: Page Faults
• Page faults must be precise

– Instruction page faults not a problem
– Data page faults harder

• Option 1: Save/restore internal vector unit state
– Freeze pipeline, (dump all vector state), fix fault,

(restore state and) continue vector pipeline
• Option 2: expand memory pipeline to check all

addresses before send to memory
– Requires address and instruction buffers to avoid stalls

during address checks
– On a page-fault on only needs to save state in those

buffers
– Instructions that have cleared the buffer can be allowed

to complete

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

47

Exception Handling: Interrupts
• Interrupts due to external sources

– I/O, timers etc
• Handled by the scalar core
• Should the vector unit be interrupted?

– Not immediately (no context switch)
– Only if it causes an exception or the interrupt handler

needs to execute a vector instruction

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

48

Vector Power Consumption
• Can trade-off parallelism for power

– Power = C *Vdd2 *f
– If we double the lanes, peak performance doubles
– Halving f restores peak performance but also allows

halving of the Vdd
– Powernew = (2C)*(Vdd/2)2*(f/2) = Power/4

• Simpler logic
– Replicated control for all lanes
– No multiple issue or dynamic execution logic

• Simpler to gate clocks
– Each vector instruction explicitly describes all the

resources it needs for a number of cycles
– Conditional execution leads to further savings

9

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

49

Why Vectors for Multimedia?
• Natural match to parallelism in multimedia

– Vector operations with VL the image or frame width
– Easy to efficiently support vectors of narrow data types

• High performance at low cost
– Multiple ops/cycle while issuing 1 instr/cycle
– Multiple ops/cycle at low power consumption
– Structured access pattern for registers and memory

• Scalable
– Get higher performance by adding lanes without architecture

modifications
• Compact code size

– Describe N operations with 1 short instruction (v. VLIW)
• Predictable performance

– No need for caches, no dynamic execution
• Mature, developed compiler technology

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

50

Comparison with SIMD
• More scalable

– Can use double the amount of HW (datapaths/registers)
without modifying the architecture or increasing
instruction issue bandwidth

• Simpler hardware
– A simple scalar core is enough
– Multiple operations per instruction

• Full support for vector loads and stores
– No overhead for alignment or data width mismatch

• Mature compiler technology
– Although language problems are similar…

• Disadvantages
– Complexity of exception model
– Out of fashion…

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

51

A Vector Media-Processor: VIRAM
• Technology: IBM SA-27E

– 0.18mm CMOS, 6 copper layers
• 280 mm2 die area

– 158 mm2 DRAM, 50 mm2 logic
• Transistor count: ~115M

– 14 Mbytes DRAM
• Power supply & consumption

– 1.2V for logic, 1.8V for DRAM
– 2W at 1.2V

• Peak performance
– 1.6/3.2 /6.4 Gops (64/32/16b ops)
– 3.2/6.4/12.8 Gops (with madd)
– 1.6 Gflops (single-precision)

• Designed by 5 graduate students

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

52

Performance Comparison

• QCIF and CIF numbers are in clock cycles per frame

• All other numbers are in clock cycles per pixel

• MMX results assume no first level cache misses

140M (5.0x)28MCIF (352x288)

33M (4.6x)7.1MQCIF (176x144)

5.49 (4.5x)1.23Image Convolution

8.00 (10.2x)0.78Color Conversion

3.75 (5.0x)0.75iDCT

MMX VIRAM

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

53

FFT (1)

FFT (Floating-point, 1024 points)

36

16.8
25

69

92

124.3

0

40

80

120

160

E
xe

cu
ti

o
n

 T
im

e
(u

se
c)

VIRAM

Pathfinder-2

Wildstar

TigerSHARC

ADSP-21160

TMS320C6701

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

54

FFT (2)

FFT (Fixed-point, 256 points)

7.2 8.1 9 7.3

87

151

0

40

80

120

160

E
xe

cu
ti

o
n

 T
im

e
(u

se
c)

VIRAM

Pathfinder-1

Carmel

TigerSHARC

PPC 604E

Pentium

10

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

55

SIMD Summary
• Narrow vector extensions for GPPs

– 64b or 128b registers as vectors of 32b, 16b, and 8b
elements

• Based on sub-word parallelism and partitioned
datapaths

• Instructions
– Packed fixed- and floating-point, multiply-add, reductions
– Pack, unpack, permutations
– Limited memory support

• 2x to 4x performance improvement over base
architecture
– Limited by memory bandwidth

• Difficult to use (no compilers)

CS252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, 3/14/01

56

Vector Summary
• Alternative model for explicitly expressing data

parallelism
• If code is vectorizable, then simpler hardware,

more power efficient, and better real-time model
than out-of-order machines with SIMD support

• Design issues include number of lanes, number of
functional units, number of vector registers, length
of vector registers, exception handling, conditional
operations

• Will multimedia popularity revive vector
architectures?

