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Review Tomasulo
• Reservations stations: implicit register renaming to

larger set of registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards of Scoreboard
– Allows loop unrolling in HW

• Not limited to basic blocks
(integer units gets ahead, beyond branches)

• Today, helps cache misses as well
– Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?)

• Lasting Contributions
– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Pentium III; PowerPC 604;
MIPS R10000; HP-PA 8000; Alpha 21264
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Tomasulo Algorithm and Branch
Prediction

• 360/91 predicted branches, but did not
speculate: pipeline stopped until the branch
was resolved

– No speculation; only instructions that can complete

• Speculation with Reorder Buffer allows
execution past branch, and then discard if
branch fails

– just need to hold instructions in buffer until branch can
commit
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Case for Branch Prediction when
Issue N instructions per clock cycle

• Branches will arrive up to n times faster in
an n-issue processor

• Amdahl’s Law => relative impact of the
control stalls will be larger with the lower
potential CPI in an n-issue processor
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7 Branch Prediction Schemes

• 1-bit Branch-Prediction Buffer
• 2-bit Branch-Prediction Buffer
• Correlating Branch Prediction Buffer
• Tournament Branch Predictor
• Branch Target Buffer
• Integrated Instruction Fetch Units
• Return Address Predictors
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Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table: Lower bits of PC address

index table of 1-bit values
– Says whether or not branch taken last time
– No address check (saves HW, but may not be right branch)

• Problem: in a loop, 1-bit BHT will cause
2 mispredictions (avg is 9 iterations before exit):

– End of loop case, when it exits instead of  looping as before
– First time through loop on next time through code, when it

predicts exit instead of looping
– Only 80% accuracy even if loop 90% of the time
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• Solution: 2-bit scheme where change prediction only
if get misprediction twice: (Figure 3.7, p. 249)

• Red: stop, not taken
• Green: go, taken
• Adds hysteresis to decision making process

Dynamic Branch Prediction
(Jim Smith, 1981)
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Correlating Branches

Idea: taken/not
taken of recently
executed branches is
related to behavior
of next branch (as
well as the history of
that branch behavior)

– Then behavior of recent
branches selects
between, say, 4
predictions of next
branch, updating just
that prediction

• (2,2) predictor: 2-bit
global, 2-bit local

Branch address (4 bits)

2-bits per branch 
local predictors

PredictionPrediction

2-bit global 
branch history

(01 = not taken then taken)
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Re-evaluating Correlation
• Several of the SPEC benchmarks have less

than a dozen branches responsible for 90%
of taken branches:
program branch %   static # = 90%
compress 14% 236 13
eqntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532
real gcc 13% 17361 3214

• Real programs + OS more like gcc
• Small benefits beyond benchmarks for

correlation? problems with branch aliases?
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• Avoid branch prediction by turning branches
into conditionally executed instructions:

 if (x) then A = B op C else NOP
– If false, then neither store result nor cause exception
– Expanded ISA of Alpha, MIPS, PowerPC, SPARC have

conditional move; PA-RISC can annul any following
instr.

– IA-64: 64 1-bit condition fields selected
so conditional execution of any instruction

– This transformation is called “if-conversion”

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness;

condition becomes known late in pipeline

x

A = 
B op C

Predicated Execution
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BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when index the

table

• 4096 entry table  programs vary from 1%
misprediction (nasa7, tomcatv) to 18%
(eqntott), with spice at 9% and gcc at 12%

• For SPEC92,
4096 about as good as infinite table



Page 3

CS252/Patterson
Lec 17.133/23/01

Administratrivia

• Project meetings on Wednesday
– Lots of interesting projects
– A few a little behind, need to catchup soon and meet

again

• Spring Break next week
• When return, 3rd (last) Homework on Ch 3
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Tournament Predictors

• Motivation for correlating branch predictors is
2-bit predictor failed on important branches;
by adding global information, performance
improved

• Tournament predictors: use 2 predictors, 1
based on global information and 1 based on
local information, and combine with a selector

• Hopes to select right predictor for right
branch
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Tournament Predictor in Alpha 21264
• 4K 2-bit counters to choose from among a global

predictor and a local predictor
• Global predictor also has 4K entries and is indexed by

the history of the last 12 branches; each entry in the
global predictor is a standard 2-bit predictor

– 12-bit pattern: ith bit 0 => ith prior branch not taken;
ith bit 1 => ith prior branch taken;

• Local predictor consists of a 2-level predictor:
– Top level a local history table consisting of 1024 10-bit

entries; each 10-bit entry corresponds to the most recent
10 branch outcomes for the entry. 10-bit history allows
patterns 10 branches to be discovered and predicted.

– Next level Selected entry from the local history table is
used to index a table of 1K entries consisting a 3-bit
saturating counters, which provide the local prediction

• Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)
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% of predictions from local predictor
in Tournament Prediction Scheme
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Accuracy of Branch Prediction

• Profile: branch profile from last execution
(static in that in encoded in instruction, but profile) CS252/Patterson
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Accuracy v. Size (SPEC89)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total predictor size (Kbits)

Local

Correlating

Tournament



Page 4

CS252/Patterson
Lec 17.193/23/01

Need Address
at Same Time as Prediction

• Branch Target Buffer (BTB): Address of branch index to get
prediction AND branch address (if taken)
– Note: must check for branch match now, since can’t use wrong branch address

(Figure 3.19, p. 262)

Branch PC Predicted PC

=?

PC of instruction
FET

CH

Extra 
prediction state

bits
Yes: instruction is
branch and use
predicted PC as
next PC

No: branch not 
predicted, proceed normally

 (Next PC = PC+4)
CS252/Patterson
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Special Case Return Addresses

• Register Indirect branch hard to predict
address

• SPEC89 85% such branches for procedure
return

• Since stack discipline for procedures, save
return address in small buffer that acts like
a stack: 8 to 16 entries has small miss rate
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Pitfall: Sometimes bigger and
dumber is better

• 21264 uses tournament predictor (29 Kbits)
• Earlier 21164 uses a simple 2-bit predictor

with 2K entries (or a total of 4 Kbits)
• SPEC95 benchmarks, 21264 outperforms

– 21264 avg. 11.5 mispredictions per 1000 instructions
– 21164 avg. 16.5 mispredictions per 1000 instructions

• Reversed for transaction processing (TP) !
– 21264 avg. 17 mispredictions per 1000 instructions
– 21164 avg. 15 mispredictions per 1000 instructions

• TP code much larger & 21164 hold 2X
branch predictions based on local behavior
(2K vs. 1K local predictor in the 21264)
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Dynamic Branch Prediction Summary
• Prediction becoming important part of scalar

execution
• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches correlated

with next branch.
– Either different branches
– Or different executions of same branches

• Tournament Predictor: more resources to
competitive solutions and pick between them

• Branch Target Buffer: include branch address &
prediction

• Predicated Execution can reduce number of
branches, number of mispredicted branches

• Return address stack for prediction of indirect
jump
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Getting CPI < 1:
Issuing Multiple Instructions/Cycle

• Vector Processing: Explicit coding of independent
loops as operations on large vectors of numbers

– Multimedia instructions being added to many processors

• Superscalar: varying no. instructions/cycle (1 to 8),
scheduled by compiler or by HW (Tomasulo)

– IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4

• (Very) Long Instruction Words (V)LIW:
fixed number of instructions (4-16) scheduled by
the compiler; put ops into wide templates (TBD)

– Intel Architecture-64 (IA-64) 64-bit address
» Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

– Will discuss in 2 lectures

• Anticipated success of multiple instructions lead to
Instructions Per Clock cycle (IPC) vs. CPI
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Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar MIPS: 2 instructions, 1 FP & 1 anything
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

•  1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot
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Multiple Issue Issues

• issue packet: group of instructions from fetch
unit that could potentially issue in 1 clock

– If instruction causes structural hazard or a data hazard
either due to earlier instruction in execution or to earlier
instruction in issue packet, then instruction does not issue

– 0 to N instruction issues per clock cycle, for N-issue

• Performing issue checks in 1 cycle could limit
clock cycle time: O(n2-n) comparisons

– => issue stage usually split and pipelined
– 1st stage decides how many instructions from within this

packet can issue, 2nd stage examines hazards among selected
instructions and those already been issued

– => higher branch penalties => prediction accuracy important
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Multiple Issue Challenges
• While Integer/FP split is simple for the HW, get CPI

of 0.5 only for programs with:
– Exactly 50% FP operations AND No hazards

• If more instructions issue at same time, greater
difficulty of decode and issue:

– Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide
if 1 or 2 instructions can issue; (N-issue ~O(N2-N) comparisons)

– Register file: need 2x reads and 1x writes/cycle
– Rename logic: must be able to rename same register multiple times in

one cycle!  For instance, consider 4-way issue:
add r1, r2, r3 add p11, p4, p7
sub r4, r1, r2 ⇒⇒ sub p22, p11, p4
lw  r1, 4(r4) lw  p23, 4(p22)
add r5, r1, r2 add p12, p23, p4

Imagine doing this transformation in a single cycle!
– Result buses: Need to complete multiple instructions/cycle

» So, need multiple buses with associated matching logic at every
reservation station.

» Or, need multiple forwarding paths
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Dynamic Scheduling in Superscalar
The easy way

• How to issue two instructions and keep in-order
instruction issue for Tomasulo?

– Assume 1 integer + 1 floating point
– 1 Tomasulo control for integer, 1 for floating point

• Issue 2X Clock Rate, so that issue remains in order
• Only loads/stores might cause dependency between

integer and FP issue:
– Replace load reservation station with a load queue;

operands must be read in the order they are fetched
– Load checks addresses in Store Queue to avoid RAW violation
– Store checks addresses in Load Queue to avoid WAR,WAW
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Register renaming, virtual registers
versus Reorder Buffers

• Alternative to Reorder Buffer is a larger virtual
set of registers and register renaming

• Virtual registers hold both architecturally visible
registers + temporary values

– replace functions of reorder buffer and reservation station

• Renaming process maps names of architectural
registers to registers in virtual register set

– Changing subset of virtual registers contains architecturally
visible registers

• Simplifies instruction commit: mark register as no
longer speculative, free register with old value

• Adds 40-80 extra registers: Alpha, Pentium,…
– Size limits no. instructions in execution (used until commit)
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How much to speculate?
• Speculation Pro: uncover events that would

otherwise stall the pipeline (cache misses)
• Speculation Con: speculate costly if exceptional

event occurs when speculation was incorrect
• Typical solution: speculation allows only low-

cost exceptional events (1st-level cache miss)
• When expensive exceptional event occurs,

(2nd-level cache miss or TLB miss) processor
waits until the instruction causing event is no
longer speculative before handling the event

• Assuming single branch per cycle: future may
speculate across multiple branches!
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Limits to ILP

• Conflicting studies of amount
– Benchmarks (vectorized Fortran FP vs. integer C programs)
– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW mechanisms to
keep on processor performance curve?

– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
– Motorola AltaVec: 128 bit ints and FPs
– Supersparc Multimedia ops, etc.
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Limits to ILP

Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted
2 & 3 => machine with perfect speculation & an
unbounded buffer of instructions available
4. Memory-address alias analysis – addresses are
known & a store can be moved before a load
provided addresses not equal

Also:
unlimited number of instructions issued/clock cycle;
perfect caches;
1 cycle latency for all instructions (FP *,/);
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Upper Limit to ILP: Ideal Machine
(Figure 3.34, page 294)
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How to Exceed ILP Limits of this
study?

• WAR and WAW hazards through memory:
eliminated WAW and WAR hazards through
register renaming, but not in memory usage

• Unnecessary dependences (compiler not unrolling
loops so iteration variable dependence)

• Overcoming the data flow limit: value prediction,
predicting values and speculating on prediction

– Address value prediction and speculation predicts addresses
and speculates by reordering loads and stores; could provide
better aliasing analysis, only need predict if addresses =
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Workstation Microprocessors 3/2001

Source: Microprocessor Report, www.MPRonline.com

• Max issue: 4 instructions (many CPUs)
Max rename registers: 128 (Pentium 4)
Max BHT: 4K x 9 (Alpha 21264B), 16Kx2 (Ultra III)
Max Window Size (OOO): 126 intructions (Pent. 4)
Max Pipeline: 22/24 stages (Pentium 4)
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SPEC 2000 Performance 3/2001 Source: Microprocessor Report, www.MPRonline.com

1.6X

3.8X

1.2X

1.7X

1.5X
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If time permits: "A Language for Describing
Predictors and its Application to Automatic

Synthesis”, by Emer and Gloy

• What was dynamic branch mechanisms they
looked at?

• How did they explore space?
• Did they improve upon current practice?
• How was did they choose between options?
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Conclusion

• 1985-2000: 1000X performance
– Moore’s Law transistors/chip => Moore’s Law for Performance/MPU

• Hennessy: industry been following a roadmap of ideas
known in 1985 to exploit Instruction Level Parallelism
and (real) Moore’s Law to get 1.55X/year
– Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order

execution, …

• ILP limits: To make performance progress in future
need to have explicit parallelism from programmer vs.
implicit parallelism of ILP exploited by compiler, HW?
– Otherwise drop to old rate of 1.3X per year?
– Less than 1.3X because of processor-memory performance gap?

• Impact on you: if you care about performance,
better think about explicitly parallel algorithms
vs. rely on ILP?


